31 Dispersion Relation
31.1 The Governing Equations: Vlasov-Maxwell System
We start with a collisionless, magnetized plasma. The evolution of the distribution function \(f_s(\mathbf{x}, \mathbf{v}, t)\) for species \(s\) is governed by the Vlasov equation: \[ \frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla f_s + \frac{q_s}{m_s} \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f_s = 0 \]
The fields \(\mathbf{E}\) and \(\mathbf{B}\) are self-consistent, governed by Maxwell’s equations: \[ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t} \] where \[ \mathbf{J} = \sum_s q_s \int \mathbf{v} f_s \mathrm{d}^3v \]
31.2 Linearization and Fourier Analysis
We assume the plasma is initially in a uniform equilibrium \(f_{s0}(\mathbf{v})\) with a constant background magnetic field \(\mathbf{B}_0 = B_0 \hat{z}\) and no background electric field (\(\mathbf{E}_0 = 0\)).
We apply a small perturbation: \[ f_s = f_{s0} + \delta f_s, \quad \mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B}, \quad \mathbf{E} = \delta \mathbf{E} \]
We assume all perturbations vary as plane waves: \(\sim \exp[i(\mathbf{k}\cdot\mathbf{x} - \omega t)]\).
The Linearized Vlasov Equation (keeping only 1st order terms) becomes: \[ -i(\omega - \mathbf{k}\cdot\mathbf{v}) \delta f_s + \frac{q_s}{m_s} (\mathbf{v} \times \mathbf{B}_0) \cdot \nabla_{\mathbf{v}} \delta f_s = -\frac{q_s}{m_s} (\delta \mathbf{E} + \mathbf{v} \times \delta \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_{s0} \]
Using Faraday’s Law (\(\nabla \times \delta \mathbf{E} = i\omega \delta \mathbf{B}\)), we can eliminate \(\delta \mathbf{B}\) in favor of \(\delta \mathbf{E}\): \[ \delta \mathbf{B} = \frac{\mathbf{k} \times \delta \mathbf{E}}{\omega} \]
31.3 Solving for \(\delta f_s\): The Method of Characteristics
This is the hardest mathematical step. We must solve for \(\delta f_s\). The left-hand side of the linearized equation represents the total derivative along the unperturbed particle orbit: \[ \frac{d}{dt} \delta f_s \bigg|_{\text{orbit}} = \left( \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{q}{m}(\mathbf{v} \times \mathbf{B}_0) \cdot \nabla_{\mathbf{v}} \right) \delta f_s \]
To find \(\delta f_s(\mathbf{v}, t)\), we integrate the right-hand side (the perturbing force) along the particle’s past history (trajectory \(\tau\) from \(-\infty\) to \(t\)). \[ \delta f_s(\mathbf{v}) = -\frac{q_s}{m_s} \int_{-\infty}^{t} \mathrm{d}\tau \left[ \left( \delta \mathbf{E} + \mathbf{v}(\tau) \times \frac{\mathbf{k} \times \delta \mathbf{E}}{\omega} \right) \cdot \nabla_{\mathbf{v}} f_{s0} \right]_{\mathbf{v}(\tau)} \]
- The “Bessel Function” Origin: The unperturbed orbit \(\mathbf{v}(\tau)\) is a helix. \[ v_x(\tau) = v_\perp \cos(\Omega \tau + \phi), \quad v_y(\tau) = v_\perp \sin(\Omega \tau + \phi) \] When you substitute this helical motion into the phase factor \(e^{i \mathbf{k} \cdot \mathbf{x}(\tau)}\), you get terms like \(e^{i \frac{k_\perp v_\perp}{\Omega} \sin(\dots)}\). Using the Jacobi-Anger expansion identity: \[ e^{i z \sin \theta} = \sum_{n=-\infty}^{\infty} J_n(z) e^{i n \theta} \]
This is why Bessel functions (\(J_n\)) appear in the dispersion relation. They represent the coupling between the wave and the particle’s cyclotron harmonics.
After performing this massive integration, we get the analytical form for \(\delta f_s\).
31.4 The Dielectric Tensor \(\mathbf{\epsilon}\)
We now have \(\delta f_s\) in terms of \(\delta \mathbf{E}\). We calculate the perturbed current: \[ \delta \mathbf{J} = \sum_s q_s \int \mathbf{v} \delta f_s d^3v = \pmb{\sigma} \cdot \delta \mathbf{E} \]
Substituting this into the wave equation (Maxwell’s eq with \(\delta \mathbf{J}\)): \[ \mathbf{k} \times (\mathbf{k} \times \delta \mathbf{E}) + \frac{\omega^2}{c^2} \pmb{\epsilon} \cdot \delta \mathbf{E} = 0 \] where \(\pmb{\epsilon} = \mathbf{I} + \frac{i}{\epsilon_0 \omega} \pmb{\sigma}\).
This can be rewritten as the classic dispersion matrix equation: \[ \mathbf{D}(\mathbf{k}, \omega) \cdot \delta \mathbf{E} = 0 \] \[ \mathbf{D} = \epsilon - \left(\frac{kc}{\omega}\right)^2 \left( \mathbf{I} - \hat{k}\hat{k} \right) \] To find non-trivial solutions (\(\delta \mathbf{E} \neq 0\)), we must satisfy the Dispersion Relation: \[ \det(\mathbf{D}(\mathbf{k}, \omega)) = 0 \]
31.5 The Hard Part
The elements of the tensor \(\mathbf{\epsilon}\) involve integrals of the form: \[ \chi \sim \sum_n \int_{0}^{\infty} v_\perp dv_\perp \int_{-\infty}^{\infty} dv_\parallel \frac{H_n(v_\perp, v_\parallel) J_n^2(\lambda)}{\omega - k_\parallel v_\parallel - n\Omega} \]
This integral is the bottleneck of solving the dispersion relation, and the reason why there are still new solvers coming out.
In the recent work of Huasheng Xie, he expands any arbitrary \(f_0\) into a sum of Hermite polynomials1. Hermite polynomials allow the integrals to be done analytically once. He then approximates the resonance \(1/(\omega - k v - n\Omega)\) using a rational function (Padé/J-pole) to avoid the singularity point. Then the highly complex integral equation turns into a standard linear algebra problem \(\mathbf{M} \mathbf{X} = \omega \mathbf{X}\), allowing us to solve for all modes simultaneously without integrating.
Hermite polynomials are a set of orthogonal polynomials that can be used to represent functions in terms of their moments. This idea is also used in the multi-moment fluid model developed at Los Alamos.↩︎