{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# FLEKS Python Visualization Toolkit\n", "\n", "flekspy is a Python package for processing FLEKS data.\n", "\n", "## FLEKS data format\n", "\n", "* Field: *.out format or AMREX built-in format, whose directory name is assumed to end with \"_amrex\"\n", "* PIC particle: AMREX built-in format \n", "* Test particle: binary data format" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing the package" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import flekspy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Downloading demo data\n", "\n", "If you don't have FLEKS data to start with, you can download demo field data with the following:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from flekspy.util import download_testfile\n", "\n", "url = \"https://raw.githubusercontent.com/henry2004y/batsrus_data/master/batsrus_data.tar.gz\"\n", "download_testfile(url, \"data\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example test particle data can be downloaded as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = \"https://raw.githubusercontent.com/henry2004y/batsrus_data/master/test_particles.tar.gz\"\n", "download_testfile(url, \"data\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example PIC particle data can be downloaded as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "url = \"https://raw.githubusercontent.com/henry2004y/batsrus_data/master/3d_particle.tar.gz\"\n", "download_testfile(url, \"data\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading data\n", "\n", "`flekspy.load` is the interface to read files of all formats. It returns a different object for different formats." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file = \"data/1d__raw_2_t25.60000_n00000258.out\"\n", "ds = flekspy.load(file)\n", "ds" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The variables can be accessed via dictionary keys:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p = ds.data[\"p\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Extracting data\n", "\n", "Variables at a series of locations can be extracted via `extract_data`, or at a single location via `get_data`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "file = \"data/z=0_fluid_region0_0_t00001640_n00010142.out\"\n", "ds = flekspy.load(file)\n", "sat = np.array([[-28000.0, 0.0], [9000.0, 0.0]])\n", "d = ds.extract_data(sat)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "loc = np.array([0.0, 0.0])\n", "d = ds.get_data(loc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizing fields\n", "\n", "We provide convenient `pp` and `pcolormesh` method for IDL 1D and 2D outputs:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file = \"data/1d__raw_2_t25.60000_n00000258.out\"\n", "ds = flekspy.load(file)\n", "ds.plot(\"p\", \"Bx\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file = \"data/z=0_fluid_region0_0_t00001640_n00010142.out\"\n", "ds = flekspy.load(file)\n", "ds.pcolormesh(\"x\", \"y\", \"Bx\", \"By\", \"Bz\", scale=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Native AMReX format can be read using YT:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds = flekspy.load(\"data/3d*amrex\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can take a slice at a given location, which works both for IDL and AMReX data:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dc = ds.get_slice(\"z\", 0.5)\n", "dc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and plot the selected variables on the slice with colored contours, streamlines, and contour lines:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "f, axes = dc.plot(\"By\", pcolor=True)\n", "dc.add_stream(axes[0], \"Bx\", \"By\", color=\"w\")\n", "dc.add_contour(axes[0], \"Bx\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Users can also obtain the data of a 2D plane, and visualize it with matplotlib. A complete example is given below:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "ds = flekspy.load(\"data/3*amrex\")\n", "dc = ds.get_slice(\"z\", 0.5)\n", "\n", "f, axes = plt.subplots(\n", " 1, 2, figsize=(12, 4), constrained_layout=True, sharex=True, sharey=True\n", ")\n", "\n", "fields = [\"By\", \"Bz\"]\n", "for ivar in range(2):\n", " v = dc.evaluate_expression(fields[ivar])\n", " vmin = v.min().v\n", " vmax = v.max().v\n", " ax = axes[ivar]\n", " ax.set_title(fields[ivar], fontsize=16)\n", " ax.set_ylabel(\"Y\", fontsize=16)\n", " ax.set_xlabel(\"X\", fontsize=16)\n", " c = ax.pcolormesh(dc.x.value, dc.y.value, np.array(v.T), cmap=\"turbo\")\n", " cb = f.colorbar(c, ax=ax, pad=0.01)\n", "\n", " ax.set_xlim(np.min(dc.x.value), np.max(dc.x.value))\n", " ax.set_xlim(np.min(dc.y.value), np.max(dc.y.value))\n", " dc.add_stream(ax, \"Bx\", \"By\", density=0.5, color=\"w\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizing phase space distributions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "from flekspy.util import unit_one\n", "\n", "data_file = \"data/3d_*amrex\"\n", "ds = flekspy.load(data_file)\n", "\n", "# Add a user defined field. See yt document for more information about derived field.\n", "ds.add_field(\n", " ds.pvar(\"unit_one\"),\n", " function=unit_one,\n", " sampling_type=\"particle\",\n", " units=\"dimensionless\",\n", ")\n", "\n", "x_field = \"p_uy\"\n", "y_field = \"p_uz\"\n", "# z_field = \"unit_one\"\n", "z_field = \"p_w\"\n", "xleft = [-0.016, -0.01, 0.0]\n", "xright = [0.016, 0.01, 1.0]\n", "\n", "zmin, zmax = 1e-5, 2e-3\n", "\n", "## Select and plot the particles inside a box defined by xleft and xright\n", "region = ds.box(xleft, xright)\n", "pp = ds.plot_phase(\n", " x_field,\n", " y_field,\n", " z_field,\n", " region=region,\n", " unit_type=\"si\",\n", " x_bins=100,\n", " y_bins=32,\n", " domain_size=(xleft[0], xright[0], xleft[1], xright[1]),\n", ")\n", "\n", "pp.set_cmap(pp.fields[0], \"turbo\")\n", "pp.set_font(\n", " {\n", " \"size\": 34,\n", " \"family\": \"DejaVu Sans\",\n", " }\n", ")\n", "\n", "pp.set_zlim(pp.fields[0], zmin=zmin, zmax=zmax)\n", "\n", "pp.set_xlabel(r\"$V_y$\")\n", "pp.set_ylabel(r\"$V_z$\")\n", "pp.set_colorbar_label(pp.fields[0], \"weight\")\n", "str_title = (\n", " rf\"x = [{xleft[0]:.1e}, {xright[0]:.1e}], y = [{xleft[1]:.1e}, {xright[1]:.1e}]\"\n", ")\n", "pp.set_title(pp.fields[0], str_title)\n", "pp.set_log(pp.fields[0], True)\n", "pp.show()\n", "# pp.save(\"test\")\n", "# pp.plots[(\"particles\", z_field)].axes.xaxis.set_major_locator(\n", "# ticker.MaxNLocator(4))\n", "# pp.plots[(\"particles\", z_field)].axes.yaxis.set_major_locator(\n", "# ticker.MaxNLocator(4))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the location of particles that are inside a sphere" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "center = [0, 0, 0]\n", "radius = 1\n", "# Object sphere is defined in yt/data_objects/selection_objects/spheroids.py\n", "sp = ds.sphere(center, radius)\n", "pp = ds.plot_particles(\n", " \"p_x\", \"p_y\", \"p_w\", region=sp, unit_type=\"si\", x_bins=64, y_bins=64\n", ")\n", "pp.show()\n", "# pp.save(\"test\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the velocity space of particles that are inside a sphere" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pp = ds.plot_phase(\n", " \"p_uy\", \"p_uz\", \"p_w\", region=sp, unit_type=\"si\", x_bins=64, y_bins=64\n", ")\n", "\n", "pp.set_cmap(pp.fields[0], \"turbo\")\n", "\n", "pp.set_font(\n", "\n", " {\n", "\n", " \"size\": 34,\n", "\n", " \"family\": \"DejaVu Sans\",\n", "\n", " }\n", ")\n", "\n", "pp.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the location of particles that are inside a disk" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "center = [0, 0, 0]\n", "normal = [0, 0, 1] # normal direction of the disk\n", "radius = 0.5\n", "height = 1.0\n", "# Object sphere is defined in yt/data_objects/selection_objects/disk.py\n", "disk = ds.disk(center, normal, radius, height)\n", "pp = ds.plot_particles(\n", " \"p_x\", \"p_y\", \"p_w\", region=disk, unit_type=\"si\", x_bins=64, y_bins=64\n", ")\n", "pp.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the velocity space of particles that are inside a disk" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pp = ds.plot_phase(\n", " \"p_uy\", \"p_uz\", \"p_w\", region=disk, unit_type=\"si\", x_bins=64, y_bins=64\n", ")\n", "\n", "pp.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get the 2D array from the phase plot and reconstruct from scratch:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for var_name in pp.profile.field_data:\n", " val = pp.profile.field_data[var_name]\n", "\n", "x = pp.profile.x\n", "y = pp.profile.y\n", "\n", "plt.pcolormesh(x, y, val)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting Test Particle Trajectories" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Loading particle data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from flekspy import FLEKSTP\n", "\n", "tp = FLEKSTP(\"data/test_particles\", iSpecies=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obtaining particle IDs\n", "\n", "Test particle IDs consists of a CPU index and a particle index attached to the CPU." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pIDs = tp.getIDs()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reading particle trajectory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "traj = tp.read_particle_trajectory(pIDs[10])\n", "print(\"time:\\n\")\n", "print(traj[:, 0])\n", "print(\"x:\\n\")\n", "print(traj[:, 1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Getting initial location" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x = tp.read_initial_location(pIDs[10])\n", "print(\"time, X, Y, Z, Ux, Uy, Uz\")\n", "print(\n", " f\"{x[0]:.2e}, {x[1]:.2e}, {x[2]:.2e}, {x[3]:.2e}, {x[4]:.2e}, {x[5]:.2e}, {x[6]:.2e}\"\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting trajectory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tp.plot_trajectory(pIDs[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reading and visualizing all particle's location at a given snapshot" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ids, pData = tp.read_particles_at_time(0.0, doSave=False)\n", "tp.plot_location(pData)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Selecting particles starting in a region" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def f_select(tp, pid):\n", " pData = tp.read_initial_location(pid)\n", " inRegion = pData[FLEKSTP.ix_] > 0 and pData[FLEKSTP.iy_] > 0\n", " return inRegion\n", "\n", "\n", "pSelected = tp.select_particles(f_select)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Saving trajectories to CSV" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tp.save_trajectory_to_csv(pIDs[0])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.7 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" }, "vscode": { "interpreter": { "hash": "f22a20af907fde35ff19e1e892fdb271353fb19b11c7ebd774491472e685293c" } } }, "nbformat": 4, "nbformat_minor": 4 }