Combined plots with multi-processing
This is an example for generating combined 1D/2D plots across multiple frames with multi-processing. To run on a single node,
julia -p $ncores demo_1d2d_mp_pyplot.jl
using Distributed
@everywhere using Vlasiator, VlasiatorPyPlot, Printf, LaTeXStrings
@assert matplotlib.__version__ ≥ "3.4" "Require Matplotlib version 3.4+ to use subfigure!"
@everywhere struct Varminmax{T}
"Density, [amu/cc]"
ρmin::T
ρmax::T
"Velocity, [km/s]"
vmin::T
vmax::T
"Pressure, [nPa]"
pmin::T
pmax::T
"Magnetic field, [nT]"
bmin::T
bmax::T
"Electric field, [nT]"
emin::T
emax::T
end
@everywhere function init_figure(loc, norms, ticks, pArgs1, varminmax)
fig = plt.figure(myid(), constrained_layout=true, figsize=(12, 7.2))
subfigs = fig.subfigures(1, 2, wspace=0.01, width_ratios=[2,1])
axsL = subfigs[1].subplots(5, 1, sharex=true)
axsR = subfigs[2].subplots(2, 1, sharex=true)
# Set line plots' axes
axsL[end].set_xlim(loc[1], loc[end])
(;ρmin, ρmax, vmin, vmax, pmin, pmax, bmin, bmax, emin, emax) = varminmax
axsL[1].set_ylim(ρmin, ρmax)
axsL[2].set_ylim(vmin, vmax)
axsL[3].set_ylim(pmin, pmax)
axsL[4].set_ylim(bmin, bmax)
axsL[5].set_ylim(emin, emax)
for ax in axsL
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.grid(true)
end
axsL[end].set_xlabel(L"x [$R_E$]"; fontsize=14)
axsL[1].set_ylabel("n [amu/cc]"; fontsize=14)
axsL[2].set_ylabel("V [km/s]"; fontsize=14)
axsL[3].set_ylabel("P [nPa]"; fontsize=14)
axsL[4].set_ylabel("B [nT]"; fontsize=14)
axsL[5].set_ylabel("E [mV/m]"; fontsize=14)
fakeline = loc
l1 = axsL[1].plot(loc, fakeline, label="Proton density", color="#1f77b4")
l2 = axsL[2].plot(loc, fakeline, label="Vx", color="#1f77b4")
l3 = axsL[2].plot(loc, fakeline, label="Vy", color="#ff7f0e")
l4 = axsL[2].plot(loc, fakeline, label="Vz", color="#2ca02c")
l5 = axsL[3].plot(loc, fakeline, label="Ram", color="#1f77b4")
l6 = axsL[3].plot(loc, fakeline, label="Thermal", color="#ff7f0e")
l7 = axsL[4].plot(loc, fakeline, label="Bx", color="#1f77b4")
l8 = axsL[4].plot(loc, fakeline, label="By", color="#ff7f0e")
l9 = axsL[4].plot(loc, fakeline, label="Bz", color="#2ca02c")
l10= axsL[5].plot(loc, fakeline, label="Ex", color="#1f77b4")
l11= axsL[5].plot(loc, fakeline, label="Ey", color="#ff7f0e")
l12= axsL[5].plot(loc, fakeline, label="Ez", color="#2ca02c")
ls = (l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12)
axsL[2].legend(;loc="lower left", ncol=3, frameon=false, fontsize=12)
axsL[3].legend(;loc="upper right", ncol=2, frameon=false, fontsize=12)
axsL[4].legend(;loc="upper right", ncol=3, frameon=false, fontsize=12)
axsL[5].legend(;loc="lower right", ncol=3, frameon=false, fontsize=12)
vl1 = axsL[1].vlines(loc[1], ρmin, ρmax; colors="r", linestyle="dashed", alpha=0.5)
vl2 = axsL[2].vlines(loc[1], vmin, vmax; colors="r", linestyle="dashed", alpha=0.5)
vl3 = axsL[3].vlines(loc[1], pmin, pmax; colors="r", linestyle="dashed", alpha=0.5)
vl4 = axsL[4].vlines(loc[1], bmin, bmax; colors="r", linestyle="dashed", alpha=0.5)
vl5 = axsL[5].vlines(loc[1], emin, emax; colors="r", linestyle="dashed", alpha=0.5)
hl2 = axsL[2].hlines(0.0, loc[1], loc[end]; colors="k", linestyle="dashed", alpha=0.2)
hl4 = axsL[4].hlines(0.0, loc[1], loc[end]; colors="k", linestyle="dashed", alpha=0.2)
hl5 = axsL[5].hlines(0.0, loc[1], loc[end]; colors="k", linestyle="dashed", alpha=0.2)
vlines = (vl1, vl2, vl3, vl4, vl5)
for ax in axsR
ax.set_aspect("equal")
# Set border line widths
for loc in ("left", "bottom", "right", "top")
edge = get(ax.spines, loc, nothing)
edge.set_linewidth(2.0)
end
ax.xaxis.set_tick_params(width=2.0, length=3)
ax.yaxis.set_tick_params(width=2.0, length=3)
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.set_ylabel(pArgs1.stry; fontsize=14)
end
axsR[2].set_xlabel(pArgs1.strx; fontsize=14)
axsR[1].set_title("Alfvén speed", fontsize=14)
axsR[2].set_title("Sound speed", fontsize=14)
x, y = Vlasiator.get_axis(pArgs1)
fakedata = fill(NaN32, length(y), length(x))
c1 = axsR[1].pcolormesh(x, y, fakedata, norm=norms[1], cmap=matplotlib.cm.turbo)
c2 = axsR[2].pcolormesh(x, y, fakedata, norm=norms[2], cmap=matplotlib.cm.turbo)
rInner = 31.8e6 # [m]
circle1 = plt.Circle((0, 0), rInner/Vlasiator.RE, facecolor="w", edgecolor="tab:purple")
circle2 = plt.Circle((0, 0), rInner/Vlasiator.RE, facecolor="w", edgecolor="tab:purple")
axsR[1].add_patch(circle1)
axsR[2].add_patch(circle2)
im_ratio = length(y)/length(x)
fraction = 0.046 * im_ratio
cb1 = colorbar(c1; ax=axsR[1], ticks=ticks[1], fraction, pad=0.02, extend="max")
cb1.ax.set_ylabel("[km/s]"; fontsize=14)
cb2 = colorbar(c2; ax=axsR[2], ticks=ticks[2], fraction, pad=0.02, extend="max")
cb2.ax.set_ylabel("[km/s]"; fontsize=14)
fig.suptitle("Density Pulse Run", fontsize="x-large")
cs = (c1, c2)
return fig, subfigs, ls, vlines, cs
end
@everywhere function update_vline(h, x)
seg_old = h.get_segments()
ymin = seg_old[1][1, 2]
ymax = seg_old[1][2, 2]
seg_new = [[x ymin; x ymax]]
h.set_segments(seg_new)
end
@everywhere function update_plot!(subfigs, ls, vlines, cs, outdir, file, cellids, loc)
isfile(outdir*file[end-8:end-5]*".png") && return
println("file = $(basename(file))")
meta = load(file)
rho = readvariable(meta, "proton/vg_rho", cellids) |> vec
v = readvariable(meta, "proton/vg_v", cellids)
p = readvariable(meta, "vg_pressure", cellids) .* 1f9 |> vec # [nPa]
vmag2 = sum(x -> x*x, v, dims=1) |> vec
pram = rho .* Vlasiator.mᵢ .* vmag2 .* 1f9 # [nPa]
b = readvariable(meta, "vg_b_vol", cellids) .* 1f9 #[nT]
e = readvariable(meta, "vg_e_vol", cellids) .* 1f3 #[mV/m]
ls[1][1].set_ydata(rho ./ 1f6)
ls[2][1].set_ydata(@views v[1,:] ./ 1f3)
ls[3][1].set_ydata(@views v[2,:] ./ 1f3)
ls[4][1].set_ydata(@views v[3,:] ./ 1f3)
ls[5][1].set_ydata(pram)
ls[6][1].set_ydata(p)
ls[7][1].set_ydata(@view b[1,:])
ls[8][1].set_ydata(@view b[2,:])
ls[9][1].set_ydata(@view b[3,:])
ls[10][1].set_ydata(@view e[1,:])
ls[11][1].set_ydata(@view e[2,:])
ls[12][1].set_ydata(@view e[3,:])
imagnetopause_ = findfirst(<(0.0), @views b[3,:])
for vline in vlines
update_vline(vline, loc[imagnetopause_])
end
str_title = @sprintf "Sun-Earth line, t= %4.1fs" meta.time
subfigs[1].suptitle(str_title, fontsize="x-large")
data = Vlasiator.prep2d(meta, "VA", :z)'
cs[1].set_array(data ./ 1f3)
data = Vlasiator.prep2d(meta, "VS", :z)'
cs[2].set_array(data ./ 1f3)
savefig(outdir*file[end-8:end-5]*".png", bbox_inches="tight")
return
end
function make_jobs(files)
for f in files
put!(jobs, f)
end
end
@everywhere function do_work(jobs, status,
outdir, loc, norms, ticks, pArgs1, cellids, varminmax)
fig, subfigs, ls, vlines, cs = init_figure(loc, norms, ticks, pArgs1, varminmax)
while true
file = take!(jobs)
update_plot!(subfigs, ls, vlines, cs, outdir, file, cellids, loc)
put!(status, true)
end
close(fig)
end
################################################################################
files = filter(contains(r"^bulk.*\.vlsv$"), readdir())
nfile = length(files)
# Set output directory
const outdir = "1d2d/"
# Set contour plots' axes
axisunit = EARTH
# Upper/lower limits for each variable
ρmin, ρmax = 0.0, 14.0 # [amu/cc]
vmin, vmax = -620.0, 150.0 # [km/s]
pmin, pmax = 0.0, 2.8 # [nPa]
bmin, bmax = -60.0, 60.0 # [nT]
emin, emax = -8.0, 8.0 # [mV/m]
vamin, vamax = 50.0, 600.0 # [km/s]
vsmin, vsmax = 50.0, 600.0 # [km/s]
varminmax = Varminmax(ρmin, ρmax, vmin, vmax, pmin, pmax, bmin, bmax, emin, emax)
meta = load(files[1])
pArgs1 = Vlasiator.set_args(meta, "VA", axisunit; normal=:none)
norm1, ticks1 = set_colorbar(Linear, vamin, vamax)
norm2, ticks2 = set_colorbar(Linear, vsmin, vsmax)
const norms = (norm1, norm2)
const ticks = (ticks1, ticks2)
const jobs = RemoteChannel(()->Channel{String}(nfile))
const status = RemoteChannel(()->Channel{Bool}(nworkers()))
xmin, xmax = 7.0, 17.0 # Earth radii
point1 = [xmin, 0, 0] .* Vlasiator.RE
point2 = [xmax, 0, 0] .* Vlasiator.RE
meta = load(files[1])
cellids, _, _ = getcellinline(meta, point1, point2)
loc = range(xmin, xmax, length=length(cellids))
println("Total number of files: $nfile")
println("Running with $(nworkers()) workers...")
@async make_jobs(files) # Feed the jobs channel with all files to process.
@sync for p in workers()
@async remote_do(do_work, p, jobs, status,
outdir, loc, norms, ticks, pArgs1, cellids, varminmax)
end
let n = nfile
t = @elapsed while n > 0 # wait for all jobs to complete
take!(status)
n -= 1
end
println("Finished in $(round(t, digits=2))s.")
end
This page was generated using DemoCards.jl.