Tracing with Dimensionless Units and Periodic Boundary

Source code compat Author Update time

This example shows how to trace charged particles in dimensionless units and EM fields with periodic boundaries in a 2D spatial domain. For details about dimensionless units, please check Demo: dimensionless tracing.

Now let's demonstrate this with trace_normalized!.

using TestParticle
using TestParticle: qᵢ, mᵢ
using OrdinaryDiffEq
using StaticArrays
using CairoMakie

# Number of cells for the field along each dimension
nx, ny = 4, 6
# Unit conversion factors between SI and dimensionless units
B₀ = 10e-9            # [T]
Ω = abs(qᵢ) * B₀ / mᵢ # [1/s]
t₀ = 1 / Ω            # [s]
U₀ = 1.0              # [m/s]
l₀ = U₀ * t₀          # [m]
E₀ = U₀*B₀            # [V/m]

x = range(-10, 10, length=nx) # [l₀]
y = range(-10, 10, length=ny) # [l₀]

B = fill(0.0, 3, nx, ny) # [B₀]
B[3,:,:] .= 1.0

E(x) = SA[0.0, 0.0, 0.0] # [E₀]

# If bc == 1, we set a NaN value outside the domain (default);
# If bc == 2, we set periodic boundary conditions.
param = prepare(x, y, E, B; species=User, bc=2);

Note that we set a radius of 10, so the trajectory extent from -20 to 0 in y, which is beyond the original y range.

# Initial conditions
stateinit = let
   x0 = [0.0, 0.0, 0.0] # initial position [l₀]
   u0 = [10.0, 0.0, 0.0] # initial velocity [v₀]
   [x0..., u0...]
end
# Time span
tspan = (0.0, 1.5π) # 3/4 gyroperiod

prob = ODEProblem(trace_normalized!, stateinit, tspan, param)
sol = solve(prob, Vern9());

Visualization

f = Figure(fontsize = 18)
ax = Axis(f[1, 1],
   title = "Proton trajectory",
   xlabel = "X",
   ylabel = "Y",
   limits = (-10.1, 10.1, -20.1, 0.1),
   aspect = DataAspect()
)

lines!(ax, sol, idxs=(1,2))


This page was generated using DemoCards.jl and Literate.jl.