Curl-B drift
This example demonstrates a single proton motion under a vacuum non-uniform B field with gradient and curvature. The analytic calculation includes the grad-B drift, the curvature drift, the ExB drift and parallel velocity. More theoretical details can be found in Curvature Drift and Computational Plasma Physics by Toshi Tajima.
using TestParticle
using OrdinaryDiffEq
using StaticArrays
using LinearAlgebra: normalize, norm, ×, ⋅
using ForwardDiff: gradient, jacobian
using CairoMakie
function curved_B(x)
# satisify ∇⋅B=0
# B_θ = 1/r => ∂B_θ/∂θ = 0
θ = atan(x[3] / (x[1] + 3))
r = sqrt((x[1] + 3)^2 + x[3]^2)
return SA[-1e-7*sin(θ)/r, 0, 1e-7*cos(θ)/r]
end
function zero_E(x)
return SA[0, 0, 0]
end
abs_B(x) = norm(curved_B(x)) # |B|
# Initial conditions
stateinit = let x0 = [1.0, 0.0, 0.0], v0 = [0.0, 1.0, 0.1]
[x0..., v0...]
end
# Time span
tspan = (0, 40)
# Trace particle
param = prepare(zero_E, curved_B, species=Proton)
prob = ODEProblem(trace!, stateinit, tspan, param)
sol = solve(prob, Vern9())
# Functions for obtaining the guiding center from actual trajectory
gc = get_gc(param)
gc_x0 = gc(stateinit)
prob_gc = ODEProblem(trace_gc_drifts!, gc_x0, tspan, (param..., sol))
sol_gc = solve(prob_gc, Tsit5(); save_idxs=[1,2,3])
# Numeric and analytic results
f = Figure(fontsize=18)
ax = Axis3(f[1, 1],
title = "Curvature Drift",
xlabel = "x [m]",
ylabel = "y [m]",
zlabel = "z [m]",
aspect = :data,
azimuth = 0.3π,
)
gc_plot(x, y, z, vx, vy, vz) = (gc(SA[x, y, z, vx, vy, vz])...,)
lines!(ax, sol, idxs=(1, 2, 3), color=Makie.wong_colors()[1])
lines!(ax, sol, idxs=(gc_plot, 1, 2, 3, 4, 5, 6), color=Makie.wong_colors()[2])
lines!(ax, sol_gc, idxs=(1, 2, 3), color=Makie.wong_colors()[3])
This page was generated using DemoCards.jl and Literate.jl.