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1 About

These are my notes about electromagnetism and plasma physics from multiple courses and
textbooks, built via Quarto and is made possible by the Julia programming language (Bezanson
et al. 2017) and pandoc.

Thanks to Prof. F. F. Chen, Y. Y. Lau, Yi Li, Yuming Wang, Richard Fitzpatrick, Paul Bellan,
and Gábor Tóth through my journey of learning about plasmas. The backbone of the notes
is (F. F. Chen 2016). I also learned a lot from Richard Fitzpatrick’s online Plasma Physics
Course Notes. Y. Y. Lau’s graduate course notes also have many references to (Bellan 2008).
(Kilpua and Koskinen 2017) is a faily short and concise introduction that contains many cute
practical notes.

I wish to have separate notes on numerical simulations, but right now these are interwined
with the physics here. It is critical to realize that numerical simulations per se do not allow
to make fundamental discoveries which go beyond the amount of information that is already
contained in the equations one is going to solve on the computer. Therefore, in the first stage,
more emphasis should be put on the governing equations as they are the keys to understand
the behaviors of plasmas.

����������������������������������

The future is about nuclear fusion: what do you think?
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2 Introduction

• What is plasma?

Quasi-neutral ionized gases. The fourth state of matter: solid, liquid, gas, plasma.

• Where is plasma?

– Astrophysics & geophysics
∗ Dynamo
∗ Shock
∗ Reconnection
∗ Particle acceleration

– Engineering & application
∗ Controlled fusion
∗ Power conversion
∗ Reentry of intercontinental ballistic missiles and spacecrafts
∗ Plasma jet as a new propulsion for space vehicles
∗ Global warming

• Methodologies applied in plasma physics

– Kinetic theory
∗ Microscopic point of view
∗ Positive, negative & neutral particles
∗ EM force, collisions
∗ Ordinary gas .vs. Plasma

· binary collision
· free between collisions

𝑛𝑓(x + dx,p + dp, 𝑡 + d𝑡)dxdp − 𝑛𝑓(x,p, 𝑡)dxdp

=𝜕(𝑛𝑓(x,p, 𝑡))
𝜕𝑡 ∣

collision
dxdpd𝑡

=𝜕(𝑛𝑓)
𝜕𝑡 + 𝜕𝑛𝑓

𝜕x ⋅ p
𝑚 + 𝑛𝑓

𝜕p ⋅ F

This is also called the Fokker-Planck term.
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• Theory of continuum

– Macroscopic point of view, bulk motion
– Fundamental equations from conservation laws
– Electro-Magneto-Hydro-Dynamics (EMHD)

Definition: Plasma = ionized gas

In plasma physics we usually use energy units “eV” instead of temperature. Electron volt is
a small unit, mostly used for particles, since 1 Joule in our daily life scale is too large for
electrons. Given Boltzmann constant 𝑘𝐵 = 1.38 × 10−23𝐽/𝐾,

1eV = (11600K) × 𝑘𝐵 = 1.602 × 10−19J([𝑉 ] = [𝐽]/[𝐶])

There are generally two kinds of plasma:

1. High temperature(> 1keV): fusion plasma
2. Low temperature(∼ 1eV − 100eV): plasma processing, space propulsion

At the beginning, it is important to get the idea of size. Starting from two basic length scales:

• 𝑎0 ≡ atomic scale (∼ 10−10m)
• n = number density (∼ 1/cm3 to 1020/cm3)

Physically, 𝑛 represents the number of particles in a unit volume, from which we know 𝑛−1/3

has unit of length. It means a typical length for a single particle. Ionized state implies that
𝑘𝐵𝑇 ≫ 𝐸𝑖 = ionization potential energy∼ 𝑒2

4𝜋𝜖0𝑎0
≈ 14eV.

Gaseous state implies that 𝑛−1/3 ≫ 𝑎0.

𝑛−1/3 ≫ 𝑎0 ∼ 𝑒2
4𝜋𝜖0𝐸𝑖

≫ 𝑒2
4𝜋𝜖0(𝑘𝐵𝑇 )

4𝜋𝑛−1/3𝑛(𝜖0𝑘𝐵𝑇𝑒2𝑛 ) ≫ 1

𝑛2/3 has unit of length−2, indicating that the other term should be in the unit of length2. This
is derived using dimensional analysis, which gives

𝜆𝐷 = √𝜖0𝑘𝐵𝑇
𝑒2𝑛 ≡ Debye length = 740(cm)√ 𝑇(eV)

𝑛(cm−3)

(4𝜋)3/2𝑛𝜆𝐷
3 ≫ 1

𝑛𝜆𝐷
3 ≫ 1 ⇒ Large number of particles in a sphere
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This is necessarily satisfied for plasma under previous definitions.

Indication from the definition of plasma:

1. There are large number of particles in a Debye sphere.

Ex.1 laboratory plasma 108cm−3 → 1020cm−3. Tokamak 𝑛 = 1014cm−3, 𝑘𝐵𝑇 = 10keV =
104eV, 𝑛−1/3 = 2.15 × 10−5cm, 𝜆𝐷 = 7.4 × 10−3cm ≫ 𝑛−1/3, 𝑛𝜆𝐷

3 ≫ 1.
𝐿 ≫ 𝜆𝐷 ≫ 𝑛−1/3, where 𝐿 is the scale of the physical system (∼ 1mm to 10m).

Put it in another way, a criterion for an ionized gas to be a plasma is that it be dense enough
that 𝜆𝐷 is much smaller than 𝐿.

Ex.2 Interstellar plasma 𝑛 = 1cm−3, 𝑇 = 1𝑒𝑉 , 𝜆𝐷 = 740cm√1
1 = 740cm ≫ 𝑛−1/3, 𝑛𝜆𝐷

3 ≫
1.

2. Particle kinetic energy ≫ average Coulombic interaction energy.

𝐾𝐸 ∼ 𝑘𝐵𝑇

𝑃𝐸 ∼ 𝑒2
4𝜋𝜖0(𝑛−1/3)

From the definition we can easily know that

𝑘𝐵𝑇 ≫ 𝑒2
4𝜋𝜖0𝑛−1/3 ⇒ 𝐾𝐸 ≫ 𝑃𝐸

This implies that particles are hard to be deflected by their neighbours.

3. Particles are scattered mostly by accumulative, multiple small angle collisions rather
than by large angle collisions. This naturally follows the above energy discussion, and
will be explained in further detail later.

4. Collective interactions (the basics of all instabilities) dominate over Coulombic interac-
tions between individual particles. This has an analogy to economy: one has nearly no
effect on the whole, but the whole has huge effect on individuals. EM fields stand as a
bridge between particles.
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2.1 Occurrence of Plasma in Nature

It is now believed that the universe is made of 69% dark energy, 27% dark matter, and 1%
normal matter. All that we can see in the sky is the part of normal matter that is in the
plasma state, emitting radiation. Plasma in physics, not to be confused with blood plasma,
is an “ionized” gas in which at least one of the electrons in an atom has been stripped free,
leaving a positively charged nucleus, called an ion. Sometimes plasma is called the “fourth
state of matter”. When a solid is heated, it becomes a liquid. Heating a liquid turns it into a
gas. Upon further heating, the gas is ionized into a plasma. Since a plasma is made of ions
and electrons, which are charged, electric fields are rampant everywhere, and particles “collide”
not just when they bump into one another, but even at a distance where they can feel their
electric fields. Hydrodynamics, which describes the flow of water through pipes, say, or the
flow around boats in yacht races, or the behavior of airplane wings, is already a complicated
subject. Adding the electric fields of a plasma greatly expands the range of possible motions,
especially in the presence of magnetic fields.

Plasma usually exists only in a vacuum. Otherwise, air will cool the plasma so that the ions
and electrons will recombine into normal neutral atoms. In the laboratory, we need to pump
the air out of a vacuum chamber. In the vacuum of space, however, much of the gas is in the
plasma state, and we can see it. Stellar interiors and atmospheres, gaseous nebulas, and entire
galaxies can be seen because they are in the plasma state. On earth, however, our atmosphere
limits our experience with plasmas to a few examples: the flash of a lightning bolt, the soft
glow of the Aurora Borealis, the light of a fluorescent tube, or the pixels of a plasma TV. We
live in a small part of the universe where plasmas do not occur naturally; otherwise, we would
not be alive.

The reason for this can be seen from the Saha equation, which tells us the amount of ionization
to be expected in a gas in thermal equilibrium:

𝑛𝑖
𝑛𝑛

≈ 2.4 × 1021𝑇
3/2

𝑛𝑖
𝑒−

𝑈𝑖
𝑘𝐵𝑇 (2.1)

Here 𝑛𝑖 and 𝑛𝑛 are, respectively, the density (number per m3) of ionized atoms and of neutral
atoms, T is the gas temperature in Kelvin, 𝑘𝐵 is Boltzmann’s constant, and 𝑈𝑖 is the ionization
energy of the gas — that is, the number of joules required to remove the outermost electron
from an atom. For ordinary air at room temperature, we may take 𝑛𝑛 ≈ 3 × 1025 m−3,
𝑇 ≈ 300K, and 𝑈𝑖 = 14.5 eV (for nitrogen), where 1 eV = 1.6 × 1019 J. The fractional
ionization 𝑛𝑖/(𝑛𝑛 + 𝑛𝑖) ≈ 𝑛𝑖/𝑛𝑛 is ridiculously low:

𝑛𝑖
𝑛𝑛

≈ 10−122

As the temperature is raised, the degree of ionization remains low until 𝑈𝑖 is only a few
times 𝑘𝐵𝑇 . Then 𝑛𝑖/𝑛𝑒 rises abruptly, and the gas is in a plasma state. Further increase in
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temperature makes 𝑛𝑛 less than 𝑛𝑖, and the plasma eventually becomes fully ionized. This is
the reason plasmas exist in astronomical bodies with temperatures of millions of degrees, but
not on the earth. Life could not easily coexist with a plasma — at least, plasma of the type
we are talking about. The natural occurrence of plasmas at high temperatures is the reason
for the designation “the fourth state of matter”.

Although we do not intend to emphasize the Saha equation, we should point out its physical
meaning. Atoms in a gas have a spread of thermal energies, and an atom is ionized when, by
chance, it suffers a collision of high enough energy to knock out an electron. In a cold gas, such
energetic collisions occur infrequently, since an atom must be accelerated to much higher than
the average energy by a series of “favorable” collisions. The exponential factor in Equation 2.1
expresses the fact that the number of fast atoms falls exponentially with 𝑈𝑖/𝑘𝐵𝑇 . Once an
atom is ionized, it remains charged until it meets an electron; it then very likely recombines
with the electron to become neutral again. The recombination rate clearly depends on the
density of electrons, which we can take as equal to 𝑛𝑖. ni. The equilibrium ion fraction,
therefore, should decrease with 𝑛𝑖; and this is the reason for the factor 𝑛𝑖−1 on the right-hand
side of Equation 2.1. The plasma in the interstellar medium owes its existence to the low value
of 𝑛𝑖 (about 1 per cm3), and hence the low recombination rate.

2.2 Definition of Plasma

Any ionized gas cannot be called a plasma, of course; there is always some small degree of
ionization in any gas. A useful definition is as follows:

A plasma is a quasineutral gas of charged and neutral particles which exhibits
collective behavior.

We must now define “quasineutral” and “collective behavior”. The meaning of quasineutrality
will be made clear in Sect. 1.4 LINK?. What is meant by “collective behavior” is as follows.

Consider the forces acting on a molecule of, say, ordinary air. Since the molecule is neutral,
there is no net electromagnetic force on it, and the force of gravity is negligible. The molecule
moves undisturbed until it makes a collision with another molecule, and these collisions control
the particle’s motion. A macroscopic force applied to a neutral gas, such as from a loudspeaker
generating sound waves, is transmitted to the individual atoms by collisions. The situation
is totally different in a plasma, which has charged particles. As these charges move around,
they can generate local concentrations of positive or negative charge, which give rise to electric
fields. Motion of charges also generates currents, and hence magnetic fields. These fields affect
the motion of other charged particles far away.

Let us consider the effect on each other of two slightly charged regions of plasma separated
by a distance 𝑟. ADD FIGURE! The Coulomb force between A and B diminishes as 1/𝑟2.
However, for a given solid angle (that is, Δ𝑟/𝑟 = constant), the volume of plasma in B that
can affect A increases as 𝑟3. Therefore, elements of plasma exert a force on one another
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even at large distances. It is this long-ranged Coulomb force that gives the plasma a large
repertoire of possible motions and enriches the field of study known as plasma physics. In fact,
the most interesting results concern so-called “collisionless” plasmas, in which the long-range
electromagnetic forces are so much larger than the forces due to ordinary local collisions that
the latter can be neglected altogether. By “collective behavior” we mean motions that depend
not only on local conditions but on the state of the plasma in remote regions as well.

The word “plasma” seems to be a misnomer. It comes from the Greek ������, ��o�, �o, which
means something molded or fabricated. Because of collective behavior, a plasma does not tend
to conform to external influences; rather, it often behaves as if it had a mind of its own.

2.3 Concept of Temperature

Before proceeding further, it is important to review and extend our physical notions of “tem-
perature”. A gas in thermal equilibrium has particles of all velocities, and the most probable
distribution of these velocities is known as the Maxwellian distribution. For simplicity, consider
a gas in which the particles can move only in one dimension. (This is not entirely frivolous; a
strong magnetic field, for instance, can constrain electrons to move only along the field lines.)
The one-dimensional Maxwellian distribution is given by

𝑓(𝑣) = 𝐴 exp(−1
2𝑚𝑣2/𝑘𝐵𝑇) (2.2)

where 𝑓d𝑢 is the number of particles per m3 with velocity between 𝑢 and 𝑢+ d𝑢, 1
2𝑚𝑢2 is the

kinetic energy, and 𝑘𝐵 is Boltzmann’s constant. The density 𝑛, or number of particles per m3,
is given by

𝑛 = ∫
∞

−∞
𝑓(𝑣)d𝑣

The constant 𝐴 is related to the density 𝑛 by

𝐴 = 𝑛( 𝑚
2𝜋𝑘𝐵𝑇

)
1/2

The width of the distribution is characterized by the constant 𝑇 , which we call the temperature.
To see the exact meaning of 𝑇 , we can compute the average kinetic energy of particles in this
distribution:

𝐸av =
∫∞
−∞

1
2𝑚𝑣2𝑓(𝑣)d𝑣

∫∞
−∞ 𝑓(𝑣)d𝑣

(2.3)

Defining 𝑦 = 𝑣/𝑣t and
𝑣t = (2𝑘𝐵𝑇/𝑚)1/2 (2.4)
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we can write Equation 2.2 as
𝑓(𝑣) = 𝐴 exp(−𝑣2/𝑣2t )

and Equation 2.3 as

𝐸av =
1
2𝑚𝐴𝑣3t ∫

∞
−∞[exp(−𝑦2)]𝑦2d𝑦

𝐴𝑣t ∫
∞

−∞[exp(−𝑦2)]d𝑦

The integral in the numerator is integrable by parts:

∫
∞

−∞
𝑦 ⋅ [exp(−𝑦2)]𝑦d𝑦 = [−1

2[exp(−𝑦2)]𝑦]
∞

−∞
−∫

∞

−∞
−1
2[exp(−𝑦2)]d𝑦

= 1
2 ∫

∞

−∞
[exp(−𝑦2)]d𝑦

Canceling the integrals, we have

𝐸av =
1
2𝑚𝐴𝑣3t 1

2
𝐴𝑣t

= 1
4𝑚𝑣2t = 1

2𝑘𝐵𝑇

Thus the average kinetic energy is 1
2𝑘𝐵𝑇 .

It is easy to extend this result to three dimensions. Maxwell’s distribution is then

𝑓(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = 𝐴3 exp [−1
2𝑚(𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧)/𝑘𝐵𝑇]

where

𝐴3 = 𝑛( 𝑚
2𝜋𝑘𝐵𝑇

)
3/2

Because a Maxwellian distribution is isotropic (i.e. the form is symmetric in 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧), we
can separate each dimension. The average kinetic energy is then 3 times the single dimension
result

𝐸av = 3
2𝑘𝐵𝑇

The general result is that 𝐸av equals 1
2𝑘𝐵𝑇 per degree of freedom.

Since 𝑇 and 𝐸av are so closely related, it is customary in plasma physics to give temperatures
in units of energy. To avoid confusion on the number of dimensions involved, it is not 𝐸av but
the energy corresponding to 𝑘𝐵𝑇 that is used to denote the temperature. For 𝑘𝐵𝑇 = 1 eV =
1.6 × 10−19 J, we have

𝑇 = 𝑞
𝑘𝐵

= 11600
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Thus the conversion factor is
1 eV = 11600K

By a 2-eV plasma we mean that 𝑘𝐵𝑇 = 2 eV, or 𝐸av = 3 eV in three dimensions.

It is interesting that a plasma can have several temperatures at the same time. It often
happens that the ions and the electrons have separate Maxwellian distributions with different
temperatures 𝑇𝑖 and 𝑇𝑒. This can come about because the collision rate among ions or among
electrons themselves is larger than the rate of collisions between an ion and an electron. Then
each species can be in its own thermal equilibrium, but the plasma may not last long enough
for the two temperatures to equalize. When there is a magnetic field B, even a single species,
say ions, can have two temperatures. This is because the forces acting on an ion along B are
different from those acting perpendicular to B (due to the Lorentz force). The components
of velocity perpendicular to B and parallel to B may then belong to different Maxwellian
distributions with temperatures 𝑇⟂ and 𝑇∥.

Before leaving our review of the notion of temperature, we should dispel the popular miscon-
ception that high temperature necessarily means a lot of heat. People are usually amazed to
learn that the electron temperature inside a fluorescent light bulb is about 20000K. “My, it
doesn’t feel that hot!” Of course, the heat capacity must also be taken into account. The
density of electrons inside a fluorescent tube is much less than that of a gas at atmospheric
pressure, and the total amount of heat transferred to the wall by electrons striking it at their
thermal velocities is not that great. For example, the temperature of a cigarette ash is high
enough to cause a burn, but the total amount of heat involved is not. Many laboratory plasmas
have temperatures of the order of 1, 000, 000K (100 eV), but at densities of only 1018 − 1019
per m3, the heating of the walls is not a serious consideration.

2.4 Debye Shielding

(Problem 4 on P27 (Bellan 2008))

A fundamental characteristic of the behavior of plasma is its ability to shield out electric
potentials that are applied to it. Suppose we tried to put an electric field inside a plasma by
inserting two charged balls connected to a battery (Fig. 1.3 ADD IT!). The balls would attract
particles of the opposite charge, and almost immediately a cloud of ions would surround the
negative ball and a cloud of electrons would surround the positive ball. (We assume that
a layer of dielectric keeps the plasma from actually recombining on the surface, or that the
battery is large enough to maintain the potential in spite of this.) If the plasma were cold and
there were no thermal motions, there would be just as many charges in the cloud as in the
ball, the shielding would be perfect, and no electric field would be present in the body of the
plasma outside of the clouds. On the other hand, if the temperature is finite, those particles
that are at the edge of the cloud, where the electric field is weak, have enough thermal energy
to escape from the electrostatic potential well. The “edge” of the cloud then occurs at the
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radius where the potential energy is approximately equal to the thermal energy 𝑘𝐵𝑇 of the
particles, and the shielding is not complete. Potentials of the order of 𝑘𝐵𝑇/𝑒 can leak into the
plasma and cause finite electric fields to exist there.

Let us compute the approximate thickness of such a charge cloud. Let us put a point charge
𝑞𝑇 into a quasi-neutral gas of charged particles. The gas is in local thermodynamic equilibrium
(LTE) with ion and electron temperatures 𝑇𝑒 and 𝑇𝑖 (They are not necessarily the same, and
in fact, quite different in nature.). (ADD FIGURE!) We wish to compute 𝜙(𝑥). For simplicity,
we assume that the ion-electron mass ratio 𝑀/𝑚 is infinite, so that the ions do not move but
form a uniform background of positive charge. To be more precise, we can say that 𝑀/𝑚 is
large enough that the inertia of the ions prevents them from moving significantly on the time
scale of the experiment.

Maxwell distribution:
𝑓(v) = 𝑛0(

𝑚
2𝜋𝑘𝑇 )

3/2
exp( − 𝑚𝑣2

2𝑘𝑇 )

In the presence of a potential energy 𝑞𝜙m the distribution function follows the Boltzmann
distribution:

𝑓(x,v) = 𝑛0(
𝑚

2𝜋𝑘𝑇 )
3/2

exp( −
1
2𝑚𝑣2 + 𝑞𝜙(x)

𝑘𝑇 )

It would not be worthwhile to prove this here. What this equation says is intuitively obvious:
There are fewer particles at places where the potential energy is large, since not all particles
have enough energy to get there.

Note that the concept of temperature is valid in LTE. From the Boltzmann equation,

d𝑓
d𝑡 = 𝜕𝑓

𝜕𝑡 + ∇𝑥 ⋅ (𝑓v) + ∇𝑣 ⋅ (𝑓a) = 0

⇒ 𝜕𝑓
𝜕𝑡 + v ⋅ ∇𝑥𝑓 + F

𝑚 ⋅ ∇𝑣𝑓 = 0

If we neglect the time derivatives, we obtain

(v𝑗 ⋅ ∇)𝑓(r,v𝑗) + [ − 1
𝑚𝑗

∇(𝑞𝑗𝜙) ⋅ ∇𝑣]𝑓(r,v𝑗) = 0 (2.5)

The LTE distribution is in a Maxwellian shape,

𝑓(r,v𝑗) = 𝑛𝑗(r)(
𝑚

2𝜋𝑘𝐵𝑇
)
3/2

exp( − 𝑚𝑣2
2𝑘𝐵𝑇

)
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Substitute into Equation 2.5, we have

(v𝑗 ⋅ ∇)𝑛𝑗 +
v𝑗 ⋅ ∇(𝑞𝜙)

𝑘𝐵𝑇𝑗
𝑛𝑗 = 0

⇒ 𝑛𝑗(r) = 𝑛𝑗0 exp [ − 𝑞𝑗𝜙𝑗(r)
𝑘𝐵𝑇𝑗

]

Then we get the Boltzmann distribution of each species with a separate temperature for each.

Consider a uniform plasma with 𝑛𝑖 = 𝑛𝑖0𝑒−𝑒𝜙/𝑘𝐵𝑇𝑖 , 𝑛𝑒 = 𝑛𝑒0𝑒𝑒𝜙/𝑘𝐵𝑇𝑒 , and with the quasi-
neutral assumption, 𝑛𝑒0 = 𝑛𝑖0 = 𝑛0. Introduce a point charge 𝑞𝑇 in the initially neutralized
plasma. Poisson equation gives

∇2𝜙 = − 𝜌
𝜖0

= − 1
𝜖0

[𝑒(𝑛𝑒 − 𝑛𝑖) + 𝑞𝑇 𝛿(r)]

Due to symmetry, 𝜙 = 𝜙(𝑟). When the temperature is high, 𝑞𝜙(𝑟) ≪ 𝑘𝑇 , the exponent is
small and we can expand in a Taylor series and leave only the first order term. In spherical
coordinates,

∇2𝜙 = 1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝜕𝜙
𝜕𝑟 )

1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝜕𝜙
𝜕𝑟 ) + 𝑒

𝜖0
(𝑛𝑒0𝑒𝑒𝜙/𝑘𝐵𝑇𝑒 − 𝑛𝑖0𝑒−𝑒𝜙/𝑘𝐵𝑇𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≈𝑛0[𝑒𝜙/𝑘𝐵𝑇𝑒+𝑒𝜙/𝑘𝐵𝑇𝑖]
) = −𝑞𝑇

𝜖0
𝛿(r)

1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝜕𝜙
𝜕𝑟 ) − 𝑒2𝑛0

𝜖0
( 1
𝑘𝐵𝑇𝑒

+ 1
𝑘𝐵𝑇𝑖

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

1
𝜆𝐷2 ≡ 1

𝜆𝐷𝑖2
+ 1

𝜆𝐷𝑒2

𝜙 = −𝑞𝑇
𝜖0

𝛿(r)

1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝜕𝜙
𝜕𝑟 ) − 1

𝜆𝐷
2𝜙 = −𝑞𝑇

𝜖0
𝛿(r)

where

𝜆𝐷 = √𝜖0𝑘𝐵𝑇 ∗

𝑛0𝑒2
(2.6)

is the Debye length, 𝑇 ∗ = ( 1
𝑇𝑒

+ 1
𝑇𝑖
)
−1

. The Debye length, is a measure of the shielding
distance or thickness of the sheath. Note that larger density indicates better shielding effects,
as one would expect, since each layer of plasma contains more electrons. Furthermore, 𝜆𝐷
increases with increasing 𝑘𝐵𝑇 ∗. Without thermal agitation, the charge cloud would collapse
to an infinitely thin layer. Finally, most commonly it is the electron temperature (𝑇 ∗ ≈ 𝑇𝑒)
which is used in the definition of 𝜆𝐷 because the electrons, being more mobile than the ions,
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generally do the shielding by moving so as to create a surplus or deficit of negative charge.
Only in special situations is this not true.

For 𝑟 > 0 (away from the charge),
1
𝑟2

𝜕
𝜕𝑟(𝑟

2𝜕𝜙
𝜕𝑟 ) − 1

𝜆𝐷
2𝜙 = 0

Let 𝜙(𝑟) = 𝐹(𝑟)
𝑟 , we have

d2𝐹
d𝑟2 − 𝐹

𝜆𝐷
2 = 0

⇒ 𝐹 = 𝐴𝑒−𝑟/𝜆𝐷 +����𝐵𝑒𝑟/𝜆𝐷(𝑟 > 0)
= 𝐴𝑒−𝑟/𝜆𝐷

Anticipate when 𝑟 → 0, 𝜙(𝑟) → 𝑞𝑇
4𝜋𝜖0𝑟 ≈ 𝐴

𝑟 . So

𝜙(𝑟) = 𝑞𝑡
4𝜋𝜖0𝑟

𝑒−𝑟/𝜆𝐷

The electric potential drops very quickly (Figure 2.1). In other words, if you insert a charge
into a neutral plasma, its potential will only effect within a small range. Recall the Gauss’s
law,

∮E ⋅ dA = 𝑄𝑇
𝜖0

→ as 𝑅 → ∞, E goes to zero.

The following are useful forms of Equation 2.6:
𝜆𝐷 = 69(𝑇𝑒/𝑛)1/2 m, 𝑇𝑒 in K
𝜆𝐷 = 7430(𝑘𝐵𝑇𝑒/𝑛)1/2 m, 𝑘𝐵𝑇𝑒 in eV

We are now in a position to define “quasineutrality.” If the dimensions 𝐿 of a system are much
larger than 𝜆𝐷, then whenever local concentrations of charge arise or external potentials are
introduced into the system, these are shielded out in a distance short compared with 𝐿, leaving
the bulk of the plasma free of large electric potentials or fields. Outside of the sheath on the
wall or on an obstacle, ∇2𝜙 is very small, and 𝑛𝑖 is equal to 𝑛𝑒. It takes only a small charge
imbalance to give rise to potentials of the order of 𝑘𝐵𝑇/𝑒. The plasma is “quasineutral”; that
is, neutral enough so that one can take 𝑛𝑖 ≃ 𝑛𝑒 ≃ 𝑛, where 𝑛 is a common density called
the plasma density, but not so neutral that all the interesting electromagnetic forces vanish.
Plasma may be considered neutral over a length scale larger than Debye length.

Additional comments:

1. Plasma acts like dielectron.
2. There is a plasma sheath near to where materials contact, inside which charge neutrality

is violated. This will be discussed in Section 13.1.
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Figure 2.1: Electric potential.
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2.5 Criteria for Plasmas

We have given two conditions that an ionized gas must satisfy to be called a plasma. A third
condition has to do with collisions. The weakly ionized gas in an airplane’s jet exhaust, for
example, does not qualify as a plasma because the charged particles collide so frequently with
neutral atoms that their motion is controlled by ordinary hydrodynamic forces rather than by
electromagnetic forces. If 𝜔 is the frequency of typical plasma oscillations and 𝜏 is the mean
time between collisions with neutral atoms, we require 𝜔𝜏 > 1 for the gas to behave like a
plasma rather than a neutral gas.

1. 𝜆𝐷 ≪ 𝐿
2. 𝑁𝐷 ≫ 1
3. 𝜔𝜏 > 1

Often in lectures people think the condition 1 and 2 are equivalent; they are NOT exactly.
The argument would be that condition 1 is valid when the distribution is Maxwellian, which
happens to be the equilibrium distribution for large number of particles; condition 2 is the
statistical priori for that to be valid.

2.6 Plasma Frequency

Besides the length scale, we are also interested in time scale. The plasma frequency,

𝜔𝑝 = √𝑛𝑒2
𝜖0 𝑚

(2.7)

is the most fundamental time-scale in plasma physics. Clearly, there is a different plasma
frequency for each species. However, the relatively fast electron frequency is, by far, the most
important, and references to “the plasma frequency” in most textbooks invariably mean the
electron plasma frequency.

𝜔𝑝 corresponds to the typical electrostatic oscillation frequency of a given species in response
to a small charge separation. For instance, consider a one-dimensional situation in which a
slab consisting entirely of one charge species is displaced from its quasi-neutral position by an
infinitesimal distance 𝛿𝑥. The resulting charge density which develops on the leading face of
the slab is 𝜎 = 𝑒𝑛 𝛿𝑥. An equal and opposite charge density develops on the opposite face. The
𝑥-directed electric field generated inside the slab is of magnitude 𝐸𝑥 = −𝜎/𝜖0 = −𝑒𝑛 𝛿𝑥/𝜖0.
Thus, Newton’s law applied to an individual particle inside the slab yields

𝑚 d2𝛿𝑥
d𝑡2 = 𝑒𝐸𝑥 = −𝑚𝜔 2

𝑝 𝛿𝑥

giving 𝛿𝑥 = 𝛿𝑥0 cos𝜔𝑝𝑡.
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Plasma frequency is closely associated with plasma oscillation and waves. A more thorough
derivation is given in Section 7.4. Note that plasma oscillations will only be observed if the
plasma system is studied over time periods 𝜏 longer than the plasma period 𝜏𝑝 ≡ 1/𝜔𝑝, and
if external actions change the system at a rate no faster than 𝜔𝑝. In the opposite case, one is
clearly studying something other than plasma physics (e.g., nuclear reactions), and the system
cannot not usefully be considered to be a plasma. Likewise, observations over length-scales 𝐿
shorter than the distance 𝑣𝑡 𝜏𝑝 traveled by a typical plasma particle during a plasma period will
also not detect plasma behaviour. In this case, particles will exit the system before completing
a plasma oscillation. This distance, which is the spatial equivalent to 𝜏𝑝, is called the Debye
length, and takes the form

𝜆𝐷 ≡ √𝑇/𝑚 𝜔−1
𝑝 .

Note that
𝜆𝐷 = √𝜖0 𝑇

𝑛 𝑒2
is independent of mass, and therefore generally comparable for different species. Clearly, our
idealized system can only usefully be considered to be a plasma provided that

𝜆𝐷
𝐿 ≪ 1 (2.8)

and 𝜏𝑝
𝜏 ≪ 1

Here, 𝜏 and 𝐿 represent the typical time-scale and length-scale of the process under investi-
gation. It should be noted that, despite the conventional requirement Equation 2.8, plasma
physics is capable of considering structures on the Debye scale. The most important example
of this is the Debye sheath: i.e., the boundary layer which surrounds a plasma confined by a
material surface.

Let 𝑉𝐴 = 𝐵/√𝜇0𝜌 be the Alfvén speed and 𝜔𝑐 = 𝑞𝐵/𝑚 be the ion gyro-frequency. We have
this convenient relation 𝜔𝑝

𝜔𝑐
= 𝑐

𝑉𝐴
(2.9)

2.7 Spatial Scales

• Ion inertial length: the scale at which ions decouple from electrons and the magnetic
field becomes frozen into the electron fluid rather than the bulk plasma.

𝑑𝑖 =
𝑐
𝜔𝑝𝑖

= 𝑉𝐴𝑖
𝜔𝑐𝑖

(2.10)

where 𝑉𝐴𝑖 is the ion Alfvén speed.
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• Electron inertial length (plasma skin depth) : the scale over which the electron distribu-
tion function can change substantially, or the depth in a plasma to which electromagnetic
radiation can penetrate.

𝑟𝑒 = 𝑐
𝜔𝑝𝑒

= 𝑉𝐴𝑒
𝜔𝑐𝑒

(2.11)

where 𝑉𝐴𝑒 is the electron Alfvén speed.

• Ion gyroradius: also known as Larmor radius, the scale of ion gyration around the
magnetic field

𝑟𝐿 = 𝑣⟂,𝑡𝑖
𝜔𝑐

= 𝑚𝑣⟂,𝑡𝑖
𝑞𝐵 (2.12)

where 𝑣⟂,𝑡𝑖 = √𝑝⟂𝑖/𝜌 is the perpendicular ion thermal speed.

• Electron gyroradius: the scale of electron gyration around the magnetic field

𝑟𝐿 = 𝑣⟂,𝑡𝑒
𝜔𝑐

= 𝑚𝑣⟂,𝑡𝑒
𝑞𝐵 (2.13)

where 𝑣⟂,𝑡𝑒 = √𝑝⟂𝑒/𝜌 is the perpendicular ion thermal speed.

One convenient relation between the inertial length and the gyroradius is
𝑟𝐿
𝑑𝑖

= 𝑣𝑡𝑖
𝑣𝐴

= √𝛽/2 (2.14)

In the relativistic case, the gyroradius is given as

𝑟𝐿 = 𝑝
𝑞𝐵 = 𝛾𝑚𝑣⟂

𝑞𝐵 (2.15)

where 𝛾 is the Lorentz factor. For astroparticle studies, people love to use [GeV] for particle
energy and normalize the velocity and charge to c and e, respectively. Therefore,

𝑟𝐿
[m] =

𝛾𝑚𝑐2/[J] ⋅ 𝑣⟂/𝑐
𝑞/𝑒 ⋅ 𝐵/[T] ⋅ 1

𝑐𝑒

= 𝛾𝑚𝑐2/[GeV] ⋅ 𝑣⟂/𝑐
𝑞/𝑒 ⋅ 𝐵/[T] ⋅ 10

9

𝑐

= 3.3𝛾𝑚𝑐2/[GeV] ⋅ 𝑣⟂/𝑐
𝑞/𝑒 ⋅ 𝐵/[T]

(2.16)

• Debye length: the scale over which electric fields are screened out by a redistribution of
the electrons:

𝜆𝐷 = √𝜖0𝑘𝐵𝑇 ∗

𝑒2𝑛𝑒

31



where 𝑇 ∗ = ( 1
𝑇𝑒

+ 1
𝑇𝑖
)
−1

. Even in quasineutral cold plasma, where ion contribution
virtually seems to be larger due to lower ion temperature, the ion term is actually often
dropped, giving

𝜆𝐷 = √𝜖0𝑘𝐵𝑇𝑒
𝑒2𝑛 = 𝑚𝑒

𝑞𝑒
√𝜖0𝑃𝑒

𝜌𝑒
= √𝜖0𝑣𝑡𝑒

𝑒2𝑛𝑒

where 𝑣𝑡𝑒 = √𝑃𝑒/𝜌𝑒, which is only valid when the mobility of ions is negligible compared
to the process’s timescale.

A useful relation between the electron inertial length and the Debye length is

𝜆𝐷 = 𝑣𝑡𝑒
𝑐 𝑑𝑒 (2.17)

2.8 How to Study Plasma Physics

There is no universal theory for plasma physics due to the multi-scale problems. All useful
equations are derived under certain scaling approximations —
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3 Math

3.1 Vector Identities

Some useful vector identities are listed below:

A × (B × C) = B(A ⋅ C) + C(A ⋅ B)
(A × B) × C = B(A ⋅ C) + A(B ⋅ C)

∇ ×∇𝑓 = 0
∇ ⋅ (∇ × A) = 0

∇ ⋅ (𝑓A) = (∇𝑓) ⋅ A + 𝑓∇ ⋅ A
∇× (𝑓A) = (∇𝑓) × A + 𝑓∇× A

∇ ⋅ (A × B) = B ⋅ (∇ × A) − A ⋅ (∇ × B)
∇(A ⋅ B) = (B ⋅ ∇)A + (A ⋅ ∇)B + B × (∇× A) + A × (∇× B)
∇ ⋅ (AB) = (A ⋅ ∇)B + B(∇ ⋅ A)

∇ × (A × B) = (B ⋅ ∇)A − (A ⋅ ∇)B − B(∇ ⋅ A) + A(∇ ⋅ B)
∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A

In most cases Einsten notation shall be used to derive all the identities:

𝑦 =
3

∑
𝑖=1

𝑐𝑖𝑥𝑖 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3

is simplified by the convention to
𝑦 = 𝑐𝑖𝑥𝑖

The upper indices are not exponents but are indices of coordinates, coefficients or basis vectors.
That is, in this context 𝑥2 should be understood as the second component of 𝑥 rather than
the square of 𝑥 (this can occasionally lead to ambiguity). The upper index position in 𝑥𝑖

is because, typically, an index occurs once in an upper (superscript) and once in a lower
(subscript) position in a term.

A basis gives such a form (via the dual basis), hence when working on R𝑛 with a Euclidean
metric and a fixed orthonormal basis, one has the option to work with only subscripts. However,
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if one changes coordinates, the way that coefficients change depends on the variance of the
object, and one cannot ignore the distinction. (See this wiki link.)

Commonly used identities:
A ⋅ B = 𝐴𝑖𝐵𝑖

A × B = 𝜖𝑖𝑗𝑘𝐴𝑗𝐵𝑘
∇ ⋅ A = 𝜕𝑖𝐴𝑖

∇× A = 𝜖𝑖𝑗𝑘𝜕𝑗𝐴𝑘
𝜖𝑖𝑗𝑘𝜖𝑖𝑚𝑛 = 𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚

3.2 Differential of Line Segments

The differential of line segments in a fluid is:

dl
d𝑡 = l ⋅ ∇u (3.1)

Proof. Let the two line segments l1 and l2 be expressed as starting point vectors and end point
vectors:

l1 = r2 − r1
l2 = r′2 − r′1

After time Δ𝑡, l1 → l2,

l2 = r′2 − r′1 = (r2 + v(𝑟2)Δ𝑡) − (r1 + v(r1)Δ𝑡) = l1 + (v(r2) − v(r1))Δ𝑡

The velocity difference can be written as

v(𝑥2, 𝑦2, 𝑧2) − v(𝑥1, 𝑦1, 𝑧1) =
𝜕v
𝜕𝑥(𝑥2 − 𝑥1) +

𝜕v
𝜕𝑦 (𝑦2 − 𝑦1) +

𝜕v
𝜕𝑧 (𝑧2 − 𝑧1) = (l ⋅ ∇)v

So
l2 = l1 + l ⋅ ∇v ⋅ Δ𝑡 ⇒ l2 − l1

Δ𝑡 = l ⋅ ∇v

�
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3.3 Lagrangian vs Eulerian Descriptions

The Lagrangian operator d/d𝑡 is defined to be the convective derivative

d
d𝑡 = 𝜕

𝜕𝑡 + u ⋅ ∇ (3.2)

which characterizes the temporal rate of change seen by an observer moving with the velocity
u. An everyday example of the convective term would be the apparent temporal increase in
density of automobiles seen by a motorcyclist who enters a traffic jam of stationary vehicles
and is not impeded by the traffic jam.

The convective derivative is sometimes written as D/D𝑡, which is used to emphasize the fact
that the this specific convective derivative is defined using the center-of-mass velocity. Note
that (u ⋅ ∇) is a scalar differential operator.

3.4 Complex Analysis

In complex analysis, the following statements are equivalent:

1. 𝑓(𝑧) is an analytic function of 𝑧 in some neighbourhood of 𝑧0.
2. ∮𝐶 𝑓(𝑧)𝑑𝑧 = 0 for every closed contour 𝐶 that lies in that neighbourhood of 𝑧0.
3. 𝑑𝑓(𝑧)/𝑑𝑧 exists at 𝑧 = 𝑧0.
4. 𝑓(𝑧) has a convergent Taylor expansion about 𝑧 = 𝑧0.
5. The 𝑛𝑡ℎ derivative d𝑛𝑓(𝑧)/𝑑𝑧𝑛 exists at 𝑧 = 𝑧0 for all 𝑛.
6. The Cauchy-Riemann condition is satisfied at 𝑧 = 𝑧0. Take 𝑢 and 𝑣 to be the real and

imaginary parts respectively of a complex-valued function of a single complex variable
𝑧 = 𝑥 + 𝑖𝑦, 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑦 = −𝜕𝑣

𝜕𝑥

An idea of analytic continuation is introduced here. In practice, an analytic function is usually
defined by means of some mathematical expression — such as a polynomial, an infinite series,
or an integral. Ordinarily, there is some region within which the expression is meaningful and
does yield an analytic function. Outside this region, the expression may cease to be meaningful,
and the question then arises as to whether or not there is any way of extending the definition
of the function so that this “extended” function is analytic over a larger region. A simple
example is given as follows.

Ex.1 Polynomial series
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𝑓(𝑧) =
∞
∑
𝑛=0

𝑧𝑛

which describes an analytic function for |𝑧| < 1 but which diverges for |𝑧| > 1. However, the
function

𝑔(𝑧) = 1
1 − 𝑧

is analytic over the whole plane (except at 𝑧 = 1), and it coincides with 𝑓(𝑧) inside the unit
circle.

Such a function 𝑔(𝑧), which coincides with a given analytic 𝑓(𝑧) over that region for which 𝑓(𝑧)
is defined by which also is analytic over some extension of that region, is said to be an analytic
continuation of 𝑓(𝑧). It is useful to think of 𝑓(𝑧) and 𝑔(𝑧) as being the same function and to
consider that the formula defining 𝑓(𝑧) failed to provide the values of 𝑓(𝑧) in the extended
region because of some defect in the mode of description rather than because of some limitation
inherent in 𝑓(𝑧) itself. [c.f. G.F.Carrier, M.Krook and C.E.Pearson, Functions of a Complex
Variable, McGraw-Hill (1966), p.63]

Ex.2 Laplace transform

ℒ[1] = ∫
∞

0
d𝑡1 ⋅ 𝑒𝑖𝜔𝑡 = − 1

𝑖𝜔, if ℑ(𝜔) > 0

If you have a pure real frequency 𝜔, then when you integrate 𝑣 over the real axis, at 𝑣 = 𝜔/𝑘
you will encounter a singular point. Actually, this integration is convergent if and only if
ℑ(𝜔) > 0. − 1

𝑖𝜔 is the analytic continuation of 𝑓(𝜔) for all complex 𝜔 except 𝜔 = 0.
To calculate the integral around singular points, we may take advantage of the Cauchy integral
formula and the residual theorem.

Theorem 2.1 Cauchy integral

Let 𝐶𝜖 be a circular arc of radius 𝜖, centered at 𝛼, with subtended angle 𝜃0 in counterclockwise
direction. Let 𝑓(𝑧) be an analytic function on 𝐶𝜖+inside 𝐶𝜖. Then

lim
𝜖→0

∫
𝑐𝜖

𝑓(𝑧)𝑑𝑧
𝑧 − 𝛼 = 𝑖𝜃0𝑓(𝛼)

Proof: On 𝐶𝜖, 𝑧 = 𝛼 + 𝜖𝑒𝑖𝜃, 𝑑𝑧 = 𝑖𝜖𝑒𝑖𝜃d𝜃.
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𝐿𝐻𝑆 = lim
𝜖→0

∫
𝐶𝜖

𝑓(𝛼 + 𝜖𝑒𝑖𝜃)𝑖𝜖𝑒𝑖𝜃d𝜃
𝜖𝑒𝑖𝜃 = 𝑖𝜃0𝑓(𝛼).

�

Theorem 2.2 Residue

Let 𝑓(𝑧) be an analytic function on a closed contour 𝐶+inside 𝐶. If point 𝛼 is inside 𝐶, we
have

𝑓(𝛼) = 1
2𝜋𝑖 ∮𝑐

𝑓(𝑧)𝑑𝑧
𝑧 − 𝛼

Proof :
𝑓(𝑧)
𝑧−𝛼 is analytic within region bounded by 𝐶 + 𝐿1 − 𝐶𝜖 + 𝐿2, where 𝐿1 and 𝐿2 are two paths
that connects/breaks 𝐶 and 𝐶𝜖. Therefore

∫
𝐶
+∫

𝐿1

−∫
𝐶𝜖

+∫
𝐿2

𝑓(𝑧)
𝑧 − 𝛼𝑑𝑧 = 0

⇒ ∮
𝐶

𝑓(𝑧)
𝑧 − 𝛼𝑑𝑧 = ∮

𝐶𝜖

𝑓(𝑧)
𝑧 − 𝛼𝑑𝑧 = 2𝜋𝑖𝑓(𝛼) as 𝐿1 → −𝐿2, 𝜖 → 0.

�

There is also a purely algebraic proof available.

Note that the value of 𝑓(𝑧) on 𝐶 determines value of 𝑓(𝛼) for all 𝛼 within 𝐶. This has a close
relation to the potential theory. Actually, what Cauchy-Riemann condition says physically is
that the potential flow is both irrotational and incompressible!

Theorem 2.3 Residual theorem

Let 𝑓(𝑧) be an analytic function on 𝐶+inside 𝐶. If point 𝛼 is inside 𝐶, we have

∮
𝑐

𝑓(𝑧)𝑑𝑧
𝑧 − 𝛼 = 2𝜋𝑖𝑓(𝛼) ≡ 2𝜋𝑖Res[ 𝑓(𝑧)

𝑧 − 𝑥; 𝑧 = 𝛼] (3.3)

�

Khan Academy has a nice video on this. Applying this powerful theorem, we can calculate
many integrals analytically which contain singular points.

Ex.3

𝑓(𝜔) = ∫
∞

−∞
𝑑𝑣 𝑒𝑖𝑣

𝑣 − 𝜔 = 2𝜋𝑖𝑒𝑖𝜔, ℑ(𝜔) > 0
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Pick a semi-circle contour 𝐶𝑅 in the upper plane of complex v. Let 𝐶 be a closed contour of a
line along the real axis ℜ(𝑣) and the semi-circle 𝐶𝑅. 𝑒𝑖𝑣 is analytic along and inside 𝐶, so

𝑓(𝜔) = (∮
𝐶
−∫

𝐶𝑅

) 𝑑𝑣𝑒𝑖𝑣
𝑣 − 𝜔 = 2𝜋𝑖𝑒𝑖𝜔 −∫

𝐶𝑅

𝑑𝑣𝑒𝑖𝑣
𝑣 − 𝜔 = 2𝜋𝑖𝑒𝑖𝜔 as 𝑅 → ∞

(𝑒𝑖𝑣 = 𝑒𝑖(𝑣𝑟+𝑖𝑣𝑖) = 𝑒𝑖𝑣𝑟𝑒−𝑣𝑖 , 𝑣𝑖 > 0; 𝑣 − 𝜔 → ∞)

2𝜋𝑖𝑒𝑖𝜔 is the analytic continuation of 𝑓(𝜔) for all 𝜔. Analytic continuation is achieved if we
deform the contour integration in the complex 𝑣 plane.

Ex.4

𝜖(𝜔)
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝑘2 𝜒(𝜔)

where

𝜒(𝜔) = ∫
∞

−∞
𝑑𝑣 𝜕𝑔/𝜕𝑣

𝑣 − 𝜔/𝑘 , 𝐼𝑚(𝜔) > 0

= ∫
𝐿
𝑑𝑣𝜕𝑔(𝑣)/𝜕𝑣𝑣 − 𝜔/𝑘 , for all complex 𝜔, as long as 𝐿 lies below 𝜔

Landau integral: pick a trajectory under the singular point in the complex plane to achieve
the integration.

FIGURE NEEDED!

Let 𝐶𝜖 be a small semi-circle under 𝜔/𝑘. Then

𝜖(𝜔)
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝑘2 [𝑃 ∫
∞

−∞
𝑑𝑣𝜕𝑔(𝑣)𝜕𝑣𝑣 − 𝜔/𝑘 +∫

𝐶𝜖

𝑑𝑣𝜕𝑔(𝑣)𝜕𝑣𝑣 − 𝜔/𝑘 ]

= 1 − 𝜔𝑝𝑒
2

𝑘2 [𝑃 ∫
∞

−∞
𝑑𝑣𝜕𝑔(𝑣)𝜕𝑣𝑣 − 𝜔/𝑘 + 𝑖𝜋𝜕𝑔(𝑣)𝜕𝑣 ∣𝑣=𝜔

𝑘
]

where 𝑃 denotes the principle value integral. This is the same as Equation 8.31 that will be
discussed in Section 8.5.
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3.5 Electromagnetic Four-Potential

An electromagnetic four-potential is a relativistic vector function from which the electromag-
netic field can be derived. It combines both an electric scalar potential and a magnetic vector
potential into a single four-vector.

As measured in a given frame of reference, and for a given gauge, the first component of the
electromagnetic four-potential is conventionally taken to be the electric scalar potential, and
the other three components make up the magnetic vector potential. While both the scalar
and vector potential depend upon the frame, the electromagnetic four-potential is Lorentz
covariant.

The electromagnetic four-potential can be defined as:

Table 3.1: Electromagnetic four-potential

SI units Gaussian units

𝐴𝛼 = (𝜙
𝑐 ,A) 𝐴𝛼 = (𝜙,A)

in which 𝜙 is the electric potential, and A is the magnetic potential (a vector potential).

The electric and magnetic fields associated with these four-potentials are:

Table 3.2: Electromagnetic fields from the four-potential

SI units Gaussian units
E = −∇𝜙 − 𝜕A

𝜕𝑡 E = −∇𝜙 − 1
𝑐
𝜕A
𝜕𝑡

B = ∇× A B = ∇× A

3.6 Helmholtz’s Theorem

Helmholtz’s theorem, also known as the fundamental theorem of vector calculus, states that
any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into
the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector
field.

Let F be a vector field on a bounded domain 𝑉 ⊆ R3, which is twice continuously differentiable,
and let S be the surface that encloses the domain V. Then F can be decomposed into a curl-free
component and a divergence-free component:

F = ∇Φ+∇× A
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where

Φ(r) = 1
4𝜋 ∫

𝑉

∇′ ⋅ F′(r′)
|r − r′| 𝑑𝑉 ′ − 1

4𝜋 ∮
𝑠

n̂′ ⋅ F(r′)
|r − r′|𝑑𝑆

′

A = 1
4𝜋 ∫

𝑉

∇′ × F′(r′)
|r − r′| 𝑑𝑉 ′ − 1

4𝜋 ∮
𝑠

n̂′ × F(r′)
|r − r′|𝑑𝑆

′

and ∇′ is the nabla operator with respect to r′, not r.

If 𝑉 = R3 and is therefore unbounded, and F vanishes faster than 1/𝑟 as 𝑟 → ∞, then the
second component of both scalar and vector potential are zero. That is,

Φ(r) = 1
4𝜋 ∫

𝑉

∇′ ⋅ F′(r′)
|r − r′| 𝑑𝑉 ′

A = 1
4𝜋 ∫

𝑉

∇′ × F′(r′)
|r − r′| 𝑑𝑉 ′

3.7 Toroidal and Poloidal Decomposition

The earliest use of these terms cited by the Oxford English Dictionary (OED) is by Walter M.
Elsasser (1946) in the context of the generation of the Earth’s magnetic field by currents in the
core, with “toroidal” being parallel to lines of latitude and “poloidal” being in the direction of
the magnetic field (i.e. towards the poles).

The OED also records the later usage of these terms in the context of toroidally confined
plasmas, as encountered in magnetic confinement fusion. In the plasma context, the toroidal
direction is the long way around the torus, the corresponding coordinate being denoted by
z in the slab approximation or 𝜁 or 𝜙 in magnetic coordinates; the poloidal direction is the
short way around the torus, the corresponding coordinate being denoted by y in the slab
approximation or 𝜃 in magnetic coordinates. (The third direction, normal to the magnetic
surfaces, is often called the “radial direction”, denoted by x in the slab approximation and
variously 𝜓, 𝜒, r, 𝜌, or 𝑠 in magnetic coordinates.)

In vector calculus, a topic in pure and applied mathematics, a poloidal–toroidal decomposition
is a restricted form of the Helmholtz decomposition. It is often used in the spherical coordinates
analysis of solenoidal vector fields, for example, magnetic fields and incompressible fluids.

For a three-dimensional vector field F with zero divergence

∇ ⋅ F = 0

This F can be expressed as the sum of a toroidal field T and poloidal vector field P
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Figure 3.1: Toroidal-Poloidal Decomposition.
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F = T + P

where ̂𝑟 is a radial vector in spherical coordinates (𝑟, 𝜃, 𝜙). The toroidal field is obtained from
a scalar field, 𝜓(𝑟, 𝜃, 𝜙) as the following curl,

T = ∇× ( ̂𝑟Ψ(r))

and the poloidal field is derived from another scalar field 𝜙(𝑟, 𝜃, 𝜙) as a twice-iterated curl,

P = ∇×∇× ( ̂𝑟Φ(r))

This decomposition is symmetric in that the curl of a toroidal field is poloidal, and the curl of
a poloidal field is toroidal. The poloidal–toroidal decomposition is unique if it is required that
the average of the scalar fields Ψ and Φ vanishes on every sphere of radius 𝑟.

3.8 Magnetic Dipole Field

If there’s no current,
∇× B = 𝜇0J = 0 ⇒ 𝐵 = −∇𝑉

The divergence free condition for magnetic field then yields a laplace equation

Δ𝑉 = 0

for the Gauss potential 𝑉 . The general complex solution of Laplace equation in spherical
coordinates is

𝑉 (r) =
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

(𝐴𝑙𝑟𝑙 +𝐵𝑙𝑟−𝑙−1) 𝑃𝑚
𝑙 (cos 𝜃)𝑒−𝑖𝑚𝜙

=
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

(𝐴𝑙𝑟𝑙 +𝐵𝑙𝑟−𝑙−1) 𝑌 𝑚
𝑙 (𝜃, 𝜙)

where
𝑌 𝑚
𝑙 (𝜃, 𝜙) = 𝑃𝑚

𝑙 (cos 𝜃)𝑒−𝑖𝑚𝜙

are the (complex) spherical harmonics. The indices l and m indicate degree and order of the
function. The general real solution is

𝑉 (r) =
∞
∑
𝑙=0

𝑙
∑
𝑚=0

(𝐴𝑙𝑟𝑙 +𝐵𝑙𝑟−𝑙−1) 𝑃𝑚
𝑙 (cos 𝜃) [𝑆𝑚 sin𝑚𝜙+ 𝐶𝑚 cos𝑚𝜙]
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𝑃𝑚
𝑙 are the associated Legendre polynomials. The first three terms of 𝑃𝑚

𝑙 (cos 𝜃) are

𝑃 0
0 (cos 𝜃) = 1

𝑃 0
1 (cos 𝜃) = cos 𝜃

𝑃 1
1 (cos 𝜃) = − sin 𝜃

There are two parts in the real solution. The first part, starting with coefficients 𝐴𝑙, represents
the potential from an exterior source, which is analytic at 𝑟 = 0 but diverges as 𝑟 → ∞. The
second part, starting with coefficients 𝐵𝑙, represents the potential from an interior source,
which is singular at 𝑟 = 0 and finite as 𝑟 → ∞.

Ex 1. Planet dipole field

For a planetary dipole field, we only consider the contribution from the internal source. The
Gauss potential for the dipole reads

𝑉 = 1
𝑟2 [𝐵1𝐶0 cos 𝜃 + 𝐵1𝐶1 cos𝜙 sin 𝜃 + 𝐵1𝑆1 sin𝜙 sin 𝜃]

= 1
𝑟2 [𝐺10 cos 𝜃 + 𝐺11 cos𝜙 sin 𝜃 + 𝐻11 sin𝜙 sin 𝜃]

If 𝑟 is defined in the unit of planet radius, then the dipole moment m = (𝐺11,𝐻11, 𝐺10) in
Cartesian coordinates would have the SI unit of [Tm3]. We then have

B = −∇𝑉 = −∇[m ⋅ r
𝑟3 ] = 3(m ⋅ ̂𝑟) ̂𝑟 − m

𝑟3

Often in literature we see dipole moments in the unit of [nT] [R]3: this indicates that this
dipole strength is equivalent to the equatorial field strength 𝐵eq at the planet’s surface, and
the field strength is scaled as 𝑟−3.

In SI units, we need to append additional coefficients

B = 𝜇0
4𝜋

3(m ⋅ ̂𝑟) ̂𝑟 − m
𝑟3

such that the dipole moment m has the unit of [A] [m]2, consistent with its physical meaning
originated from a closed current loop.

In spherical coordinates (𝑟, 𝜃, 𝜑) aligned with the dipole moment,

B = 𝜇0
4𝜋

𝑚
𝑟3 (−2 cos 𝜃,− sin 𝜃, 0) (3.4)

It is usually convenient to work in terms of the latitude, 𝜗 = 𝜋/2 − 𝜃, rather than the polar
angle, 𝜃. An individual magnetic field-line satisfies the equation

𝑟 = 𝑟eq cos2 𝜗
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where 𝑟eq is the radial distance to the field line in the equatorial plane (𝜗 = 0∘). It is conven-
tional to label field lines using the L-shell parameter, 𝐿 = 𝑟eq/𝑅𝐸. Here, 𝑅𝐸 = 6.37 × 106 m
is the Earth’s radius. Thus, the variation of the magnetic field-strength along a field line
characterized by a given 𝐿-value is

𝐵 = 𝐵𝐸
𝐿3

(1 + 3 sin2 𝜗)1/2
cos6 𝜗

where 𝐵𝐸 = 𝜇0𝑀𝐸/(4𝜋𝑅 3
𝐸 ) = 3.11 × 10−5 T is the equatorial magnetic field-strength on the

Earth’s surface.

In Cartesian representation,

B = 𝜇0
4𝜋

1
𝑟5

⎛⎜
⎝

(3𝑥2 − 𝑟2) 3𝑥𝑦 3𝑥𝑧
3𝑦𝑥 (3𝑦2 − 𝑟2) 3𝑦𝑧
3𝑧𝑥 3𝑧𝑦 (3𝑧2 − 𝑟2)

⎞⎟
⎠

m (3.5)

Note that (𝑥, 𝑦, 𝑧) and 𝑟 are all normalized to the radius of the planet 𝑅.

Ex 2. 2D dipole field

Let us consider the solution to the Laplace equation in polar coordinates (𝑟, 𝜃). Via separation
of variable it can be shown that the general real solution takes the form

𝑉 = 𝑐0 ln 𝑟 + 𝐷0 +
∞
∑
𝑛=1

(𝐴𝑛 cos𝑛𝜃 + 𝐵𝑛 sin𝑛𝜃) (𝐶𝑛𝑟𝑛 +𝐷𝑛𝑟−𝑛)

For a dipole field, we only consider 𝑛 = 1 from the internal source. If we absorb 𝐷1 into 𝐴1
and 𝐵1, we have

𝑉 = (𝐴1 cos 𝜃 + 𝐵1 sin 𝜃)1𝑟 = m ⋅ r
𝑟2

where the 2D magnetic moment is m = (𝐴1, 𝐵1).
Thus

Bdipole,2D = −∇𝑉 = 2(m ⋅ ̂𝑟) ̂𝑟 − m
𝑟2 (3.6)

where the minus sign has been absorbed into the coefficients. 2D dipole scales as 𝑟−2.

Ex 3. Magnetic monopoles

Even though magnetic monopoles have not yet been observed in nature, there are some nice
math tricks that allow us to approximate the magnetic dipole field as two opposite charged
magnetic monopoles sitting close to each other. In 3D, the magnetic monopole would give a
magnetic field

B(r) = 𝜇0
4𝜋

𝑔
𝑟2 ̂𝑟
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where 𝑔 is the strength of the magnetic monopole in units of magnetic charge. In 2D, it would
be

B(r) = 𝐶 𝑔
𝑟 ̂𝑟

The analogy can be make from Coulomb’s law: an electric dipole field in 3D scales as 𝑟−3 when
the electric monopole field scales as 𝑟−2.

3.9 Green’s Function

The Vlasov theory and the 2-fluid theory only tell us when instability will happen, but neither
tell us the severity of instability. To know the magnitude of instability mathematically, we can
introduce Green’s function

𝐺(𝑥, 𝑡) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥−𝑖𝜔(𝑘)𝑡𝑑𝑘

where 𝑡 is the beam’s pulse length and 𝑥 is the propagation distance. At 𝑡 = 0, we have

𝐺(𝑥, 0) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖𝑘𝑥𝑑𝑘 = 1

2𝑖𝜋𝑥𝑒
𝑖𝑘𝑥∣

𝑘=∞

𝑘=−∞

= lim
𝑘→∞

1
2𝑖𝜋𝑥[ cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥 − cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥]

= lim
𝑘→∞

1
𝜋

sin 𝑘𝑥
𝑥 = 𝛿(𝑥)

where 𝛿(𝑥) is the 𝛿-function.

The integral ∫∞
0

sin𝑥
𝑥 d𝑥 is called the Dirichlet integral. It is a very famous and important

generalized improper integral. Here at least you can see that

∫
∞

−∞
𝐺(𝑥, 0) = 1

𝜋 ∫
∞

0

sin 𝑘𝑥
𝑥 d𝑥 = 1 and 𝐺(0, 0) = ∞

3.10 Linearization

In linear wave analysis, we need to check how small perturbations evolve in the PDEs. For
plasma physics, it is usually very useful to transform into a magnetic field guided coordinates,
with the notation ∥ being parallel to the background magnetic field and ⟂ being perpendicular
to the background magnetic field B. Besides the perturbation of plasma moments (i.e. density,
velocity, pressure, etc.), we also need the perturbations to the magnitude of the magnetic field
B and the unit vector b̂. Linearzing 𝐵2 = B ⋅ B, we find

𝛿𝐵 = b̂ ⋅ 𝛿B = 𝛿𝐵∥ (3.7)
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Linearzing b̂ = B/𝐵, we obtain

𝛿b̂ = 𝛿 (B
𝐵) = 𝛿B𝐵 − 𝛿𝐵B

𝐵2 = 𝛿B
𝐵 −

𝛿B∥
𝐵 = 𝛿B⟂

𝐵 (3.8)

The divergence-free of magnetic field gives

k ⋅ 𝛿B = 𝑘∥𝛿𝐵∥ + 𝑘⟂𝛿𝐵⟂ = 0

Thus
k ⋅ b̂ = k ⋅ 𝛿B⟂

𝐵 = 𝑘⟂𝛿𝐵⟂
𝐵 = −𝑘∥

𝛿𝐵∥
𝐵 = −𝑘∥

𝛿𝐵
𝐵 (3.9)

These seemingly trivial relations have profound implications in physics. Equation 3.7 tells
us that the perturbation of magnetic field magnitude has only contribution from the parallel
component, which is why in satellite observations people only look at parallel perturbations
for compressional wave modes. Equation 3.8 tells us that the perturbation in the unit vector
is only related to the perpendicular fluctuations.

3.11 Wave Equations

The waves in plasma physics is governed by second order ODEs. Here we list some second
order ODEs that has been studied mostly in plasma physics.

• Schrödinger Equation:

d2𝜑
d𝑥2 + 2𝑚

ℏ2 [𝐸 − 𝑈(𝑥)]𝜑 = 0

Schrödinger Equation appears in the nonlinear wave studies (Chapter 13).

• Shear Alfvén wave:

d
d𝑥{𝜌0[𝜔

2 − (k ⋅ v𝐴(𝑥))2]
𝑑𝐸
d𝑥 } − 𝑘2𝜌0[𝜔2 − (k ⋅ v𝐴)2 − 𝑔 1

𝜌0
d𝜌0
d𝑥 ]𝐸 = 0

The Shear Alfvén wave equation appears in nonuniform ideal MHD (Equation 7.27, Equa-
tion 12.8).

• EM waves in non-magnetized plasma, O mode:
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d2𝐸
d𝑥2 + 𝜔2

𝑐2 [1 − 𝜔𝑝𝑒(𝑥)
2

𝜔2 ]𝐸 = 0 (3.10)

• Electron cyclotron resonance heating (ECRH):

d2𝐸
d𝑥2 + 𝜔2

𝑐2 [1 − 𝜔𝑝𝑒(𝑥)
2

𝜔(𝜔 − Ω𝑒(𝑥))
]𝐸 = 0

In general, a second order ODE

d2𝑢(𝑥)
d𝑥2 + 𝑎1(𝑥)

𝑑𝑢(𝑥)
d𝑥 + 𝑎2(𝑥)𝑢(𝑥) = 0

can be rewritten to get rid of the first derivative. Let

𝑢(𝑥) = 𝐸(𝑥)𝑒− 1
2 ∫𝑥 𝑎1(𝑥)d𝑥

we have
d2𝐸(𝑥)

d𝑥2 + 𝑘2(𝑥)𝐸(𝑥) = 0 (3.11)

where
𝑘2(𝑥) = 𝑎2(𝑥) −

𝑎12
4 − 1

2
d𝑎1(𝑥)

d𝑥
Note that the lower bound of the integral is left on purpose to account for a constant. We will
concentrate at special points, i.e. zeros (cutoff) and poles (resonance) of 𝑘2(𝑥) ≡ 𝜔2

𝑐2 𝑛2(𝑥).
First, we will introduce Wentzel–Kramers–Brillouin-Jeffreys (WKBJ) solution to Equa-
tion 3.11:

𝐸(𝑥) ∼ 1
√𝑘(𝑥)

𝑒±𝑖∫𝑥 𝑘(𝑥′)d𝑥′ .

Proof.

For simplicity, here we use a simple harmonic oscillation analogy. Consider

d2𝑥(𝑡)
d𝑡2 +Ω2(𝑡)𝑥(𝑡) = 0

Assume Ω ≫ 1, and 𝑇 is the time scale over which Ω changes appreciably. We would anticipate
solutions like

𝑥(𝑡) ∼ 𝑒±𝑖Φ(𝑡)

̇𝑥(𝑡) ∼ ±𝑖Φ̇(𝑡)𝑥(𝑡)
̈𝑥(𝑡) ∼ −Φ̇2(𝑡)𝑥(𝑡)������±𝑖Φ̈(𝑡)𝑥(𝑡)

⇒Φ̇(𝑡) = Ω(𝑡), or Φ(𝑡) = ∫
𝑡
Ω(𝑡′)d𝑡′ + const.
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Write 𝑥(𝑡) = 𝐴(𝑡) sin [Φ(𝑡)], where 𝐴(𝑡) is slowly varying in time, ̇𝐴(𝑡) ≪ Ω𝐴, which is almost
a periodic motion. From adiabatic theory in classical mechanics, ∮𝑝𝑑𝑞 ≃ const., we have

∮𝑚𝑣𝑥d𝑥 ≃ const.

∮𝑚 ̇𝑥 ̇𝑥d𝑡 ≃ const.

Then in a period 2𝜋/Ω,

2𝜋
Ω ∮𝑚 ̇𝑥2𝑑𝑡 = 2𝜋

Ω ∮𝑚𝐴2Ω2 cos2 Φd𝑡 ≃ const.

which leads to
𝑚𝐴2Ω ≃ const., 𝐴 ∼ 1√

Ω

Thus the general form of solution can be written as

𝑥(𝑡) ∼ 1√
Ω
𝑒±𝑖Φ(𝑡) ∼ 1√

Ω
𝑒±𝑖∫𝑡 Ω(𝑡′)d𝑡′+const.

�

Note:

1. There is no lower limit to the integral, because it is like adding a constant.
2. This solution is valid if 𝑘⋅𝐿 > 𝑂(3), where 𝐿 is the length scale over which 𝑘2(𝑥) changes

appreciably. (???)Formally the condition should be 𝑘𝐿 ≫ 1. Apparently near resonance
(𝑘 → ∞), the condition breaks down, then how do we reconcile the solution? There are
more discussions coming up and applications in Chapter 7 and Chapter 12.

3.11.1 Airy Function

We want to develop a general method for cut-off and resonance. Away from the turning point
𝑥𝑡,

𝐸WKBJ(𝑥) ∼
1

√𝑘(𝑥)
𝑒±𝑖∫𝑥 𝑘(𝑥)d𝑥

Near 𝑥 = 𝑥𝑡, we can use a linear approximation for 𝑘2(𝑥) (first term in the Taylor expansion),

𝑘2(𝑥) ≈ −𝑘02𝑎(𝑥 − 𝑥𝑡)
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Then
d2𝐸
d𝑥2 + 𝑘2(𝑥)𝐸 = 0

d2𝐸
d𝑥2 − 𝑘02𝑎(𝑥 − 𝑥𝑡)𝐸 = 0

Let 𝑥−𝑥𝑡
𝑙 = 𝜁, we have

d2𝐸
d𝜁2 − 𝑙2𝑘02𝑎𝑙𝜁𝐸(𝜁) = 0

If we choose 𝑙 s.t. 𝑙3𝑘02𝑎 = 1 (non-dimensional treatment), we obtain

d2𝐸
d𝜁2 − 𝜁𝐸(𝜁) = 0 (3.12)

which is equivalent to the case where 𝑘2(𝜁) = −𝜁 that shows the linear approximation. Equa-
tion 3.12, known as the Airy equation or Stokes equation, is the simplest second-order linear
differential equation with a turning point (a point where the character of the solutions changes
from oscillatory to exponential). From the WKBJ theory, we get the solution

𝐸WKBJ ∼ 1
√𝑘(𝑥)

𝑒±𝑖∫𝑥 𝑘(𝑥′)d𝑥′ = { 𝜁−1/4𝑒∓ 2
3 𝜁3/2 if 𝜁 > 0

(−𝜁)−1/4𝑒±𝑖 2
3 (−𝜁)3/2 if 𝜁 < 0

Note that the solution blows up at 𝜁 = 0 (turning point) miserably. For 𝜁 > 0, one solution
is exponentially decay while the other is exponentially growing; for 𝜁 < 0, the two solutions
are oscillatory. Solutions can also be found as series in ascending powers of 𝜁 by the standard
method. Assume that a solution is 𝐸 = 𝑎0+𝑎1𝜁 +𝑎2𝜁2+... Substitute this in Stokes Equation
and equate powers of 𝜁 will give relations between the constants 𝑎0, 𝑎1, 𝑎2,etc., and lead finally
to

𝐸 =𝑎0{1 + 𝜁3
3 ⋅ 2 + 𝜁6

6 ⋅ 5 ⋅ 3 ⋅ 2 + 𝜁9
9 ⋅ 8 ⋅ 6 ⋅ 5 ⋅ 3 ⋅ 2 + ...}

+ 𝑎1{𝜁 + 𝜁4
4 ⋅ 3 + 𝜁7

7 ⋅ 6 ⋅ 4 ⋅ 3 + 𝜁10
10 ⋅ 9 ⋅ 7 ⋅ 6 ⋅ 4 ⋅ 3 + ...}

which contains the two arbitrary constants 𝑎0 and 𝑎1, and is therefore the most general solution.
The series are convergent for all 𝜁, which confirms that every solution of Stokes Equation is
finite, continuous and single valued.

This form is usually not easy to interpret in physical sense. Besides this, we can find a more
useful solution to Equation 3.12 using the integral representation. An equivalent but maybe
more intuitive approach is to solve Equation 3.12 with Fourier transform; a coefficient 2𝜋
naturally appears. Both approaches reach the same results.
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Write

𝐸(𝜁) = ∫
𝑏

𝑎
d𝑡𝑒𝑡𝜁𝑓(𝑡)

where the integral represents a path in the complex t plane from 𝑎 to 𝑏. Then

d2𝐸
d𝜁2 = ∫

𝑏

𝑎
d𝑡 𝑡2𝑒𝑡𝜁𝑓(𝑡)

𝜁𝐸(𝜁) = ∫
𝑏

𝑎
d𝑡𝜁𝑒𝑡𝜁𝑓(𝑡) = ∫

𝑏

𝑎
d𝑡 d

d𝑡(𝑒
𝑡𝜁)𝑓(𝑡)

= 𝑒𝑡𝜁𝑓(𝑡)∣
𝑏

𝑎
−∫

𝑏

𝑎
𝑑𝑡𝑒𝑡𝜁𝑓 ′(𝑡)

The limits 𝑎, 𝑏 are be chosen so that the first term vanishes at both limits. Then Equation 3.12
is satisfied if

⎧{
⎨{⎩

𝑒𝑡𝜁𝑓(𝑡)∣
𝑏

𝑎
= 0

𝑡2𝑓(𝑡) = −d𝑓(𝑡)
d𝑡 ⇒ 𝑓(𝑡) = 𝐴𝑒− 1

3 𝑡3

where 𝐴 is a constant. The solution is now written as

𝐸(𝜁) = ∫
𝑏

𝑎
d𝑡𝐴𝑒𝑡𝜁− 1

3 𝑡3

The limits 𝑎 and 𝑏 must therefore be chosen so that 𝑒𝑡𝜁− 1
3 𝑡3 is zero for both. (Note that 𝜁 is a

constant.) This is only possible if 𝑡 = ∞ and the real part of 𝑡3 is positive:

ℜ(𝑡3) > 0 ⇔ 2𝜋𝑛 − 1
2𝜋 < arg 𝑡3 < 2𝜋𝑛 + 1

2𝜋

⇔ 2𝜋𝑛 − 1
2𝜋 < 3 arg 𝑡 < 2𝜋𝑛 + 1

2𝜋

where 𝑛 is an integer. Figure 3.2 is a diagram of the complex t-plane, and 𝑎 and 𝑏 must each
be at ∞ in one of the shaded sectors. They cannot both be in the same sector, for then the
integral would be zero. Hence the contour may be chosen in three ways, as shown by the three
curves 𝐶1, 𝐶2, 𝐶3, and the solution would be

𝐸(𝜁) = ∫
𝐶1,𝐶2,𝐶3

d𝑡 𝑒𝑡𝜁− 1
3 𝑡3
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This might appear at first to give three independent solutions, but the contour 𝐶1 and be
distorted so as to coincide with the two contours 𝐶2 +𝐶3, so that

∫
𝐶1

= ∫
𝐶2

+∫
𝐶3

and therefore there are only two independent solutions.

Proof.

Note that:

1. 𝑒𝐴 ≠ 0 ∀|𝐴| < ∞;
2. 𝑒𝐴 = 0 ⇔ 𝐴 → ∞ andℜ(𝐴) < 0.

Therefore we have

𝑒− 1
3 𝑡3 → 0 as 𝑡 → ∞ andℜ(13𝑡

3) > 0

In polar coordinates, let 𝑡 = |𝑡|𝑒𝑖𝜃. Then

𝑡3 = |𝑡|3𝑒𝑖3𝜃 = |𝑡|3( cos 3𝜃 + 𝑖 sin 3𝜃)

ℜ(13𝑡
3) > 0 ⟺ cos 3𝜃 > 0 ⟺ 3𝜃 ∈ (−𝜋

2 ,
𝜋
2 ), (3𝜋2 , 5𝜋2 ), (−3𝜋

2 ,−5
2𝜋)

�

Jeffreys (1956) defines two special Airy functions 𝐴𝑖(𝑥),𝐵𝑖(𝑥) as follows

𝐴𝑖(𝜁) = 1
2𝜋𝑖 ∫𝐶1

d𝑡𝑒− 1
3 𝑡3+𝜁𝑡

𝐵𝑖(𝜁) = 1
2𝜋[∫𝐶2

+∫
𝐶3

]d𝑡𝑒− 1
3 𝑡3+𝜁𝑡

(3.13)

Obviously he took the Fourier transform such that a coefficient 2𝜋 naturally appears. In
Equation 3.13, the contour 𝐶1 can be distorted so as to coincide with the imaginary t-axis
for almost its whole length. It must be displaced slightly to the left of this axis at its ends to
remain in the shaded region at infinity. Let 𝑡 = 𝑖𝑠. Then the Airy function of the first kind in
Equation 3.13 becomes
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Figure 3.2: Solution to Stokes Equation in complex t-plane.
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𝐴𝑖(𝜁) = 1
2𝜋 ∫

∞

−∞
𝑒𝑖(𝜁𝑠+ 1

3𝑠3)𝑑𝑠

= 1
𝜋 ∫

∞

0
cos(𝜁𝑠 + 1

3𝑠
3)𝑑𝑠

It is known as the Airy integral, which is the solution for 𝑦 → 0 as 𝑥 → ∞. The other linearly
independent solution, the Airy function of the second kind, denoted 𝐵𝑖(𝑥), is defined as the
solution with the same amplitude of oscillation as 𝐴𝑖(𝑥) as 𝑥 → −∞ which differs in phase by
𝜋/2:

𝐵𝑖(𝜁) = 1
𝜋 ∫

∞

0
[𝑒− 𝑠3

3 +𝑠𝜁 + sin(𝜁𝑠 + 1
3𝑠

3)]𝑑𝑠

𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are shown in ?@fig-airy.

KeyNotes.plot_airy()

As an interesting experiment, we can check if 𝐴𝑖(𝑥) is recovered from solving the second order
ODE numerically:

@sco KeyNotes.plot_airy_ode()

Here we start from the right boundary and move towards the left.

Now, to find approximations for Airy functions, we use the method of steepest descent. This
approximation is based on the assumption that major contribution to the integral is from near
the saddle point. As an example of saddle point, consider a complex function exp 𝑓(𝑧) = 𝑒−𝑧2 ,
where 𝑧 = 𝑥 + 𝑖𝑦.

• If 𝑧 = real = 𝑥, 𝑒−𝑧2 = 𝑒−𝑥2 ;
• If 𝑧 = imag = 𝑖𝑦, 𝑒−𝑧2 = 𝑒𝑦2 .

The procedure goes as follows:

1. Detour path of integral s.t. it passes through the saddle point of the integral, along the
direction of steepest descent.

2. Obtain major contribution by integrating the Gaussian function.
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𝐼 = ∫
𝐶

d𝑡𝑒𝑓(𝑡), 𝑓(𝑡) = 𝑓(𝑡𝑠) + (𝑡 − 𝑡𝑠)𝑓 ′(𝑡𝑠) +
1
2(𝑡 − 𝑡𝑠)2𝑓 ′′(𝑡𝑠) + ...

where 𝑓 ′(𝑡𝑠) = 0 at the saddle point 𝑡 = 𝑡𝑠 simplifies 𝐼 to the integral of a Gaussian function.

For 𝐴𝑖(𝜁),
𝑓(𝑡) = 𝑡𝜁 − 1

3𝑡
3

𝑓 ′(𝑡𝑠) = 𝜁 − 𝑡𝑠2 = 0
𝑓 ′′(𝑡𝑠) = −2𝑡𝑠

Consider 𝜁 > 0 (where the solution is either exponentially decaying or growing.) Then

𝑡𝑠1 = −√𝜁, 𝑡𝑠2 = √𝜁

𝑓(𝑡𝑠1) = −2
3𝜁

3/2, 𝑓 ′′(𝑡𝑠1) = 2𝜁1/2

So
𝐴𝑖(𝜁) = 1

2𝜋𝑖 ∫𝐶1

d𝑡 𝑒− 2
3 𝜁3/2+𝜁1/2(𝑡−𝑡𝑠)2 + ...

≈ 1
2𝜋𝑖𝑒

− 2
3 𝜁3/2 ∫

𝐶1

d𝑡 𝑒
√𝜁(𝑡−𝑡𝑠)2

Let 𝑒
√𝜁(𝑡−𝑡𝑠)2 = 𝑒−𝜌2 , where 𝜌 = real is the direction of steepest descent, and 𝜌 = imag is the

direction of steepest ascent.

𝑖𝜌 = ±𝜁1/4(𝑡 − 𝑡𝑠)

d𝑡 = 𝑖d𝜌
𝜁1/4 ⇒ d𝑡 is purely imaginary along steepest descent.

Then for 𝜁 > 0
𝐴𝑖(𝜁) = 1

2𝜋𝑖𝑒
− 2

3 𝜁3/2 ∫
∞

−∞

𝑖𝑑𝜌
𝜁1/4 𝑒

−𝜌2

= 1
2√𝜋𝜁1/4 𝑒

− 2
3 𝜁3/2 as 𝜁 → ∞

The ratio of accuracy is shown in the following table (LABEL???). In practice, it is already a
very good approximation when 𝜁 > 3. (think of 𝑘𝐿 ≫ 3 for WKBJ solution! ???)

𝜁 1 2 3 6 ∞
ratio 0.934 0.972 0.983 0.993 1
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Now, consider 𝜁 < 0. When 𝜁 → −∞, we anticipate oscillating behavior of 𝐴𝑖(𝜁). 𝜁 = −|𝜁|,

⎧{
⎨{⎩

𝑓(𝑡) = 𝜁𝑡 − 1
3 𝑡3 = −𝑡|𝜁| − 1

3 𝑡3
𝑓 ′(𝑡) = −|𝜁| − 𝑡2 = 0
𝑓 ′′(𝑡) = −2𝑡

⇒𝑓(𝑡𝑠1) = 𝑖23|𝜁|
3/2

𝑓 ′′(𝑡𝑠1) = 2𝑖√|𝜁|

so the contribution from 𝑡𝑠1 is

1
2𝜋𝑖𝑒

𝑖 2
3 |𝜁|3/2 ∫

𝑡𝑠1
𝑒 1

2 (2𝑖√|𝜁|)(𝑡−𝑡𝑠)2+...

Let −𝜌2 = 𝑖√|𝜁|(𝑡 − 𝑡𝑠1)2, differentiate on both sides to get

d𝑡 = ± 𝑒𝑖𝜋/4
|𝜁|1/4d𝜌

Again, 𝜌 = real is the direction of steepest descent at 𝑡 = 𝑡𝑠1. Do the same to 𝑡𝑠2, then by
summing them up we have for 𝜁 < 0,

𝐴𝑖(𝜁) ≈ 1
2𝜋𝑖[𝑒

𝑖 2
3 |𝜁|3/2 ∫

∞

−∞

𝑒𝑖𝜋/4
|𝜁|1/4d𝜌𝑒−𝜌2 − 𝑒−𝑖 2

3 |𝜁|3/2 ∫
∞

−∞

𝑒−𝑖𝜋/4

|𝜁|1/4 d𝜌𝑒−𝜌2]

= 1
2𝜋𝑖[

𝑒𝑖 2
3 |𝜁|3/2+𝑖𝜋/4

|𝜁|1/4
√𝜋 − 𝑒−𝑖 2

3 |𝜁|3/2−𝑖𝜋/4

|𝜁|1/4
√𝜋]

(3.14)

An interesting application of the gradient descent method is to find Stirling’s approximation.
Mathematically, we can proof that

𝑛! = ∫
∞

0
d𝑡 𝑒−𝑡𝑡𝑛 = ∫

∞

0
d𝑡 𝑒−𝑡+𝑛 ln 𝑡 ≡ ∫

∞

0
d𝑡 𝑒𝑓(𝑡)

and by following the steepest descent method,

𝑓(𝑡) = −𝑡 + 𝑛 ln 𝑡

𝑓 ′(𝑡) = −1 + 𝑛1
𝑡 = 0

𝑓 ′′(𝑡) = −𝑛 1
𝑡2

55

https://en.wikipedia.org/wiki/Stirling%27s_approximation


we can find the approximation Stirling formula

𝑛! ≈ ∫
∞

0
d𝑡 𝑒−𝑛+𝑛 ln𝑛− 1

2𝑛 (𝑡−𝑡𝑠)2

= 𝑒−𝑛𝑛𝑛 ∫
∞

0
d𝑡 𝑒− 1

2𝑛 (𝑡−𝑡𝑠)2

=
√
2𝑛𝜋𝑒−𝑛𝑛𝑛

The following table (LABEL???) show the goodness of approximation of Stirling formula. In
practice, it is already a very good approximation when 𝑛 > 3.

𝜁 1 2 3 10 ∞
ratio 0.922 0.9595 0.973 0.9917 1

See (Budden 1961) Chapter 15: The Airy Integral Function, And The Stokes Phenomenon for
more details.

3.11.2 Uniformly Valid WKBJ Solution Across the Turning Point

In this section, we present the WKBJ solution that is uniformly valid everywhere, even at the
turning point.

Consider the standard equation,

d2𝐸(𝑥)
d𝑥2 + 𝑘2(𝑥)𝐸(𝑥) = 0

Let 𝑥 = 0 be the turning point, i.e. we assume that 𝑘2(𝑥) is a monotonically decreasing function
of 𝑥 with 𝑘(0) = 0. For the region 𝑥 > 0, we first identify the exponentially decaying factor of
the Airy function, 𝐴𝑖(𝜁), to be the phase integral in the WKBJ solution:

−2
3𝜁

3/2 = 𝑖∫
𝑥

0
𝑘(𝑥′)d𝑥′

Note that this yields 𝜁 = 𝜁(𝑥), a known function of x (I confuse myself later about 𝜁 and 𝑥…).
The branch for 𝜁(𝑥) is to be chosen so that for 𝑥 > 0, 𝜁 is real and positive.

We next verify that the uniformly valid solution to the standard equation is simply

𝐸(𝑥) = 1
√𝜁′(𝑥)

𝐴𝑖(𝜁) (3.15)
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where the prime denotes a derivative. For large values of 𝜁, we can use the asymptotic formula
of 𝐴𝑖 Equation 3.14, and notice that

−𝜁1/2𝜁′ = 𝑖𝑘(𝑥)

𝜁′(𝑥) = −𝑖𝑘(𝑥)𝜁1/2

we can see that Equation 3.15 reduces to the standard WKBJ solutions for large values of 𝜁

𝐸(𝑥) = 1
√𝜁′(𝑥)

𝐴𝑖(𝜁) ∼ 1
√𝑘(𝑥)

𝑒− 2
3 𝜁3/2 = 1

√𝑘(𝑥)
𝑒𝑖 ∫

𝑥
0 𝑘(𝑥′)d𝑥′

We can also show that Equation 3.15 is valid for small values of 𝜁, i.e. near the turning point
at 𝑥 = 0. (Hint: Near 𝑥 = 0, 𝑘2(𝑥) may be approximated by a linear function of 𝑥. This linear
approximation then yields 𝜁(𝑥) as a linear function of 𝑥 according to Equation 3.15.)

Ex. Choose a smooth plasma density profile which monotonically increases with 𝑥 s.t.

𝜔2
𝑝𝑒(𝑥)
𝜔2 = 1 + tanh𝑥

and launch a wave of frequency 𝜔 from 𝑥 = −∞, the vacuum region, toward the positive
𝑥-direction with 𝜔2

𝑐2 = 10m−2. (This is like launching a wave from low 𝐵 region into high 𝐵
region.) Numerically integrate the wave equation Equation 3.10,

d2𝐸
d𝑥2 + 𝜔2

𝑐2 [1 − 𝜔𝑝𝑒(𝑥)
2

𝜔2 ]𝐸 = 0

from some large positive values of 𝑥, we get the results in Figure 3.3.

We know that away from 𝑥𝑡, WKBJ solution works. To the left of 𝑥𝑡 (with 𝜁 < −3), Equa-
tion 3.14 gives

𝐴𝑖(𝜁) = 1
2𝑖√𝜋|𝜁|1/4 [𝑒

𝑖 2
3 |𝜁|3/2+𝑖𝜋

4 − 𝑒− 2
3 |𝜁|3/2−𝑖𝜋

4 ]

Choose the branch s.t. 𝜁𝑥 > 0 if 𝑥 > 𝑥𝑡; 𝜁(𝑥) < 0 if 𝑥 < 𝑥𝑡.
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Figure 3.3: Comparison between the WKBJ solution, uniformly valid solution and numerical
integral solution for the O-mode with monotonically increasing density with 𝑥.

𝐸(𝑥) = 1
√𝜁′(𝑥)

𝐴𝑖(𝜁)

= 𝐶3
√𝑘(𝑥)/|𝜁|1/2

1
|𝜁|1/4{𝑒

𝑖 2
3 |𝜁|3/2+𝑖𝜋

4 − 𝑐.𝑐}

= 𝐶3
√𝑘(𝑥)

{𝑒𝑖(−∫𝑥
𝑥𝑡

𝑘(𝑥′)d𝑥′)+𝑖𝜋
4 − 𝑐.𝑐}

= 𝐶3
√𝑘(𝑥)

{𝑒−𝑖∫𝑎
𝑥𝑡

𝑘(𝑥′)d𝑥′−𝑖∫𝑥
𝑎 𝑘(𝑥′)d𝑥′+𝑖𝜋

4 − 𝑐.𝑐}

= 𝐶4
√𝑘(𝑥)

{𝑒−𝑖∫𝑥
𝑎 𝑘(𝑥′)d𝑥′ − 𝑒𝑖 ∫

𝑎
𝑥𝑡

𝑘(𝑥′)d𝑥′
𝑒2𝑖∫

𝑎
𝑥𝑡

𝑘(𝑥′)d𝑥′−𝑖𝜋
2 }

= 𝐶4
√𝑘(𝑥)

{𝑒−𝑖∫𝑥
𝑎 𝑘d𝑥′ +𝑅 ⋅ 𝑒𝑖 ∫

𝑥
𝑎 𝑘d𝑥′},

where

𝐶4 = 𝐶3 ⋅ 𝑒
−𝑖∫𝑎

𝑥𝑡
𝑘d𝑥′+𝑖𝜋

4

and

𝑅 = −𝑒2𝑖∫
𝑎
𝑥𝑡

𝑘d𝑥′−𝑖𝜋
2 = 𝑖𝑒2𝑖∫

𝑎
𝑥𝑡

𝑘d𝑥′
= 𝑖𝑒−2𝑖∫𝑥𝑡

𝑎 𝑘𝑑𝑥′
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is the reflection coefficient at 𝑥 = 𝑎.

3.11.3 Stokes Phenomenon

In complex analysis the Stokes phenomenon is that the asymptotic behavior of functions can
differ in different regions of the complex plane, and that these differences can be described in
a quantitative way.

Ex. For the simple wave equation

d2𝐸
𝑑𝑧2 −𝐸 = 0

the solution can be given in various forms

𝐸 = 𝑒𝑧, 𝑒−𝑧, cosh 𝑧, sinh 𝑧

𝐸 = cosh 𝑧 = 1
2(𝑒

𝑧 + 𝑒−𝑧) ⇒ { 𝐸 ∼ 1
2𝑒𝑧 𝑧 → ∞

𝐸 ∼ 1
2𝑒−𝑧 𝑧 → −∞

𝐸 = sinh 𝑧 = 1
2(𝑒

𝑧 − 𝑒−𝑧) ⇒ { 𝐸 ∼ 1
2𝑒𝑧 𝑧 → ∞

𝐸 ∼ −1
2 𝑒−𝑧 𝑧 → −∞

Note that if a solution is exponentially growing in one direction, its asymptotic solution can
contain an arbitrary amount of the exponentially decaying solution; that is, specifying an
asymptotic growing solution in one direction cannot completely specify the solution in the
entire complex plane.

The two linearly independent approximate solutions to Airy Equation 3.12 are the Airy func-
tion approximations from WKBJ method:

d2𝐸
d𝜁2 − 𝜁𝐸 = 0

⇒𝐸(𝜁) = { 𝐴𝑖(𝜁) ∼ 1
2√𝜋𝜁1/4 𝑒−

2
3 𝜁3/2 , 𝜁 > 0

𝐵𝑖(𝜁) ∼ 1
2√𝜋𝜁1/4 𝑒

2
3 𝜁3/2 , 𝜁 > 0

which is very accurate for 𝜁 > 3 (see previous section).

Stokes found that you can add an arbitrary amount of 𝐴𝑖(𝜁) to 𝐵𝑖(𝜁) without changing the
behaviour of solution. (𝐴𝑖(𝜁) < 𝑂(𝜁−1)???)
We want to find 𝜁 s.t. 𝐸WKBJ is purely growing/decaying exponentially:

𝜁3/2is purely real ⟺ (|𝜁|𝑒𝑖𝜃)3/2is purely real ⟺ sin 3
2𝜃 = 0, 𝜃 = 0,±2

3𝜋,±
4
3𝜋
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The lines in the complex plane on which WKBJ solution is purely growing/decaying expo-
nentially are called Stokes lines (Figure 3.4). It is accompanied with anti-Stokes lines (in
the opposite direction to Stokes lines), on which WKBJ solution is purely oscillatory. The
exponentially growing solution on Stokes lines is called the dominant solution; the decaying
solution on Stokes lines is called the sub-dominant/recessive solution. The sub-dominant so-
lution will always becomes dominant in a neighboring Stokes line. However, the inverse is
not true. (It may contain an amount of sub-dominant solution.) Each term changes from
dominant to subdominant, or the reverse, when 𝜁 crosses an anti-Stokes line???

Figure 3.4: Stokes lines and anti-Stokes lines for WKBJ solution of Airy Equation.

Even though we say “arbitrary”, the analytic solution in the whole complex plane possess a
limit on that amount. The next question would be: how much exponentially decaying solution
can you add to the exponentially growing solution? (Note that the asympotic series is also a
divergent series: more terms don’t lead to high resolution accuracy! I have questions on this
part???)

For the asymptotic approximation solution of Airy Equation 3.12, we need to define arg(𝜁)
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properly to make it single value. Let us choose the branch cut −𝜋 ≤ arg 𝜁 < 𝜋. The complex
plane is demonstrated in Figure 3.5.

Figure 3.5: Marked Stokes lines and regions for Airy solution.

Let us start from region I. The solution in region I is

𝐸𝐼 ∼ 𝜁−1/4[𝐴1𝑒−
2
3 𝜁3/2 +𝐵1𝑒

2
3 𝜁3/2]

On 𝑆1, 𝑒− 2
3 𝜁3/2 is sub-dominant, 𝑒 2

3 𝜁3/2 is dominant. (The former would be dominant on
neighboring Stokes lines 𝑆2 and 𝑆3.) Crossing 𝑆2 into region IIup, we have

𝐸IIup
∼ 𝜁−1/4[𝐴1𝑒−

2
3 𝜁3/2

⏟⏟⏟⏟⏟
dominant

+(𝜆1𝐴1 +𝐵1)𝑒
2
3 𝜁3/2

⏟⏟⏟⏟⏟⏟⏟
sub-dominant

]

where 𝜆2 is the Stokes constant on 𝑆2. The constant in the subdominant term has changed
by 𝜆2𝐴1 because the differential equation is linear, and it cannot depend on 𝐵1. Otherwise
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it would be unaltered if we added to the solution in region I any multiple of the solution
in which 𝐴1 = 0. (See (Budden 1961) 15.13.) Crossing the branch cut to region IIdown,
𝜁up = 𝜁down𝑒𝑖2𝜋.

𝜁−1/4
up = 𝜁−1/4

down𝑒𝑖2𝜋(−1/4) = 𝑖𝜁1/4down

𝜁3/2up = 𝜁3/2down𝑒𝑖2𝜋(3/2) = −𝜁3/2down

so

𝐸IIdown
= −𝑖𝜁1/4IIdown

[𝐴1𝑒
2
3 𝜁

3/2
IIdown + (𝜆2𝐴1 +𝐵1)𝑒−

2
3 𝜁

3/2
IIdown]

We can also go clockwise from I to III, crossing 𝑆1,

𝐸𝐼𝐼𝐼 ∼ 𝜁−1/4[𝐵1𝑒
2
3 𝜁3/2

⏟
dominant

+(−𝜆1𝐵1 +𝐴1)𝑒−
2
3 𝜁3/2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
sub-dominant

]

where 𝜆1 is the Stokes constant on 𝑆1, and the minus sign indicates the clockwise direction.

Crossing 𝑆3 from III to IIdown,

𝐸IIdown
∼ 𝜁−1/4[ (−𝜆1𝐵1 +𝐴1)𝑒−

2
3 𝜁3/2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
dominant

+ [(−𝜆3)(−𝜆1𝐵1 +𝐴1) + 𝐵1]𝑒
2
3 𝜁3/2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
sub-dominant

]

where 𝜆3 is the Stokes constant on 𝑆3, and the minus sign indicates the clockwise direction.

Since the solution to Airy Equation is analytic, the solutions in region IIdown obtained from
two directions must be equal. Therefore

−𝜆1𝐵1 +𝐴1 = −𝑖(𝜆2𝐴1 +𝐵1)
−𝜆3(−𝜆1𝐵1 +𝐴1) + 𝐵1 = −𝑖𝐴1

(𝑖𝜆2 + 1 −𝜆1 + 𝑖
−𝜆3 + 𝑖 𝜆3𝜆1 + 1)(𝐴1

𝐵1
) = 0

⇒ 𝜆1 = 𝜆2 = 𝜆3 = 𝑖

All three Stokes constants are 𝑖. For the Airy equation, the amount of exponentially decaying
solution you can have going from one Stokes line to another is restricted to 𝑖 in counter-
clockwise direction.
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3.11.4 Application of Stokes Lines

Ex.1 Reflection Coefficient from Stokes Constant ???

Ex.2 O-mode

For EM O-mode wave in a non-magnetized plasma, the governing Equation 3.10 is rewritten
here

d2𝐸
𝑑𝑧2 + 𝑘2𝐸 = 0, 𝑘2 = 𝜔2

𝑐2 [1 − 𝜔𝑝
2(𝑧)
𝜔2 ]

Let the turning point be 𝑧 = 𝑧𝑡. Near 𝑧𝑡, let 𝑘2(𝑧) = −𝑝2(𝑧)(𝑧 − 𝑧𝑡) (Figure 3.3), where 𝑝(𝑧)
is real and positive for all real 𝑧. Then

𝑘 = ±𝑖𝑝(𝑧)(𝑧 − 𝑧𝑡)1/2

In the following we need to choose sign s.t. 𝑘 is real and positive on the anti-Stokes line 𝐴𝑆1.
(The figure of complex z plane is the same as Figure 3.5 except that the center point is 𝑧 = 𝑧𝑡.
𝐴𝑆1 is the dashed line.)

To make 𝑧 single value, define −𝜋 ≤ arg (𝑧 − 𝑧𝑡) < 𝜋. On 𝐴𝑆1,

𝑘 = ±𝑖𝑝(𝑧)|𝑧 − 𝑧𝑡|1/2𝑒𝑖
𝜋
2

= ∓|𝑝(𝑧)(𝑧 − 𝑧𝑡)|1/2
= ∓|𝑘|

We choose the second sign for right propagating wave, which has

𝑘 = −𝑖𝑝(𝑧)(𝑧 − 𝑧𝑡)1/2

The sign is important here because it determines the propagation direction.

For 𝑧 on 𝑆1, arg (𝑧 − 𝑧𝑡) = 0.

𝑘 = −𝑖𝑝(𝑧)|𝑧 − 𝑧𝑡|1/2𝑒𝑖
1
20 = −𝑖|𝑘|

In region I (between 𝑆1 and 𝑆2)

𝐸𝐼 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡±𝑖∫𝑧

𝑧𝑡
𝑘𝑑𝑧′

∼ 1√
𝑘
𝑒−𝑖𝜔𝑡±∫𝑧

𝑧𝑡
|𝑘|𝑑𝑧′
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For a decaying (subdominant) solution we must use minus (lower) sign, so

𝐸𝐼 ∼ 𝐸𝑆1
∼ 1√

𝑘
𝑒−𝑖𝜔𝑡−∫𝑧

𝑧𝑡
𝑘𝑑𝑧′

Crossing 𝑆2 into region 𝐼𝐼𝑢𝑝,

𝐸𝑆2
∼ 1√

𝑘
𝑒−𝑖𝜔𝑡[ 𝑒−𝑖∫𝑧

𝑧𝑡
𝑘𝑑𝑧′⏟⏟⏟⏟⏟

dominant on 𝑆2

+ 𝑖𝑒𝑖 ∫
𝑧
𝑧𝑡

𝑘𝑑𝑧′⏟
sub-dominant on 𝑆2

] = 𝐸𝐴𝑆1

where the first term represents the reflected wave, and the second term represents the inci-
dent wave. Since the magnitude of the incident and reflected wave is the same, the reflection
coefficient should be 1, and the absorption coefficient should be 0. (In fact, there is a transmit-
ted wave that is exponentially decay. WKBJ method cannot resolve this exponentially small
value.)

Ex.3 Bohr-Sommerfield Quantization Rule

This is the classical potential well problem, where the two boundaries are 𝑧 = 𝑧1 and 𝑧 = 𝑧2.
Schrödinger equation reads

d2Ψ
𝑑𝑧2 − 2𝑚

ℏ2 [𝐸 − 𝑉 (𝑧)]Ψ = 0

Imagine there is an potential well between 𝑧1 and 𝑧2 shown in Figure 3.6: what are the
allowable energy state?

In this case, 𝑘2 = −2𝑚
ℏ2 [𝐸 − 𝑉 (𝑧)]. Wave travelling to the right has positive 𝑘(𝑧), while wave

travelling to the left has negative 𝑘(𝑧). Following the discussion of reflection coefficient,

𝑅 = 𝑖𝑒−2𝑖∫𝑧2
0 𝑘(𝑧′)𝑑𝑧′

𝑅′ = 𝑖𝑒+2𝑖∫𝑧1
0 𝑘(𝑧′)𝑑𝑧′

For waves bouncing back and forth inside the well, we must have

𝑅𝑅′ = 1
⇒ (−1)𝑒−2𝑖∫𝑧2

𝑧1
𝑘𝑑𝑧′

= 1

⇒ ∫
𝑧2

𝑧1

𝑘(𝑧′)𝑑𝑧′ = 𝜋(𝑛 + 1
2), 𝑛 = 0, 1, 2, 3, ...

which is called the Bohr-Sommerfield quantization rule.
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Figure 3.6: Potential well.
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Another way to do this problem is by recognizing the Stokes and anti-Stokes lines in the
complex z plane and match the solution in the whole domain. Figure needed!!! As the opposite
in HW8.1%k2 .vs. z , Stokes line

𝑘2 = −2𝑚
ℏ2 [𝐸 − 𝑉 (𝑧)] ≡ −𝑝2(𝑧)(𝑧 − 𝑧1)(𝑧 − 𝑧2)

where for large z, we must choose a minus sign in front of 𝑝(𝑧) for 𝑝(𝑧) to be real and positive.
So

𝑘 = ±𝑖𝑝(𝑧)(𝑧 − 𝑧1)1/2(𝑧 − 𝑧2)1/2

Then for a single-value solution, pick

−𝜋 ≤ arg (𝑧 − 𝑧1) < 𝜋

−𝜋
2 ≤ arg (𝑧 − 𝑧2) <

3𝜋
2

For 𝑧 on 𝐴𝑆1,

𝑘(𝑧) = ±𝑖𝑝(𝑧)|𝑧 − 𝑧1|1/2𝑒𝑖
1
2 ⋅0 ⋅ |𝑧 − 𝑧2|1/2𝑒𝑖

1
2 ⋅𝜋 = ±𝑖|𝑘|𝑒𝑖 1

2𝜋 = ∓|𝑘|

For a real and positive 𝑘 (right-traveling wave), we must choose the lower sign +, so

𝑘 = −𝑖𝑝(𝑧)(𝑧 − 𝑧1)1/2(𝑧 − 𝑧2)1/2

For 𝑧 on 𝑆1,
𝑘 = −𝑖𝑝(𝑧)|𝑧 − 𝑧1|1/2|𝑧 − 𝑧2|1/2 = −𝑖|𝑘|

For 𝑧 on 𝑆4,

𝑘 = −𝑖𝑝(𝑧)|𝑧 − 𝑧1|1/2𝑒𝑖
1
2𝜋|𝑧 − 𝑧2|1/2𝑒𝑖

1
2𝜋 = 𝑖|𝑘|

So

𝑘(𝑧) =
⎧{
⎨{⎩

−𝑖|𝑘| 𝑧 > 𝑧2
|𝑘| 𝑧1 < 𝑧 < 𝑧2
𝑖|𝑘| 𝑧 < 𝑧1

(3.16)

On 𝑆1,
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Ψ𝐸𝑆1
∼ 1√

𝑘
𝑒±𝑖∫𝑧

𝑧2
𝑘𝑑𝑧′

= 1√
𝑘
𝑒−𝑖∫𝑧

𝑧2
𝑘𝑑𝑧′

such that this is sub-dominant on 𝑆1 (𝑘 = −𝑖|𝑘|).
Crossing 𝑆2 into region I, we have

Ψ𝐼 ∼ 1√
𝑘
{ 𝑒−𝑖∫𝑧

𝑧2
𝑘𝑑𝑧′⏟⏟⏟⏟⏟

dominant on 𝑆2

+𝑖 𝑒+𝑖∫𝑧
𝑧2

𝑘𝑑𝑧′⏟⏟⏟⏟⏟
subdominant on 𝑆2

} (3.17)

On 𝑆4,

Ψ𝑆4
∼ 1√

𝑘
𝑒±𝑖∫𝑧

𝑧1
𝑘𝑑𝑧′

∼ 1√
𝑘
𝑒−𝑖∫𝑧

𝑧1
𝑘𝑑𝑧′

,

where minus sign is chosen s.t. it is subdominant on 𝑆4.

Crossing 𝑆3 into region I in the clockwise direction, we have

Ψ𝐼 ∼ { 𝑒−𝑖∫𝑧
𝑧1

𝑘𝑑𝑧′⏟⏟⏟⏟⏟
dominant on 𝑆3

−𝑖 𝑒+𝑖∫𝑧
𝑧1

𝑘𝑑𝑧′⏟⏟⏟⏟⏟
subdominant on 𝑆3

}

= 1√
𝑘
{𝑒−𝑖∫𝑧

𝑧2
𝑘𝑑𝑧′

⋅ 𝑒−𝑖∫𝑧2
𝑧1

𝑘𝑑𝑧′
− 𝑖𝑒𝑖 ∫

𝑧
𝑧2

𝑘𝑑𝑧′
⋅ 𝑒𝑖 ∫

𝑧2
𝑧1

𝑘𝑑𝑧′
}

(3.18)

Because the solution is analytic, Equation 3.17 and Equation 3.18 should be equal, therefore

1
𝑒−𝑖∫𝑧2

𝑧1
𝑘𝑑𝑧′ = 𝑖

−𝑖𝑒𝑖 ∫
𝑧2
𝑧1

𝑘𝑑𝑧′

⇒𝑒2𝑖∫
𝑧2
𝑧1

𝑘𝑑𝑧′
= −1 = 𝑒𝑖(𝜋+2𝑛𝜋), 𝑛 = 0, 1, 2, 3, ...

⇒∫
𝑧2

𝑧1

𝑘𝑑𝑧′ = (12 + 𝑛)𝜋, 𝑛 = 0, 1, 2, 3, ...

Ex.4 Tunneling Problem

Instead of a potential well, now we consider another classical tunneling problem, where 𝐸 > 𝑉
if 𝑧1 < 𝑧 < 𝑧2.

𝑘2(𝑧) = ±𝑝2(𝑧)(𝑧 − 𝑧1)(𝑧 − 𝑧2) = 𝑝2(𝑧)(𝑧 − 𝑧1)(𝑧 − 𝑧2)

where the plus sign is chosen s.t. 𝑝(𝑧) is real and positive for all real z, and then
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𝑘 = 𝑝(𝑧)(𝑧 − 𝑧1)1/2(𝑧 − 𝑧2)1/2

Define arguments as follows

0 ≤ arg 𝑧 − 𝑧2 < 2𝜋, −𝜋 < arg 𝑧 − 𝑧1 ≤ 𝜋

to remove the ambiguity in the branch in the expression of 𝑘.

Since 𝑧 = 𝑧1, 𝑧 = 𝑧2 are simple turning points (with different slope in linear approximation),
the Stokes and anti-Stokes lines are shown in Figure needed!!!

The branch cut defined as above give the following values of 𝑘 on the real 𝑧 axis:

𝑘(𝑧) =
⎧{
⎨{⎩

|𝑘| 𝑧 > 𝑧2
𝑖|𝑘| 𝑧1 < 𝑧 < 𝑧2
−|𝑘| 𝑧 < 𝑧1

(3.19)

On 𝐴𝑆1, the solution

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡+𝑖∫𝑧

𝑧2
𝑘𝑑𝑧′

(3.20)

represents the outgoing wave propagating to 𝑧 = ∞.

On 𝑆2, solution Equation 3.20 behaves like 𝐸 ∼ 𝑒∫
𝑧
𝑏 |𝑘|𝑑𝑧′ which is dominant on 𝑆2 with respect

to 𝑧 = 𝑧2. Thus, on 𝑆1, it is subdominant.

On crossing 𝑆1 from 𝐴𝑆1, solution Equation 3.20 remains valid. In fact, it is valid in the
region bounded by 𝑆1, 𝑆2 and 𝑆3. Note that it is subdominant on 𝑆2 with respect to 𝑧 = 𝑧1
(because we just showed that it is dominant on 𝑆2 with respect to 𝑧 = 𝑧2). Thus, we rewrite
the solution as

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡+𝑖∫𝑧1

𝑧2
𝑘𝑑𝑧′

⋅ 𝑒𝑖 ∫
𝑧
𝑧1

𝑘𝑑𝑧′⏟
subdominant on 𝑆2𝑤.𝑟.𝑡 𝑧=𝑎

which becomes dominant on 𝑆3. Upon crossing 𝑆3, this solution becomes

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡+𝑖∫𝑧1

𝑧2
𝑘𝑑𝑧′

[ 𝑒𝑖 ∫
𝑧
𝑧1

𝑘𝑑𝑧′⏟
dominant on 𝑆3

+ 𝑖𝑒−𝑖∫𝑧
𝑧1

𝑘𝑑𝑧′⏟⏟⏟⏟⏟
subdominant on 𝑆3

]

where we pick up the Stokes constant 𝑖 and the subdominant solution, represented by the last
term of the solution.
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Now, this is the solution on 𝐴𝑆4 (𝑧 < 𝑧1). Referring to Equation 3.19, we see that the first
term of the solution represents the reflected wave, and the second term the incident wave from
𝑧 = −∞. Since the incident wave and reflected wave have equal amplitude, we have

|𝑅|2 = 1

The transmitted wave has unit amplitude (see Eq.(3.20)). The incident wave has amplitude
𝑒𝑖 ∫

𝑏
𝑎 𝑘𝑑𝑧′(𝑖). Thus,

|𝑇 |2 = 1
∣𝑒𝑖 ∫

𝑧2
𝑧1

𝑘𝑑𝑧′(𝑖)∣2
= 1

∣𝑒𝑖 ∫
𝑧2
𝑧1

𝑖|𝑘|𝑑𝑧′(𝑖)∣2
= 𝑒−2∫𝑧2

𝑧1
|𝑘|𝑑𝑧

where 𝑧1, 𝑧2 are far apart, i.e. |𝑇 |2 is exponentially small.

Note: |𝑅| and |𝑇 | above are not valid if 𝑧1, 𝑧2 are close to each other. The correct transmission
coefficient, for general valies of 𝑧1, 𝑧2 is

|𝑇 |2 = 𝑒−2∫𝑧2
𝑧1

|𝑘|𝑑𝑧

1 + 𝑒−2∫𝑧2
𝑧1

|𝑘|𝑑𝑧

and the reflection coefficient is

|𝑅|2 = 1 − |𝑇 |2

Ex.5 Two waves: one is launched from 𝑧 = +∞, incident onto a resonant layer at 𝑧 = 𝑎(𝑎 > 0),
and the other launched from 𝑧 = −∞, incident onto a absorption layer at 𝑧 = 0, with the
model equation

d2𝐸(𝑧)
𝑑𝑧 + 𝑘02(

𝑧
𝑧 − 𝑎)𝐸(𝑧) = 0

This looks like a similar case for ECRH.

𝑘2(𝑧) = 𝑘02(
𝑧

𝑧 − 𝑎) ⇒ 𝑘(𝑧) = 𝑘0𝑧1/2(𝑧 − 𝑎)−1/2

where 𝑘0 is real and positive.

Define arguments as follows

−3𝜋
2 ≤ arg 𝑧 < 𝜋

2 , −3𝜋
2 < arg 𝑧 − 𝑎 ≤ 𝜋

2
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to remove the ambiguity in the branch in the expression of 𝑘.

For 𝑧 on 𝐴𝑆1,

𝑘 = 𝑘0|𝑧|1/2𝑒−
1
20|𝑧 − 𝑎|−1/2𝑒𝑖 1

20 = |𝑘|

For 𝑧 on 𝑆1,

𝑘 = 𝑘0|𝑧|1/2𝑒−
1
20|𝑧 − 𝑎|−1/2𝑒𝑖 1

2𝜋 = 𝑖|𝑘|

For 𝑧 on 𝐴𝑆2,

𝑘 = 𝑘0|𝑧|1/2𝑒𝑖
1
2 (−𝜋)|𝑧 − 𝑎|−1/2𝑒𝑖−1

2 (−𝜋) = |𝑘|

Then the branch cut defined as above give the following values of 𝑘 on the real 𝑧 axis:

𝑘(𝑧) =
⎧{
⎨{⎩

|𝑘| 𝑧 > 𝑎
𝑖|𝑘| 0 < 𝑧 < 𝑎
|𝑘| 𝑧 < 0

(3.21)

For wave launched from large magnetic field side 𝑧 = +∞ going to 𝑧 = −∞ on 𝐴𝑆3, the
solution on 𝐴𝑆3 is (Note that even though 𝑧 is negative, it is the upper limit of the integral
and k is positive. It took me a long time to get the right sign here for a left propagating
wave.)

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡−𝑖∫𝑧

0 𝑘𝑑𝑧′

This solution behaves like

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡−𝑖∫𝑧

0 𝑖|𝑘|𝑑𝑧′ ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡+∫𝑧

0 |𝑘|𝑑𝑧′ (3.22)

on 𝑆1. Thus, it is dominant on 𝑆1 with respect to 𝑧 = 0; it is subdominant on the neighboring
Stokes line 𝑆2. Thus solution Equation 3.22 remains valid upon crosing Stokes line 𝑆2. It is
the solution in region I, bounded by 𝑆1 and 𝑆2. Since it is dominant on 𝑆1 with respect to
𝑧 = 0, it is subdominant on 𝑆1 with respect to 𝑧 = 𝑎. So we can write it as

𝐸 ∼ 1√
𝑘
𝑒−𝑖𝜔𝑡−𝑖∫𝑎

0 𝑘𝑑𝑧′ ⋅ 𝑒−𝑖∫𝑧
𝑎 𝑘𝑑𝑧′⏟

subdominant on 𝑆1 𝑤.𝑟.𝑡. 𝑧=𝑎
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which is also the incident wave from 𝑧 = 0. This is the solution in region I as well as on 𝐴𝑆1
(𝑘 = |𝑘|). So it is the incident wave solution from 𝑧 = ∞. The reflection coefficient must be
0!

The transmisson coefficient is then

|𝑇 |2 = ∣𝐸(𝑧 = −∞)
𝐸(𝑧 = ∞) ∣

2
= 1

|𝑒−𝑖∫𝑎
0 𝑘𝑑𝑧|2

= 𝑒−2∫𝑎
0 |𝑘|𝑑𝑧 = 𝑒−2∫𝑎

0 𝑘0√ 𝑧
𝑎−𝑧𝑑𝑧

Let 𝑧 = 𝑎 sin2 𝜃, we can finally have

|𝑇 |2 = 𝑒−𝑘0𝑎𝜋

The fraction of power absorbed by resonance is

1 − |𝑅|2 − |𝑇 |2 = 1 − 𝑒−𝑘0𝑎𝜋

Note: these expressions of |𝑇 |2, |𝑅|2 are valid even if 𝑎 is small.

For wave launched from low magnetic field side 𝑧 = −∞,

𝐸𝐴𝑆1
∼ 1√

𝑘
𝑒−𝑖𝜔𝑡+𝑖∫𝑧

𝑎 𝑘𝑑𝑧′

On 𝑆1, a subdominant (decaying) solution with respect to 𝑧 = 0 is

𝐸𝑆1
∼ 1√

𝑘
𝑒−𝑖𝜔𝑡+𝑖∫𝑧

0 𝑖|𝑘|𝑑𝑧′

In regions I bounded by 𝑆1, 𝑆2 and 𝐴𝑆1,

𝐸𝐼 ∼ 𝐸𝑆1

1√
𝑘
𝑒𝑖 ∫

0
𝑎 𝑘𝑑𝑧′ ⋅ 𝑒𝑖 ∫

𝑧
0 𝑘𝑑𝑧′

𝐸𝑆1
is dominant on 𝑆1 with respect to 𝑧 = 𝑎, but is subdominant on 𝑆1 with respect to

𝑧 = 0.
Crossing 𝑆2 into 𝐴𝑆2,

𝐸𝐴𝑆2
∼ 1√

𝑘
𝑒−𝑖𝜔𝑡 ⋅ 𝑒𝑖 ∫

0
𝑎 𝑘𝑑𝑧′[ 𝑒𝑖 ∫

𝑧
0 𝑘𝑑𝑧′⏟

dominant on 𝑆3

−𝑖 𝑒−𝑖∫𝑧
0 𝑘𝑑𝑧′⏟

subdominant on 𝑆3

],
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where the first term represents the reflected wave, and the second term represents the incident
wave.

The transmission coefficient is

𝑇 = ∣ 𝐸(𝑧 = ∞)
𝐸(𝑧 = −∞)∣

= ∣√𝑘(−∞)
√𝑘(∞)

∣∣ 𝑒𝑖 ∫
∞
𝑎 𝑘𝑑𝑧

𝑒𝑖 ∫
0
𝑎 𝑘𝑑𝑧 ⋅ 𝑒𝑖 ∫

−∞
0 𝑘𝑑𝑧

∣

= 1
∣𝑒𝑖 ∫

0
𝑎 𝑖|𝑘|𝑑𝑧∣

= 𝑒−∫𝑎
0 |𝑘|𝑑𝑧

Then the transmission coefficient in power is

𝑇 2 = 𝑒−2∫𝑎
0 𝑘√| 𝑧

𝑧−𝑎 |𝑑𝑧′ = 𝑒−𝑘0𝑎𝜋

where the last equivalence requires some transformation tricks. If 𝑎 ∼ 𝜆, 𝑘0 = 2𝜋/𝜆, the
transmitted power fraction is on the order of 𝑒−20 ∼ 10−9.

The reflection coefficient is zero and that the transmission coefficient (in power) is 𝑇 = 𝑒−𝑘0𝑎𝜋.
Thus, the fraction 1 − 𝑇 of the incident power is absorbed by that resonant layer.

3.11.5 “Exact” WKBJ Solution

• Shielding or tunneling

If you have a high density region between 𝑥1 and 𝑥2,

𝑘2(𝑥) = 𝜔2

𝑐2 [1 − 𝜔𝑝
2(𝑥)
𝜔2 ]

The transmission coefficient in power is

|𝑇 |2 = 𝑒−2∫𝑥2
𝑥1

|𝑘|d𝑥

1 + 𝑒−2∫𝑥2
𝑥1

|𝑘|d𝑥

and the reflection coefficient in power is

|𝑅|2 = 1
1 + 𝑒−2∫𝑥2

𝑥1
|𝑘|d𝑥
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Note:

• |𝑅|2 + |𝑇 |2 = 1
• When 𝑥1 = 𝑥2, i.e. 𝜔2 = 𝜔𝑝

2(peak), |𝑅|2 = |𝑇 |2 = 1
2 .

• ECRH

d2𝐸
𝑑𝑧2 + 𝑘02(

𝑧
𝑧 − 𝑎)𝐸 = 0

where

𝑘2(𝑧) = 𝑘02(
𝑧

𝑧 − 𝑎)

(I) Incident wave from 𝑧 = −∞ (from low 𝐵0 side)

|𝑅| = 1 − 𝑒−𝜋𝑘0𝑎

|𝑇 | = 𝑒− 1
2𝜋𝑘0𝑎

|𝑅|2 + |𝑇 |2 = 1 − 𝑒−𝜋𝑘0𝑎 + 𝑒−2𝜋𝑘0𝑎 < 1

(II) Incident wave from 𝑧 = ∞

|𝑅| = 0
|𝑇 | = 𝑒−𝜋𝑘0𝑎/2

|𝑅|2 + |𝑇 |2 = 𝑒−𝜋𝑘0𝑎 < 1

which means almost perfect absorption at 𝑧 = 𝑎.
Note: These formulas are valid even if 𝑎 → 0, in which limit |𝑅| → 0, |𝑇 | → 1, for both (I)
and (II), as expected from the model equation.

Singularity in refractive index 𝑛 can lead to absorption, even without collision.

3.12 Normalization

In physics we frequently have to deal with unit conversions. A solid understanding of the
unit system and normalization methods paves the path for understanding the scales behind
systems.
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3.13 Theoretical Mechanics

Newtonian mechanics is great, but theoretical mechanics is marvellous. It does not tell you
anything new, but let you think of the same thing from a different prospective. Theoretical
mechanics takes advantage of a system’s constraints to solve problems. The constraints limit
the degrees of freedom the system can have, and can be used to reduce the number of co-
ordinates needed to solve for the motion. The formalism is well suited to arbitrary choices
of coordinates, known in the context as generalized coordinates. The kinetic and potential
energies of the system are expressed using these generalized coordinates or momenta, and the
equations of motion can be readily set up, thus analytical mechanics allows numerous mechan-
ical problems to be solved with greater efficiency than fully vectorial methods. It does not
always work for non-conservative forces or dissipative forces like friction, in which case one
may revert to Newtonian mechanics.

3.13.1 Generalized Coordinates

In Newtonian mechanics, one customarily uses all three Cartesian coordinates, or other 3D
coordinate system, to refer to a body’s position during its motion. In physical systems, however,
some structure or other system usually constrains the body’s motion from taking certain
directions and pathways. So a full set of Cartesian coordinates is often unneeded, as the
constraints determine the evolving relations among the coordinates, which relations can be
modeled by equations corresponding to the constraints. In the Lagrangian and Hamiltonian
formalisms, the constraints are incorporated into the motion’s geometry, reducing the number
of coordinates to the minimum needed to model the motion. These are known as generalized
coordinates, denoted 𝑞𝑖 (𝑖 = 1, 2, 3...).

3.13.2 D’Alembert’s Principle

This principle is the analogy of Newton’s second law in theoretical mechanics. It states that
infinitesimal virtual work done by a force across reversible displacements is zero, which is the
work done by a force consistent with ideal constraints of the system. The idea of a constraint
is useful — since this limits what the system can do, and can provide steps to solving for the
motion of the system. The equation for D’Alembert’s principle is:

𝛿𝑊 = Q ⋅ dq = 0

where
Q = (𝑄1, 𝑄2, ..., 𝑄𝑁)

are the generalized forces (script Q instead of ordinary Q is used here to prevent conflict with
canonical transformations below) and q are the generalized coordinates. This leads to the
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generalized form of Newton’s laws in the language of theoretical mechanics:

Q = d
d𝑡(

𝜕𝑇
𝜕q̇) − 𝜕𝑇

𝜕q

where T is the total kinetic energy of the system, and the notation

𝜕
𝜕q = ( 𝜕

𝜕𝑞1
, 𝜕
𝜕𝑞2

, ..., 𝜕
𝜕𝑞𝑁

)

3.13.3 Lagrangian Mechanics

Lagrangian and Euler–Lagrange equations

The introduction of generalized coordinates and the fundamental Lagrangian function:

𝐿(q, q̇, 𝑡) = 𝑇 (q, q̇, 𝑡) − 𝑉 (q, q̇, 𝑡)

where 𝑇 is the total kinetic energy and 𝑉 is the total potential energy of the entire system,
then either following the calculus of variations or using the above formula — lead to the
Euler-Lagrange equations;

d
d𝑡(

𝜕𝐿
𝜕q̇) = 𝜕𝐿

𝜕q
which are a set of N second-order ordinary differential equations, one for each 𝑞𝑖(𝑡). This
formulation identifies the actual path followed by the motion as a selection of the path over
which the time integral of kinetic energy is least, assuming the total energy to be fixed, and
imposing no conditions on the time of transit.

3.13.4 Hamiltonian Mechanics

Hamiltonian and Hamilton’s equations

The Legendre transformation of the Lagrangian replaces the generalized coordinates and ve-
locities (q, q̇) with (q,p); the generalized coordinates and the generalized momenta conjugate
to the generalized coordinates:

p = 𝜕𝐿
𝜕q̇ = ( 𝜕𝐿

𝜕 ̇𝑞1
, 𝜕𝐿𝜕 ̇𝑞2

, , ..., 𝜕𝐿
𝜕 ̇𝑞𝑁

) = (𝑝1, 𝑝2, ..., 𝑝𝑁)

and introduces the Hamiltonian (which is in terms of generalized coordinates and momenta):

𝐻(q,p, 𝑡) = p ⋅ q̇ − 𝐿(q, q̇, 𝑡)
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This leads to the Hamilton’s equations:

ṗ = −𝜕𝐻
𝜕q , q̇ = 𝜕𝐻

𝜕p

which are now a set of 2N first-order ordinary differential equations, one for each 𝑞𝑖(𝑡) and
𝑝𝑖(𝑡). Another result from the Legendre transformation relates the time derivatives of the
Lagrangian and Hamiltonian:

𝑑𝐻
d𝑡 = −𝜕𝐿

𝜕𝑡
which is often considered one of Hamilton’s equations of motion additionally to the others.
The generalized momenta can be written in terms of the generalized forces in the same way
as Newton’s second law:

ṗ = Q

One interesting application of the Hamilton’s equation in plasma physics is the prove of Vlasov
equation (See Giulia’s notes)

𝑑𝑓(q,p, 𝑡)
d𝑡 = 0

You may also find the application in deriving the gyrokinetic equations.

3.13.5 Hamilton-Lagrange formalism vs. Lorentz equation

Two mathematically equivalent formalisms describe charged particle dynamics, namely

1. the Lorentz equation
𝑚dv

d𝑡 = 𝑞(E + v × B)

2. Hamiltonian-Lagrangian dynamics.

The two formalisms are complementary: the Lorentz equation is intuitive and suitable for
approximate methods, whereas the more abstract Hamiltonian-Lagrangian formalism exploits
time and space symmetries. A brief review of the Hamiltonian-Lagrangian formalism follows,
emphasizing aspects relevant to dynamics of charged particles.

The starting point is to postulate the existence of a function 𝐿, called the Lagrangian, which:

1. contains all information about the particle dynamics for a given situation;
2. depends only on generalized coordinates 𝑄𝑖(𝑡), �̇�𝑖(𝑡) appropriate to the problem;
3. possibly has an explicit dependence on time 𝑡.
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If such a function 𝐿(𝑄𝑖(𝑡), �̇�𝑖(𝑡), 𝑡) exists, then information on particle dynamics is retrieved
by manipulation of the action integral

𝑆 = ∫
𝑡2

𝑡1
𝐿(𝑄𝑖(𝑡), �̇�𝑖(𝑡), 𝑡)d𝑡

This manipulation is based on d’Alembert’s principle of least action. According to this prin-
ciple, one considers the infinity of possible trajectories a particle could follow to get from its
initial position 𝑄𝑖(𝑡1) to its final position 𝑄𝑖(𝑡2), and postulates that the trajectory actually
followed is the one that results in the lowest value of 𝑆. Thus, the value of 𝑆 must be mini-
mized (note that 𝑆 here is action, and not entropy). Minimizing 𝑆 does not give the actual
trajectory directly, but rather gives equations of motion, which can be solved to give the actual
trajectory.

Minimizing 𝑆 is accomplished by considering an arbitrary nearby alternative trajectory 𝑄𝑖(𝑡)+
𝛿𝑄𝑖(𝑡) having the same beginning and end points as the actual trajectory, i.e., 𝛿𝑄𝑖(𝑡1) =
𝑄𝑖(𝑡2) = 0. In order to make the variational argument more precise, 𝛿𝑄𝑖 is expressed as

𝛿𝑄𝑖(𝑡) = 𝜖𝜂𝑖(𝑡)

where 𝜖 is an arbitrarily adjustable scalar assumed to be small so that 𝜖2 < 𝜖 and 𝜂𝑖(𝑡) is a
function of 𝑡 that vanishes when 𝑡 = 𝑡1 or 𝑡 = 𝑡2 but is otherwise arbitrary. Calculating 𝛿𝑆 to
second order in 𝜖 gives

𝛿𝑆 = ∫
𝑡2

𝑡1
𝐿(𝑄𝑖 + 𝛿𝑄𝑖, �̇�𝑖 + 𝛿�̇�𝑖, 𝑡)d𝑡 −∫

𝑡2

𝑡1
𝐿(𝑄𝑖(𝑡), �̇�𝑖(𝑡), 𝑡)d𝑡

= ∫
𝑡2

𝑡1
𝐿(𝑄𝑖 + 𝜖𝜂𝑖, �̇�𝑖 + 𝜖 ̇𝜂𝑖, 𝑡)d𝑡 −∫

𝑡2

𝑡1
𝐿(𝑄𝑖(𝑡), �̇�𝑖(𝑡), 𝑡)d𝑡

= ∫
𝑡2

𝑡1
(𝜖𝜂𝑖

𝜕𝐿
𝜕𝑄𝑖

+ (𝜖𝜂𝑖)2
2

𝜕2𝐿
𝜕𝑄2

𝑖
+ 𝜖 ̇𝜂𝑖

𝜕𝐿
𝜕�̇�𝑖

+ (𝜖 ̇𝜂𝑖)2
2

𝜕2𝐿
𝜕�̇�2

𝑖
)d𝑡

Suppose the trajectory 𝑄𝑖(𝑡) is the one that minimizes 𝑆. Any other trajectory must lead
to a higher value of 𝑆 and so 𝛿𝑆 must be positive for any finite value of 𝜖. If 𝜖 is chosen to
be sufficiently small, then the absolute values of the terms of order 𝜖2 above will be smaller
than the absolute values of the terms linear in 𝜖. The sign of 𝜖 could then be chosen to make
𝛿𝑆 nagative, but this would violate the requirement that 𝛿𝑆 must be positive. The only way
out of this dilemma is to insist that the sum of the terms linear in 𝜖 vanishes so 𝛿𝑆 ∼ 𝜖2 and
is therefore always positive as required. Insisting that the sum of terms linera in 𝜖 vanishes
implies

0 = ∫
𝑡2

𝑡1
(𝜂𝑖

𝜕𝐿
𝜕𝑄𝑖

+ ̇𝜂𝑖
𝜕𝐿
𝜕�̇�𝑖

)d𝑡
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Using ̇𝜂𝑖 = d𝜂𝑖/d𝑡 the above expression may be integrated by parts to obtain

0 = ∫
𝑡2

𝑡1
(𝜂𝑖

𝜕𝐿
𝜕𝑄𝑖

+ ̇𝜂𝑖
𝜕𝐿
𝜕�̇�𝑖

)d𝑡

= [𝜂𝑖
𝜕𝐿
𝜕�̇�𝑖

]
𝑡2

𝑡1
+∫

𝑡2

𝑡1
[𝜂𝑖

𝜕𝐿
𝜕𝑄𝑖

− 𝜂𝑖
d
d𝑡 (

𝜕𝐿
𝜕�̇�𝑖

)]d𝑡

Since 𝜂𝑖(𝑡1,2) = 0, the integrated term vanishes and since 𝜂𝑖 was an arbitrary function of 𝑡, the
coefficient of i in the integrand must vanish, yielding Lagrange’s equation

d𝑃𝑖
d𝑡 = 𝜕𝐿

𝜕𝑄𝑖
(3.23)

where the canonical momentum 𝑃𝑖 is defined as

𝑃𝑖 ≡
𝜕𝐿
𝜕�̇�𝑖

(3.24)

Lagrange’s equation shows that if 𝐿 does not depend on a particular generalized coordinate
𝑄𝑗, then d𝑃𝑗/d𝑡 = 0, in which case the canonical momentum 𝑃𝑗 is a constant of motion; the
coordinate 𝑄𝑗 is called a cyclic or ignorable coordinate. This is a very powerful and profound
result. Saying that the Lagrangian function does not depend on a coordinate is equivalent
to saying that the system is symmetric in that coordinate or translationally invariant with
respect to that coordinate. The quantities 𝑃𝑗 and 𝑄𝑗 are called conjugate and action has the
dimensions of the product of these quantities.

Hamilton extended this formalism by introducing a new function related to the Lagrangian.
This new function, called the Hamiltonian, provides further useful information and is defined
as

𝐻 ≡ (∑
𝑖

𝑃𝑖�̇�𝑖)−𝐿 (3.25)

Partial derivative of 𝐻 with respect to 𝑃𝑖 and to 𝑄𝑖 give Hamilton’s equations

�̇�𝑖 =
𝜕𝐻
𝜕𝑃𝑖

, ̇𝑃𝑖 = − 𝜕𝐻
𝜕𝑄𝑖

which are equations of motion having a close relation to phase-space concepts. The time
derivative of the Hamiltonian is

d𝐻
d𝑡 = ∑

𝑖

d𝑃𝑖
d𝑡 �̇�𝑖 +∑

𝑖
𝑃𝑖

d�̇�𝑖
d𝑡 − (∑

𝑖

𝜕𝐿
𝜕𝑄𝑖

�̇�𝑖 +∑
𝑖

𝜕𝐿
𝜕�̇�𝑖

d�̇�𝑖
d𝑡 + 𝜕𝐿

𝜕𝑡 ) = −𝜕𝐿
𝜕𝑡 (3.26)
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This shows that if Ldoes not explicitly depend on time, the Hamiltonian 𝐻 is a constant of the
motion. As will be shown later, 𝐻 corresponds to the energy of the system, so if 𝜕𝐿/𝜕𝑡 = 0, the
energy is a constant of the motion. Thus, energy is conjugate to time in analogy to canonical
momentum being conjugate to position (note that energy × time also has the units of action).
If the Lagrangian does not explicitly depend on time, then the system can be thought of as
being “symmetric” with respect to time, or “translationally” invariant with respect to time.

The Lagrangian for a charged particle in an electromagnetic field is

𝐿 = 𝑚𝑣2
2 + 𝑞v ⋅ A(x, 𝑡) − 𝑞𝜙(x, 𝑡) (3.27)

The validity of Equation 3.27 will now be established by showing that it generates the Lorentz
equation when inserted into Lagrange’s equation. Since no symmetry is assumed, there is no
reason to use any special coordinate system and so ordinary Cartesian coordinates will be used
as the canonical coordinates, in which case Equation 3.24 gives the canonical momentum as

P = 𝑚v + 𝑞A(x, 𝑡)

The left-hand side of Equation 3.23 becomes

dP
d𝑡 = 𝑚dv

d𝑡 + 𝑞 (𝜕A
𝜕𝑡 + v ⋅ ∇A)

while the right-hand side of Equation 3.23 becomes

𝜕𝐿
𝜕x = 𝑞∇(v ⋅ A) − 𝑞∇𝜙 = 𝑞(v ⋅ ∇A + v ×∇× A) − 𝑞∇𝜙

= 𝑞(v ⋅ ∇A + v × B) − 𝑞∇𝜙

Equating the above two expressions gives the Lorentz equation, where the electric field is
defined as E = −𝜕A/𝜕𝑡−∇𝜙 in accordance with Faraday’s law. This proves that Equation 3.27
is mathematically equivalent to the Lorentz equation when used with the principle of least
action.

The Hamiltonian associated with this Lagrangian is, in Cartesian coordinates,

𝐻 = P ⋅ v − 𝐿 = 𝑚𝑣2
2 + 𝑞𝜙

= (P − 𝑞A(x, 𝑡))2
2𝑚 + 𝑞𝜙(x, 𝑡)

(3.28)

where the last line is the form more suitable for use with Hamilton’s equations, i.e., 𝐻 =
𝐻(x,P, 𝑡). Equation 3.28 also shows that 𝐻 is, as promised, the particle energy. If gener-
alized coordinates are used, the energy can be written in a general form as 𝐸 = 𝐻(𝑄,𝑃 , 𝑡).
Equation 3.26 showed that even though both 𝑄 and 𝑃 depend on time, the energy depends
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on time only if 𝐻 explicitly depends on time. Thus, in a situation where 𝐻 does not explicitly
depend on time, the energy would have the form 𝐸 = 𝐻(𝑄(𝑡), 𝑃 (𝑡)) = const.

It is important to realize that both canonical momentum and energy depend on the reference
frame. For example, a bullet fired in an airplane in the direction opposite to the airplane
motion, and with a speed equal to the airplane’s speed, has a large energy as measured in the
airplane frame, but zero energy as measured by an observer on the ground. A more subtle
example (of importance to later analysis of waves and Landau damping) occurs when A and/or
𝜙 has a wave-like dependence, e.g., 𝜙(x, 𝑡) = 𝜙(x−vph𝑡), where vph is the wave phase velocity.
This potential is time-dependent in the lab frame and so the associated Lagrangian has an
explicit dependence on time in the lab frame, which implies that energy is not a constant of
the motion in the lab frame. In contrast, 𝜙 is time-independent in the wave frame and so the
energy is a constant of the motion in the wave frame. Existence of a constant of the motion
reduces the complexity of the system of equations and typically makes it possible to integrate
at least one equation in closed form. Thus, it is advantageous to analyze the system in the
frame having the most constants of the motion.

3.14 Wavelet Analysis

Wavelet Transform (WT) decomposes a function into a set of wavelets. A Wavelet is a wave-like
oscillation that is localized in time. Two basic properties of a wavelet are scale and location.

Wavelet is a predecessor of Fourier Tranform (FT), which provides better results when dealing
with changing background. It is the de-facto method for modern wave analysis. The key
advantages of WT compared with FT are:

• Fewer “hard” parameters to tune in WT. For example, if you want to make a spectrogram
with FT, you need to specify the size of local DFTs. In WT you do not need to worry
about this; instead the validity of the result can be shown by the cone of influence. In
a sense, FT makes immediate conversion from time to frequency domain, while WT let
you choose the intermediate steps you wish for.

• Flexible forms of wavelets to choose from. In practice, if you have any prior knowledge
to the signal you want to identify, you can find for an appropriate wavelet that is close
to that shape, which gives better fitting compared to the sinuisoidal functions in FT.

Check the notes from my blog and the references therein.
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4 Single-Particle Motions

What makes plasmas particularly difficult to analyze is the fact that the densities fall in an
intermediate range. Fluids like water are so dense that the motions of individual molecules
do not have to be considered. Collisions dominate, and the simple equations of ordinary
fluid dynamics suffice. At the other extreme in very low-density devices, only single-particle
trajectories need to be considered; collective effects are often unimportant. Plasma behaves
sometimes like fluids, and sometimes like a collection of individual particles. The first step in
learning how to deal with this schizophrenic personality is to understand how single particles
behave in electric and magnetic fields.

Single particle motion in neutral gases is trivial – particles move in straight lines until they
hit other particles or the wall. Because of this simplicity, there is no point in keeping track
of the details of single particle motion in a neutral gas and instead a statistical averaging of
this motion suffices; this averaging shows that neutral gases have Maxwellian velocity distribu-
tions and are in a local thermodynamic equilibrium. In contrast, plasma particles are nearly
collisionless and typically have complex trajectories that are strongly affected by both electric
and magnetic fields.

As what will be shown in Section 8.2.5, the velocity distribution in a plasma will become
Maxwellian when enough collisions have occurred to maximize the entropy. However, since
collisions occur infrequently in hot plasmas, many important phenomena have time scales
shorter than the time required for the plasma velocity distribution to become Maxwellian. A
collisionless model is thus required to characterize these fast phenomena. In these situations
randomization does not occur, entropy is conserved, the distribution function need not be
Maxwellian, and the plasma is not in thermodynamic equilibrium. Thermodynamic concepts
therefore do not apply, and the plasma is instead characterized by concepts from classical me-
chanics such as momentum or energy conservation of individual particles. In these collisionless
situations the complex details of single particle dynamics are not washed out by collisions but
instead persist and influence the macroscopic scale. As an example, the cyclotron resonance
of a single particle can be important at the macroscopic scale in a collisionless plasma. This
chapter examines various aspects of single particle motion and shows how these aspects can
influence the macroscopic properties of a plasma.

Furthermore, study of single particle dynamics has a very direct relevance to Vlasov theory
because, as shown in Section 8.3.1, any function constructed from constants of single particle
motion is a valid solution of the collisionless Vlasov equation. Thus, knowledge of single
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particle dynamics provides a “repertoire” of constants of the motions from which solutions to
the Vlasov equation suitable for various situations can be constructed.

Finally, the study of single particle motion develops valuable intuition regarding wave–particle
interactions and identifies certain unusual situations, such as stochastic or non-adiabatic par-
ticle motion, that are beyond the descriptive capability of fluid models.

Here we assume that the EM fields are prescribed and not affected by the charged particles.
The associated approach is often called test particle. Alternatively, we can say that it is possible
to deduce intuitive and quite accurate analytic solutions for the drift of charged particles in
arbitrarily complicated electric and magnetic fields provided the field are slowly changing in
both space and time (this requirement is essentially the slowness requirement for adiabatic
invariance introduced in Section 4.8). Drift solutions are obtained by solving the Lorentz
equation

𝑚dv
d𝑡 = 𝑞 (E + v × B) (4.1)

iteratively, taking advantage of the assumed separation of scales between fast and slow mo-
tions.

When relativity is considered, the Lorentz equation becomes
dp
d𝑡 = 𝑞 (E + v × B) (4.2)

where p = 𝛾𝑚v is the relativistic momentum and 𝛾 = (1 − 𝑣2/𝑐2)−1/2 the Lorentz factor. The
rest mass of an electron is 𝑚𝑒 = 511 keV/𝑐2 and of a proton 𝑚𝑝 = 938MeV/𝑐2.

4.1 Uniform E and B Fields

The convention here is that velocity v represents single particle velocity as you will see through
most of this chapter.

4.1.1 E=0

In this case, a charged particle has a simple cyclotron gyration. The equation of motion is

𝑚dv
d𝑡 = 𝑞v × B

Taking ̂𝑧 to be the direction of B (B = 𝐵 ̂𝑧), we have
𝑚 ̇𝑣𝑥 = 𝑞𝐵𝑣𝑦, 𝑚 ̇𝑣𝑦 = −𝑞𝐵𝑣𝑥, 𝑚 ̇𝑣𝑧 = 0,

̈𝑣𝑥 = 𝑞𝐵
𝑚 ̇𝑣𝑦 = −(𝑞𝐵𝑚 )

2
𝑣𝑥

̈𝑣𝑦 = 𝑞𝐵
𝑚 ̇𝑣𝑥 = −(𝑞𝐵𝑚 )

2
𝑣𝑦
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This describes a simple harmonic oscillator at the cyclotron frequency, which we define to be

𝜔𝑐 ≡ |𝑞|𝐵
𝑚

By the convention we have chosen, 𝜔𝑐 is always nonnegative. The solution of velocity is then

𝑣𝑥,𝑦 = 𝑣⟂ exp(±𝑖𝜔𝑐𝑡 + 𝑖𝛿𝑥,𝑦)

The ± denote the sign of q. We may choose the phase 𝛿 so that

𝑣𝑥 = 𝑣⟂𝑒𝑖𝜔𝑐𝑡 = ̇𝑥
where 𝑣⟂ is a positive constant denoting the speed in the plane perpendicular to B. Then

𝑣𝑦 = 𝑚
𝑞𝐵 ̇𝑣𝑥 = ± 1

𝜔𝑐
̇𝑣𝑥 = ±𝑖𝑣⟂𝑒𝑖𝜔𝑐𝑡 = ̇𝑦

Integrating once again, we have
𝑥 − 𝑥0 = −𝑖𝑣⟂𝜔𝑐

𝑒𝑖𝜔𝑐𝑡

𝑦 − 𝑦0 = ±𝑖𝑣⟂𝜔𝑐
𝑒𝑖𝜔𝑐𝑡

We define the Larmor radius to be

𝑟𝐿 ≡ 𝑣⟂
𝜔𝑐

= 𝑚𝑣⟂
|𝑞|𝐵 (4.3)

Note that 2𝜋 does not appear in Equation 4.3!

Taking the real part of the positions, we have

𝑥 − 𝑥0 = 𝑟𝐿 sin𝜔𝑐𝑡
𝑦 − 𝑦0 = ±𝑟𝐿 cos𝜔𝑐𝑡

This describes a circular orbit about a guiding center (𝑥0, 𝑦0) which is fixed. The direction of
the gyration is always such that the magnetic field generated by the charged particle is opposite
to the externally imposed field. Plasma particles, therefore, tend to reduce the magnetic field,
and plasmas are diamagnetic. In addition to this motion, there is an arbitrary velocity 𝑣𝑧 along
B which is not affected by B. The trajectory of a charged particle in space is, in general, a helix.
Looking along (against) the magnetic field, the particle rotating clockwise (anticlockwise) has
a negative charge. In plasma physics this is the convention of right-handedness.

The unit of 𝜔𝑐 in SI units is rad/s. To convert it to hertz, we need to divide it by 2𝜋. The
corresponding oscillation frequencies 𝑓𝑐𝛼 = 𝜔𝑐𝛼/(2𝜋) of electrons and protons are

𝑓𝑐𝑒[Hz] = 28𝐵[nT]
𝑓𝑐𝑝[Hz] = 0.015𝐵[nT]
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4.1.2 Finite E

If now we allow an electric field to be present, the motion will be found to be the sum of two
motions: the usual circular Larmor gyration plus a drift of the guiding center. The assumed
spatial uniformity and time-independence of the fields represent the extreme limit of assuming
that the fields are slowly changing in space and time. We may choose E to lie in the x-z
plane so that 𝐸𝑦 = 0. As before, the z component of velocity is unrelated to the transverse
components and can be treated separately. The equations of motion is now

𝑚v̇ = 𝑞(E + v × B)

whose z component is
̇𝑣𝑧 = 𝑞

𝑚𝐸𝑧

or
𝑣𝑧 = 𝑞𝐸𝑧

𝑚 𝑡 + 𝑣𝑧0

This is a straightforward acceleration along B. The transverse components are

̇𝑣𝑥 = 𝑞
𝑚𝐸𝑥 ± 𝜔𝑐𝑣𝑦

̇𝑣𝑦 = 0 ∓ 𝜔𝑐𝑣𝑥

Differentiating, we have (for constant E)

̈𝑣𝑥 = −𝜔2
𝑐𝑣𝑥

̈𝑣𝑦 = ∓𝜔𝑐(
𝑞
𝑚𝐸𝑥 ± 𝜔𝑐𝑣𝑦) = −𝜔2

𝑐(𝑣𝑦 + 𝐸𝑥
𝐵 )

We can write this as
d2

d𝑡2(𝑣𝑦 + 𝐸𝑥
𝐵 ) = −𝜔2

𝑐(𝑣𝑦 + 𝐸𝑥
𝐵 )

so that it reduces to the previous case if we replace 𝑣𝑦 by 𝑣𝑦 + (𝐸𝑥/𝐵). The velocity solution
is then replaced by

𝑣𝑥 = 𝑣⟂𝑒𝑖𝜔𝑐𝑡

𝑣𝑦 = ±𝑣⟂𝑒𝑖𝜔𝑐𝑡 − 𝐸𝑥
𝐵

The Larmor motion is the same as before, but there is superimposed a drift v𝑔𝑐 of the guiding
center in the −𝑦 direction (for 𝐸𝑥 > 0).
To obtain a general formula for v𝑔𝑐, we can solve the momentum equation in vector form. We
may omit the 𝑚dv/d𝑡 term, since this term gives only the circular motion at 𝜔𝑐, which we
already know about. Then the momentum equation becomes

E + v × B = 0
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Taking the cross product with B, we have

E × B = B × (v × B) = v𝐵2 − B(v ⋅ B)

The transverse components with respect to B of this equation are

v𝑔𝑐 = E × B/𝐵2 ≡ v𝐸

We define this to be v𝐸, the electric field drift of the guiding center. In magnitude, this drift
is

𝑣𝐸 = 𝐸(V/m)
𝐵(tesla)

m
sec

It is important to note that v𝐸 is independent of q, m, and 𝑣⟂. The reason is obvious from
the following physical picture. In the first half-cycle of the ion’s orbit, it gains energy from the
electric field and increases in 𝑣⟂ and, hence, in 𝑟𝐿. In the second half-cycle, it loses energy and
decreases in 𝑟𝐿. This difference in 𝑟𝐿 on the left and right sides of the orbit causes the drift
𝑣𝐸. A negative electron gyrates in the opposite direction but also gains energy in the opposite
direction; it ends up drifting in the same direction as an ion. For particles of the same velocity
but different mass, the lighter one will have smaller 𝑟𝐿 and hence drift less per cycle. However,
its gyration frequency is also larger, and the two effects exactly cancel. Two particles of the
same mass but different energy would have the same 𝜔𝑐. The slower one will have smaller 𝑟𝐿
and hence gain less energy from E in a half-cycle. However, for less energetic particles the
fractional change in 𝑟𝐿 for a given change in energy is larger, and these two effects cancel.
Another way of interpreting this behavior is to recall that according to the theory of special
relativity the electric field E′ observed in a frame moving with velocity u is E′ = E + u × B
and so v𝐸 is simply a statement that a particle drifts in such a way to ensure that the electric
field seen in its own frame vanishes.

The three-dimensional orbit in space for a charged particle with a nonzero initial velocity is
therefore a slanted helix with changing pitch. The pitch angle is defined as

𝛼 = arctan 𝑣⟂
𝑣∥

= arcsin 𝑣⟂
𝑣 = arccos

𝑣∥
𝑣 (4.4)

4.1.3 Gravitational Field

The foregoing result can be applied to other forces by replacing 𝑞E in the equation of motion
by a general force F. The guiding center drift caused by F is then

v𝑓 = 1
𝑞

F × B
𝐵2

85



In particular, if F is the force of gravity 𝑚g, there is a drift

v𝑔 = 𝑚
𝑞

g × B
𝐵2 (4.5)

This is similar to the drift v𝐸 in that it is perpendicular to both the force and B, but it
differs in one important respect. The drift v𝑔 changes sign with the particle’s charge. Under
a gravitational force, ions and electrons drift in opposite directions, so there is a net current
density in the plasma given by

j = 𝑛(𝑚𝑖 +𝑚𝑒)
g × B
𝐵2

The physical reason for this drift is again the change in Larmor radius as the particle gains
and loses energy in the gravitational field. Now the electrons gyrate in the opposite sense to
the ions, but the force on them is in the same direction, so the drift is in the opposite direction.
The magnitude of v𝑔 is usually negligible, but when the lines of force (i.e. magnetic field lines)
are curved, there is an effective gravitational force due to centrifugal force. This force, which
is not negligible, is independent of mass; this is why we did not stress the m dependence of
the drift here. Centrifugal force is the basis of a plasma instability called the “gravitational”
instability, which has nothing to do with real gravity.

And now it shall be clear that the E×B drift analysis can be easily generalized to describe the
effect on a charged particle of any force orthogonal to B by simply making the replacement
E → F/𝑞 in the Lorentz equation. Thus, any spatially uniform, temporally constant force
orthogonal to B will cause a drift

v𝐹 = F × B
𝑞𝐵2

which leads to two counter-intuitive and important conclusions:

1. A steady-state electric field perpendicular to a magnetic field does not drive currents in
a plasma, but instead causes a bulk motion of the entire plasma across the magnetic field
with the velocity v𝐸.

2. A steady-state force (e.g., gravity, centrifugal force, etc.) perpendicular to the magnetic
field causes oppositely directed motions for electrons and ions and so drives a cross-field
current

j𝐹 = ∑
𝜎

𝑛𝜎
F × B
𝐵2

4.2 Nonuniform B Field

Now that the concept of a guiding center drift is firmly established, we can discuss the motion
of particles in inhomogeneous fields — E and B fields which vary in space or time. For uniform
fields we were able to obtain exact expressions for the guiding center drifts. As soon as we
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introduce inhomogeneity, the problem becomes too complicated to solve exactly. To get an
approximate answer, it is customary to expand in the small ratio 𝑟𝐿/𝐿, where L is the scale
length of the inhomogeneity. This type of theory, called orbit theory, can become extremely
involved. We shall examine only the simplest cases, where only one inhomogeneity occurs at
a time.

4.2.1 �B � B: Grad-B Drift

Here the magnetic field lines are straight, but their density increases, say, in the y direction.
We can anticipate the result by using our simple physical picture. The gradient in |B| causes
the Larmor radius to be larger at the bottom of the orbit than at the top, and this should
lead to a drift, in opposite directions for ions and electrons, perpendicular to both B and ∇𝐵.
The drift velocity should obviously be proportional to 𝑟𝐿/𝐿 and to 𝑣⟂.

Consider the Lorentz force F = 𝑞v × B, averaged over a gyration. Clearly, ̄𝐹𝑥 = 0, since the
particle spends as much time moving up as down. We wish to calculate ̄𝐹𝑦, in an approximate
fashion, by using the undisturbed orbit of the particle to find the average. The undisturbed
orbit is given by the solution in the first section for a uniform B field. Taking the real part of
the solution for 𝑣𝑥 and 𝑦, we have

𝐹𝑦 = −𝑞𝑣𝑥𝐵𝑧(𝑦) = −𝑞𝑣⟂(cos𝜔𝑐𝑡)[𝐵0 ± 𝑟𝐿(cos𝜔𝑐𝑡)
𝜕𝐵
𝜕𝑦 ]

where we have made a Taylor expansion of B field about the point 𝑥0 = 0, 𝑦0 = 0

B = B0 + (r ⋅ ∇)B + ...
𝐵𝑧 = 𝐵0 + 𝑦(𝜕𝐵𝑧/𝜕𝑦) + ...

This expansion of course requires 𝑟𝐿/𝐿 ≪ 1, where L is the length scale of 𝜕𝐵𝑧/𝜕𝑦. The first
term above averages to zero in a gyration, and the average of cos2 𝜔𝑐𝑡 is 1/2, so that

̄𝐹𝑦 = ∓𝑞𝑣⟂𝑟𝐿
1
2
𝜕𝐵
𝜕𝑦

The guiding center drift velocity is then

v𝑔𝑐 = 1
𝑞

F × B
𝐵2 = 1

𝑞
̄𝐹𝑦

|𝐵| ̂𝑥 = ∓𝑣⟂𝑟𝐿
𝐵

1
2
𝜕𝐵
𝜕𝑦 ̂𝑥

where we have used the formula shown previously. Since the choice of the y axis was arbitrary,
this can be generalized to

v∇𝐵 = ±1
2𝑣⟂𝑟𝐿

B ×∇𝐵
𝐵2
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This has all the dependences we expected from the physical picture; only the factor 1
2 (arising

from the averaging) was not predicted. Note that the ± stands for the sign of the charge,
and lightface 𝐵 stands for |𝐵|. The quantity v∇𝐵 is called the grad-B drift; it is in opposite
directions for ions and electrons and causes a current transverse to B. An exact calculation of
v∇𝐵 would require using the exact orbit, including the drift, in the averaging process.

4.2.2 Curved B: Curvature Drift

Here we assume the magnetic field lines to be curved with a constant radius of curvature 𝑅𝑐,
and we take |𝐵| to be constant. Such a field does not obey Maxwell’s equations in a vacuum,
so in practice the grad-B drift will always be added to the effect derived here. A guiding
center drift arises from the centrifugal force felt by the particles as they move along the field
lines in their thermal motion. If 𝑣2∥ denotes the average square of the component of random
velocity along B, and R𝑐 denotes the radius of curvature vector from the center to the curve,
the average centrifugal force is

F𝑐𝑓 =
𝑚𝑣2∥
𝑅𝑐

̂𝑟 = 𝑚𝑣2∥
R𝑐
𝑅2𝑐

According to the guiding center drift formula, this gives rise to a drift

v𝑅 = 1
𝑞

F𝑐𝑓 × B
𝐵2 =

𝑚𝑣2∥
𝑞𝐵2

R𝑐 × B
𝑅2𝑐

The drift v𝑐 is called the curvature drift.

We must now compute the grad-B drift which accompanies this when the decrease of |𝐵| with
radius is taken into account. In a vacuum, we have ∇×B = 0 (current-free). In the cylindrical
coordinates, ∇×B only has a 𝑧 component, since B has only a 𝜃 component and ∇𝐵 only an
𝑟 component. We then have

(∇ × B)𝑧 = 1
𝑟
𝜕
𝜕𝑟(𝑟𝐵𝜃) = 0, 𝐵 ∝ 1

𝑟

Thus
|𝐵| ∝ 1

𝑅𝑐
, ∇𝐵

𝐵 = −R𝑐
𝑅2𝑐

(4.6)

Using the expression of the grad-B drift, we have

v∇𝐵 = ∓1
2
𝑣⟂𝑟𝐿
𝐵2 B × R𝑐

𝑅2𝑐
= ±1

2
𝑣2⟂
𝜔𝑐

R𝑐 × B
𝑅2𝑐𝐵

= 1
2
𝑚
𝑞 𝑣2⟂

R𝑐 × B
𝑅2𝑐𝐵2
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Adding this to v𝑐 , we have the total drift in a curved vacuum field

v𝑐 + v∇𝐵 = 𝑚
𝑞

R𝑐 × B
𝑅2𝑐𝐵2 (𝑣2∥ + 1

2𝑣
2
⟂)

or with just the magnetic field

v𝑐 + v∇𝐵 = 𝑚
𝑞

B ×∇𝐵
𝐵3 (𝑣2∥ + 1

2𝑣
2
⟂) (4.7)

or if the kinetic energy 𝑊 and pitch angle 𝜃 are involved

v𝑐 + v∇𝐵 = B ×∇𝐵
𝑞𝐵3 (2𝑊 cos2 𝜃 +𝑊 sin2 𝜃) = B ×∇𝐵

𝑞𝐵3 (1 +𝑊 cos2 𝜃) (4.8)

It is unfortunate that these drifts add. This means that if one bends a magnetic field into a
torus for the purpose of confining a thermonuclear plasma, the particles will drift out of the
torus no matter how one juggles the temperatures and magnetic fields.

For a Maxwellian distribution, ̄𝑣2∥ and 1
2

̄𝑣2⟂ are each equal to 𝑘𝐵𝑇/𝑚, since 𝑣⟂ involves two
degrees of freedom. Then the average curved-field drift can be written as

v̄𝑐+∇𝐵 = ± 𝑣2𝑡ℎ
𝑅𝑐𝜔𝑐

̂𝑦 = ± ̄𝑟𝐿
𝑅𝑐

𝑣𝑡ℎ ̂𝑦

where ̂𝑦 here is the direction of 𝑅𝑐 × B. This shows that v̄𝑐+∇𝐵 depends on the charge of the
species but not on its mass.

If current exists and we cannot assume ∇ × B = 0, we rely on the original definition of
curvature radius

̂𝑟
𝑅𝑐

= R𝑐
𝑅2𝑐

= − ̂𝑏 ⋅ ∇ ̂𝑏 (4.9)

Then the curvature drift can be written as

v𝑅 =
𝑚𝑣2∥
𝑞𝐵2

R𝑐 × B
𝑅2𝑐

=
𝑚𝑣2∥
𝑞𝐵4 B × [B ⋅ ∇B] (4.10)

The equivalence of Equation 4.7 and Equation 4.10 can be verified by using the equality1

B × (����∇× B) = (∇B) ⋅ B − (B ⋅ ∇)B
(B ⋅ ∇)B = (∇B) ⋅ B = 𝐵∇𝐵

1The last equality can be checked by writing out each component of B.
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4.2.3 �B � B: Magnetic Mirrors

Now we consider a magnetic field which is pointed primarily in the z direction and whose
magnitude varies in the z direction. Let the field be axisymmetric, with 𝐵𝜃 = 0 and 𝜕/𝜕𝜃 = 0.
Since the magnetic field lines converge and diverge, there is necessarily a component 𝐵𝑟. We
wish to show that this gives rise to a force which can trap a particle in a magnetic field.

We can obtain 𝐵𝑟 from ∇ ⋅ B = 0:

1
𝑟
𝜕
𝜕𝑟(𝑟𝐵𝑟) +

𝜕𝐵𝑧
𝜕𝑧 = 0

If 𝜕B𝑧/𝜕𝑧 is given at 𝑟 = 0 and does not vary much with r, we have approximately

𝑟𝐵𝑟 = −∫
𝑟

0
𝑟𝜕𝐵𝑧
𝜕𝑧 𝑑𝑟 ≃ −1

2𝑟
2[𝜕B𝑧

𝜕𝑧 ]
𝑟=0

𝐵𝑟 = −1
2𝑟[

𝜕B𝑧
𝜕𝑧 ]

𝑟=0

The variation of |𝐵| with r causes a grad-B drift of guiding centers about the axis of symmetry,
but there is no radial grad-B drift, because 𝜕𝐵/𝜕𝜃 = 0. The components of the Lorentz force
are

𝐹𝑟 = 𝑞(𝑣𝜃𝐵𝑧⏟
1

−𝑣𝑧��𝐵𝜃)

𝐹𝜃 = 𝑞( − 𝑣𝑟𝐵𝑧⏟
2

+𝑣𝑧𝐵𝑟⏟
3

)

𝐹𝑧 = 𝑞(𝑣𝑟��𝐵𝜃 − 𝑣𝜃𝐵𝑟⏟
4

)

Two terms vanish if 𝐵𝜃 = 0, and terms 1 and 2 give rise to the usual Larmor gyration. Term 3
vanishes on the axis; when it does not vanish, this azimuthal force causes a drift in the radial
direction. This drift merely makes the guiding centers follow the magnetic field lines. Term 4
is the one we are interested in. Using the expression of 𝐵𝑟, we have

𝐹𝑧 = 1
2𝑞𝑣𝜃𝑟𝐿

𝜕𝐵𝑧
𝜕𝑧

We must now average over one gyration. For simplicity, consider a particle whose guiding
center lies on the axis. Then 𝑣𝜃 is a constant during a gyration; depending on the sign of q,
𝑣𝜃 is ∓𝑣⟂. Since 𝑟 = 𝑟𝐿 , the average force is

̄𝐹𝑧 = ∓1
2𝑞𝑣⟂𝑟𝐿

𝜕𝐵𝑧
𝜕𝑧 = ∓1

2𝑞
𝑣2⟂
𝜔𝑐

𝜕𝐵𝑧
𝜕𝑧 = −1

2
𝑚𝑣2⟂
𝐵

𝜕𝐵𝑧
𝜕𝑧
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We define the magnetic moment of the gyrating particle to be

𝜇 ≡ 1
2𝑚𝑣2⟂/𝐵

so that
̄𝐹𝑧 = −𝜇𝜕𝐵𝑧

𝜕𝑧

This is a specific example of the force on a diamagnetic particle, which in general can be
written

F∥ = −𝜇𝜕𝐵
𝜕s = −𝜇∇∥𝐵

where ds is a line element along B. Note that the definition of magnetic moment here is
the same as the usual definition for the magnetic moment of a current loop with area A and
current I: 𝜇 = 𝐼𝐴. In the case of a singly charged ion, I is generated by a charge e coming
around 𝜔𝑐/2𝜋 times a second: 𝐼 = 𝑒𝜔𝑐/2𝜋. The area A is 𝜋𝑟2𝐿 = 𝜋𝑟2𝐿/𝜔2

𝑐 . Thus

𝜇 = 𝑒𝜔𝑐
2𝜋

𝜋𝑟2𝐿
𝜔2𝑐

= 1
2
𝑣2⟂𝑒
𝜔𝑐

= 1
2
𝑚𝑣2⟂
𝐵

As the particle moves into regions of stronger or weaker B, its Larmor radius changes, but
� remains invariant. To prove this, consider the component of the equation of motion along
B:

𝑚
d𝑣∥
d𝑡 = −𝜇𝜕𝐵

𝜕𝑠

Multiplying by 𝑣∥ on the left and its equivalent 𝑑𝑠/d𝑡 on the right, we have

𝑚𝑣∥
d𝑣∥
d𝑡 = d

d𝑡(
1
2𝑚𝑣2∥) = −𝜇𝜕𝐵

𝜕𝑠
𝑑𝑠
d𝑡 = −𝜇d𝐵

d𝑡

Here d𝐵/d𝑡 is the variation of 𝐵 as seen by the particle; 𝐵 itself is constant. The particle’s
energy must be conserved, so we have

d
d𝑡(

1
2𝑚𝑣2∥ + 1

2𝑚𝑣2⟂) = d
d𝑡(

1
2𝑚𝑣2∥ + 𝜇𝐵) = 0

With the previous equation this becomes

−𝜇d𝐵
d𝑡 + d

d𝑡(𝜇𝐵) = 0

so that
d𝜇
d𝑡 = 0

91



The invariance of 𝜇 is the basis for one of the primary schemes for plasma confinement: the
magnetic mirror. As a particle moves from a weak-field region to a strong-field region in the
course of its thermal motion, it sees an increasing B, and therefore its 𝑣⟂ must increase in
order to keep � constant. Since its total energy must remain constant, 𝑣∥ must necessarily
decrease. If B is high enough in the “throat” of the mirror, 𝑣∥ eventually becomes zero; and
the particle is “reflected” back to the weak-field region. It is, of course, the force F∥ which
causes the reflection. The nonuniform field of a simple pair of coil form two magnetic mirrors
between which a plasma can be trapped. This effect works on both ions and electrons.

The trapping is not perfect, however. For instance, a particle with 𝑣⟂ = 0 will have no
magnetic moment and will not feel any force along B. A particle with small 𝑣⟂/𝑣∥ at the
midplane (𝐵 = 𝐵0) will also escape if the maximum field 𝐵𝑚 is not large enough. For given
𝐵0 and 𝐵𝑚, which particles will escape? A particle with 𝑣⟂ = 𝑣⟂0 and 𝑣∥ = 𝑣∥0 at the
midplane will have 𝑣⟂ = 𝑣′⟂ and 𝑣∥ = 0 at its turning point. Let the field be 𝐵′ there. Then
the invariants of 𝜇 yields

1
2
𝑚𝑣2⟂0
𝐵0

= 1
2
𝑚𝑣′⟂0

2

𝐵′

Conservation of energy requires

𝑣′⟂0
2 = 𝑣2⟂0 + 𝑣2∥0 ≡ 𝑣20

Combining the above two equations, we find

𝐵0
𝐵′ = 𝑣2⟂0

𝑣′⟂
2 ≡ sin2 𝜃

where 𝜃 is the pitch angle of the orbit in the weak-field region. Particles with smaller � will
mirror in regions of higher B. If � is too small, 𝐵′ exceeds 𝐵𝑚; and the particles does not
mirror at all. Replacing 𝐵′ by 𝐵𝑚, we see that the smallest 𝜃 of a confined particle is given
by

sin2 𝜃𝑚 = 𝐵0
𝐵𝑚

≡ 1
𝑅𝑚

where 𝑅𝑚 is the mirror ratio. It defines the boundary of a region in velocity space in the shape
of a cone, called a loss cone. Particles lying within the loss cone are not confined. Consequently,
a mirror-confined plasma is never isotropic. Note that the loss cone is independent of q or
m. Without collisions, both ions and electrons are equally well confined. When collisions
occur, particles are lost when they change their pitch angle in a collision and are scattered into
the loss cone. Generally, electrons are lost more easily because they have a higher collision
frequency.

The magnetic mirror was first proposed by Enrico Fermi as a mechanism for the acceleration
of cosmic rays. Protons bouncing between magnetic mirrors approaching each other at high
velocity could gain energy at each bounce. How such mirrors could arise is another story. A
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further example of the mirror effect is the confinement of particles in the Van Allen belts. The
magnetic field of the earth, being strong at the poles and weak at the equator, forms a natural
mirror with rather large 𝑅𝑚.

4.3 Nonuniform E Field

Now we let the magnetic field be uniform and the electric field be nonuniform. For simplicity,
we assume E to be in the x direction and to vary sinusoidally in the x direction:

E ≡ 𝐸0(cos 𝑘𝑥) ̂𝑥

This field distribution has a wavelength 𝜆 = 2𝜋/𝑘, and is the result of a sinusoidal distribution
of charges, which we need not specify. In practice, such a charge distribution can arise in a
plasma during a wave motion. The equation of motion is

𝑚dv
d𝑡 = 𝑞[E(𝑥) + v × B]

whose transverse components are

̇𝑣𝑥 = 𝑞𝐵
𝑚 𝑣𝑦 + 𝑞

𝑚𝐸𝑥(𝑥)

̇𝑣𝑦 = −𝑞𝐵
𝑚 𝑣𝑥

̈𝑣𝑥 = −𝜔2
𝑐𝑣𝑥 ± 𝜔𝑐

̇𝐸𝑥
𝐵

̈𝑣𝑦 = −𝜔2
𝑐𝑣𝑦 − 𝜔2

𝑐
𝐸𝑥(𝑥)
𝐵

Here 𝐸𝑥(𝑥) is the electric field at the position of the particle. To evaluate this, we need to
know the particle’s orbit, which we are trying to solve for in the first place. If the electric field
is weak, we may, as an approximation, use the undisturbed orbit to evaluate 𝐸𝑥(𝑥). The orbit
in the absence of the E field was given before

𝑥 = 𝑥0 + 𝑟𝐿 sin𝜔𝑐𝑡

so we have
̈𝑣𝑦 = −𝜔2

𝑐𝑣𝑦 − 𝜔2
𝑐
𝐸0
𝐵 cos 𝑘(𝑥0 + 𝑟𝐿 sin𝜔𝑐𝑡)

Anticipating the result, we look for a solution which is the sum of a gyration at 𝜔𝑐 and a steady
drift v𝐸. Since we are interested in finding an expression for 𝑣𝐸, we take out the gyratory
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motion by averaging over a cycle. The 𝑣𝑥 component then gives ̄𝑣𝑥 = 0.2 In the 𝑣𝑦 component,
the oscillating term ̈𝑣𝑦 clearly averages to zero, and we have

̄̈𝑣𝑦 = 0 = −𝜔2
𝑐 ̄𝑣𝑦 − 𝜔2

𝑐
𝐸0
𝐵

̄cos 𝑘(𝑥0 + 𝑟𝐿 sin𝜔𝑐𝑡)

Expanding the cosine, we have

cos 𝑘(𝑥0 + 𝑟𝐿 sin𝜔𝑐𝑡) = cos(𝑘𝑥0) cos(𝑘𝑟𝐿 sin𝜔𝑐𝑡) − sin(𝑘𝑥0) sin(𝑘𝑟𝐿 sin𝜔𝑐𝑡)

It will suffice to treat the small Larmor radius case, 𝑘𝑟𝐿 ≪ 1. The Taylor expansions allow us
to write

cos 𝑘(𝑥0 + 𝑟𝐿 sin𝜔𝑐𝑡) ≈ cos(𝑘𝑥0)(1 − 1
2𝑘

2𝑟2𝐿 sin2 𝜔𝑐𝑡) − sin(𝑘𝑥0)𝑘𝑟𝐿 sin𝜔𝑐𝑡

The last term vanishes upon averaging over time, and it gives

̄𝑣𝑦 = −𝐸0
𝐵 cos(𝑘𝑥0)(1 − 1

4𝑘
2𝑟2𝐿) = −𝐸𝑥(𝑥0)

𝐵 (1 − 1
4𝑘

2𝑟2𝐿)

Thus the usual E × B drift is modified by the inhomogeneity to read

v𝐸 = E × B
𝐵2 (1 − 1

4𝑘
2𝑟2𝐿)

The physical reason for this is easy to see. An ion with its guiding center at a maximum of E
actually spends a good deal of its time in regions of weaker E. Its average drift, therefore, is
less than E/B evaluated at the guiding center. In a linearly varying E field, the ion would be
in a stronger field on one side of the orbit and in a field weaker by the same amount on the
other side; the correction to v𝐸 then cancels out. From this it is clear that the correction term
depends on the second derivative of E. For the sinusoidal distribution we assumed, the second
derivative is always negative with respect to E. For an arbitrary variation of E, we need only
replace 𝑖𝑘 by ∇ and write the drift as

v𝐸 = (1 + 1
4𝑟

2
𝐿∇2)E × B

𝐵2 (4.11)

The second term is called the finite-Larmor-radius effect. What is the significance of this
correction? Since 𝑟𝐿 is much larger for ions than for electrons, v𝐸 is no longer independent of
species. If a density clump occurs in a plasma, an electric field can cause the ions and electrons
to separate, generating another electric field. If there is a feedback mechanism that causes the
second electric field to enhance the first one, E grows indefinitely, and the plasma is unstable.

2I am kind of lost here. Probably the logic here is that first we assume the solution has an additional steady
drift, so we let ̈𝑣𝑦 = 0? Check Y.Y’s note.
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Such an instability, called a drift instability, is one type of plasma instabilities. The grad-B drift,
of course, is also a finite-Larmor-radius effect and also causes charges to separate. However,
v∇𝐵 ∝ 𝑘𝑟𝐿 whereas the correction term above is proportional to 𝑘2𝑟2𝐿. The nonuniform-E-field
effect, therefore, is important at relatively large k, or small scale lengths of the inhomogeneity.
For this reason, drift instabilities belong to a more general class called microinstabilities.

4.4 Time-Varying E Field

Let us now take E and B to be uniform in space but varying in time. First, consider the case
in which E alone varies sinusoidally in time, and let it lie along the x axis:

E = 𝐸0𝑒𝑖𝜔𝑡 ̂𝑥

Since ̇𝐸𝑥 = 𝑖𝜔𝐸𝑥, we can write the velocity x-component equation as

̈𝑣𝑥 = −𝜔2
𝑐(𝑣𝑥 ∓ 𝑖𝜔

𝜔𝑐

̃𝐸𝑥
𝐵 )

Let us define
̃𝑣𝑝 ≡ ±𝑖𝜔

𝜔𝑐

̃𝐸𝑥
𝐵

̃𝑣𝐸 ≡
̃𝐸𝑥

𝐵
where the tilde has been added merely to emphasize that the drift is oscillating. The plus
(minus) sign, as usual, denotes positive (negative) 𝑞. Now the x and y velocity component
equations can be written as

̈𝑣𝑥 = −𝜔2
𝑐(𝑣𝑥 − ̃𝑣𝑝)

̈𝑣𝑦 = −𝜔2
𝑐(𝑣𝑦 − ̃𝑣𝐸)

By analogy with the derivation in the case of a uniform EM field, we try a solution which is
the sum of a drift and a gyratory motion:

𝑣𝑥 = 𝑣⟂𝑒𝑖𝜔𝑐𝑡 + ̃𝑣𝑝
𝑣𝑦 = ±𝑖𝑣⟂𝑒𝑖𝜔𝑐𝑡 + ̃𝑣𝐸

If we now differentiate twice with respect to time, we find

̈𝑣𝑥 = −𝜔2
𝑐𝑣𝑥 + (𝜔2

𝑐 − 𝜔2) ̃𝑣𝑝
̈𝑣𝑦 = −𝜔2

𝑐𝑣𝑦 + (𝜔2
𝑐 − 𝜔2) ̃𝑣𝐸
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This is not the same as the previous expressions right above unless 𝜔2 ≪ 𝜔2
𝑐 . If we now make

the assumption that E varies slowly, so that 𝜔2 ≪ 𝜔2
𝑐 , then there we have the approximate

solution.

The solution of velocities in x and y tells us that the guiding center motion has two components.
The y component, perpendicular to B and E, is the usual E × B drift, except that 𝑣𝐸 now
oscillates slowly at the frequency 𝜔. The x component, a new drift along the direction of E,
is called the polarization drift. By replacing 𝑖𝜔 with 𝜕/𝜕𝑡, we can generalize the expression of
𝑣𝑝 and define the polarization drift as

v𝑝 = ± 1
𝜔𝑐𝐵

dE
d𝑡

Since v𝑝 is in opposite directions for ions and electrons, there is a polarization current; for Z
= 1, this is

j𝑝 = 𝑛𝑒(𝑣𝑖𝑝 − 𝑣𝑒𝑝) =
𝑛𝑒
𝑒𝐵2 (𝑀 +𝑚)dE

d𝑡 = 𝜌
𝐵2

dE
d𝑡 (4.12)

where 𝜌 is the mass density.

The physical reason for the polarization current is simple. Consider an ion at rest in a magnetic
field. If a field E is suddenly applied, the first thing the ion does is to move in the direction
of E. Only after picking up a velocity v does the ion feel a Lorentz force 𝑒v × B and begin to
move perpendicular to both fields. If E is now kept constant, there is no further v𝑝 drift but
only a v𝐸 drift. However, if E is reversed, there is again a momentary drift, this time to the
left. Thus v𝑝 is a startup drift due to inertia and occurs only in the first half-cycle of each
gyration during which E changes. Consequently, v𝑝 goes to zero when 𝜔/𝜔𝑐 ≪ 1.
The polarization effect in a plasma is similar to that in a solid dielectric, where D = 𝜖0E + P.
The dipoles in a plasma are ions and electrons separated by a distance 𝑟𝐿. But since ions and
electrons can move around to preserve quasineutrality, the application of a steady E field does
not result in a polarization field P. However, if E oscillates, an oscillating current j𝑝 results
from the lag due to the ion inertia.

It is obvious that in this case the E × B drift speed depends on time and the guiding center
coordinate system is non-inertial. The polarization drift arises from the fictuous (inertial) force
−𝑚dv𝐸/d𝑡. It means that the guiding center locations will not change due to the polarization
drift!

Let us demonstrate this in a single configuration. Assume B = 𝐵 ̂𝑧, E = 𝐸𝑡 ̂𝑦. Let 𝜃 be the
angle in the perpendicular plane:

v⟂ = 𝑣⟂ ̂𝑒⟂ = 𝑣⟂(cos 𝜃 ̂𝑥 + sin 𝜃 ̂𝑦)

The guiding center is defined as

X = x − r𝐿 = x − v⟂/𝜔𝑐 = x − 𝑣⟂
𝜔𝑐

̂𝜃
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where ̂𝜃 = b × ̂𝑒⟂. The equation of motion

𝑚dv
d𝑡 = 𝑞(E + v × B)
dx
d𝑡 = v

in the guiding center coordinates the two selected scalar equations can be written as

𝑚d𝑣𝑥
d𝑡 = 𝑞𝐸𝑥 + 𝑞𝑣𝑦𝐵

𝑑𝑋𝑦
d𝑡 = 𝑣𝑦 − 1

𝜔𝑐

d𝑣𝑥
d𝑡

such that 𝑑𝑋𝑦
d𝑡 = 0

4.5 Time-Varying B Field

Finally, we allow the magnetic field to vary in time. Since the Lorentz force is always per-
pendicular to v, a magnetic field itself cannot impart energy to a charged particle. However,
associated with the time-varying B is an electric field given by

∇× E = −Ḃ

and this can accelerate the particles. We can no longer assume the fields to be completely
uniform. Let v⟂ = dl/d𝑡 be the transverse velocity, l being the element of the path along a
particle trajectory (with 𝑣∥ neglected). Taking the scalar product of the equation of motion
with v⟂, we have

d
d𝑡(

1
2𝑚𝑣2⟂) = 𝑞E ⋅ v⟂ = 𝑞E ⋅ dl

d𝑡
The change in one gyration is obtained by integrating over one period:

𝛿(12𝑚𝑣2⟂) = ∫
2𝜋/𝜔𝑐

0
𝑞E ⋅ dl

d𝑡d𝑡

If the field changes slowly, we can replace the time integral by a line integral over the unper-
turbed orbit:

𝛿(12𝑚𝑣2⟂) = ∮𝑞E ⋅ dl = 𝑞∫
𝑠
(∇ × E) ⋅ dS = −𝑞∫

𝑠
Ḃ ⋅ dS
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Here S is the surface enclosed by the Larmor orbit and has a direction given by the right-hand
rule when the fingers point in the direction of v. Since the plasma is diamagnetic, we have
B ⋅ dS < 0 for ions and B ⋅ dS > 0 for electrons. Then

𝛿(12𝑚𝑣2⟂) = ±𝑞�̇�𝜋𝑟2𝐿 = ±𝑞𝜋�̇�𝑣2⟂
𝜔𝑐

𝑚
±𝑞𝐵 =

1
2𝑚𝑣2⟂
𝐵 ⋅ 2𝜋�̇�𝜔𝑐

The quantity 2𝜋�̇�
𝜔𝑐

= �̇�
𝜔𝑐

is just the change 𝛿𝐵 during one period of gyration. Thus

𝛿(12𝑚𝑣2⟂) = 𝜇𝛿𝐵

Since the left-hand-side is 𝛿(𝜇𝐵), we have the desired result

𝛿𝜇 = 0

The magnetic moment is invariant in slowly varying magnetic fields.

As the B field varies in strength, the Larmor orbits expand and contract, and the particles
lose and gain transverse energy. This exchange of energy between the particles and the field
is described very simply by the invariant of magnetic moment. The invariance of 𝜇 allows us
to prove easily the following well-known theorem: The magnetic flux through a Larmor orbit
is constant.

The flux Φ is given by 𝐵𝑆, with 𝑆 = 𝜋𝑟2𝐿. Thus

Φ = 𝐵𝜋𝑣
2
⟂

𝜔2𝑐
= 𝐵𝜋𝑣

2
⟂𝑚2

𝑞2𝐵2 = 2𝜋𝑚
𝑞2

1
2𝑚𝑣2⟂
𝐵 = 2𝜋𝑚

𝑞2 𝜇

Therefore, Φ is constant if 𝜇 is constant.

This property is used in a method of plasma heating known as adiabatic compression. A
plasma is injected into a sequence of magnetic mirrors and by keep increasing the magnetic
field in subsequent mirrors we can increase the plasma velocities.

4.6 Drifts in slowly changing arbitrary fields

Most of the drift motion we have considered before can be described under one framework.
Consider in arbitrarily complicated but slowly changing fields subject to the following restric-
tions:

1. The time variation is so slow that the fields can be considered as approximately constant
during each cyclotron period of the motion.
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2. The fields vary so gradually in space that they are nearly uniform over the spatial extent
of any single complete cyclotron drift.

3. The electric and magnetic fields are related by Faraday’s law ∇× E = −Ḃ.
4. 𝐸/𝐵 ≪ 𝑐 so that relativistic effects are unimportant (otherwise there would be a problem

with 𝑣𝐸 becoming faster than 𝑐.)

These are known as the guiding center approximation. The center of the gyro motion is the
guiding center (GC) and we call the frame of reference where 𝑣∥ = 0 is the guiding center
system (GCS). In this more general situation a charged particle will gyrate about B, stream
parallel to B, have E × B drifts across B, and may also have force-based drifts. The analysis
is based on the assumption that all these various motions are well-separated; this assumption
is closely related to the requirement that the fields vary slowly and also to the concept of
adiabatic invariant.

The assumed separation of scales is expressed by decomposing the particle motion into a fast,
oscillatory component — the gyro-motion — and a slow component obtained by averaging
out the gyromotion. As sketched in Figure 4.1, the particle’s position and velocity are each
decomposed into two terms

x(𝑡) = xgc(𝑡) + r𝐿(𝑡), v(𝑡) = dx
d𝑡 = vgc(𝑡) + v𝐿(𝑡)

where r𝐿(𝑡),v𝐿(𝑡) give the fast gyration of the particle in a cyclotron orbit and xgc(𝑡),vgc(𝑡)
are the slowly changing motion of the guiding center obtained after averaging out the cyclotron
motion. Ignoring any time dependence of the fields for now, the magnetic field seen by the
particle can be written as

B(x(𝑡)) = B(xgc(𝑡) + r𝐿(𝑡))
= B(xgc(𝑡)) + (r𝐿(𝑡) ⋅ ∇)B

Because B was assumed to be nearly uniform over the cyclotron orbit, it is sufficient to keep
only the first term in the Taylor expansion of the magnetic field. The electric field may be
expanded in a similar fashion.

After insertion of these Taylor expansions for the non-uniform electric and magnetic fields, the
Lorentz equation becomes

𝑚d [vgc(𝑡) + vL(𝑡)]
d𝑡 =𝑞 [E(xgc(𝑡)) + (r𝐿(𝑡) ⋅ ∇)E]

+ 𝑞[vgc(𝑡) + vL(𝑡)] × [B(xgc(𝑡)) + (r𝐿(𝑡) ⋅ ∇)B]

The gyromotion (i.e. the fast cyclotron motion) is defined to be the solution of the equation

𝑚dvL(𝑡)
d𝑡 = 𝑞vL(𝑡) × B(xgc(𝑡))
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Figure 4.1: Drift in an arbitrarily complicated field.
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Substracting this fast motion equation from the prior one leaves

𝑚dvgc(𝑡)
d𝑡 =𝑞 [E(xgc(𝑡)) + (r𝐿(𝑡) ⋅ ∇)E]

+ 𝑞 {vgc(𝑡) × [B(xgc(𝑡)) + (r𝐿(𝑡) ⋅ ∇)B] + vL(𝑡) × (rL(𝑡) ⋅ ∇)B}
(4.13)

Let us now average Equation 4.13 over one gyroperiod in which case terms linear in gyromotion
average to zero. What remains is an equation describing the slow quantities, namely

𝑚dvgc(𝑡)
d𝑡 = 𝑞 {E(xgc(𝑡)) + vgc(𝑡) × B(xgc(𝑡)) + ⟨vL(𝑡) × (rL ⋅ ∇)B⟩} (4.14)

where <> means averaged over a cyclotron period. The guiding center velocity can now be
decomposed into components perpendicular and parallel to B,

vgc(𝑡) = v⟂𝑔𝑐(𝑡) + 𝑣∥𝑔𝑐(𝑡)�̂�

so that
dvgc(𝑡)

d𝑡 = dv⟂gc(𝑡)
d𝑡 +

d (v∥gc(𝑡)�̂�)
d𝑡 = dv⟂gc(𝑡)

d𝑡 +
dv∥gc(𝑡)

d𝑡
̂𝑏 + v∥gc(𝑡)

d ̂𝑏
d𝑡

Denoting the distance along the magnetic field by 𝑠, the derivative of the magnetic field unit
vector can be written, to lowest order, as (???)

d�̂�
d𝑡 = 𝜕 ̂𝑏

𝜕𝑠
d𝑠
d𝑡 = 𝑣∥𝑔𝑐 ̂𝑏 ⋅ ∇�̂�

so Equation 4.14 becomes

𝑚[dv⟂gc(𝑡)
d𝑡 +

dv∥gc(𝑡)
d𝑡

̂𝑏 + v2
∥gc(𝑡) ̂𝑏 ⋅ ∇ ̂𝑏] =𝑞E(xgc(𝑡))

+ 𝑞vgc(𝑡) × B(xgc(𝑡))
+ 𝑞 ⟨vL(𝑡) × (rL ⋅ ∇)B⟩

The component of this equation along B is

𝑚
dv∥gc(𝑡)

d𝑡 = 𝑞 [𝐸∥(xgc(𝑡)) + ⟨vL(𝑡) × (rL ⋅ ∇)B⟩∥]

while the component perpendicular to B is

𝑚[dv⟂gc(𝑡)
d𝑡 + v2

∥gc(𝑡) ̂𝑏 ⋅ ∇ ̂𝑏] =𝑞E⟂(xgc(𝑡))

+ 𝑞vgc(𝑡) × B(xgc(𝑡))
+ 𝑞 ⟨vL(𝑡) × (rL ⋅ ∇)B⟩⟂

(4.15)
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Equation 4.15 is of the generic form

𝑚dv⟂𝑔𝑐
d𝑡 = F⟂ + 𝑞vgc × B (4.16)

where
F⟂ = 𝑞 [E⟂(xgc(𝑡)) + ⟨vL(𝑡) × (rL ⋅ ∇)B⟩⟂] − 𝑚v2

∥gc(𝑡) ̂𝑏 ⋅ ∇ ̂𝑏 (4.17)

Equation 4.16 is solved iteratively based on the assumption that vgc has a slow time dependence.
In the first iteration, the time dependence is neglected altogether so that the left-hand side of
Equation 4.16 is set to zero to obtain the “first guess” for the perpendicular drift to be

v⟂𝑔𝑐 ≃ vF ≡ F⟂ × B
𝑞𝐵2

Next, v𝑝 is defined to be a correction to this first guess, where v𝑝 is assumed small and
incorporates effects due to any time dependence of v⟂𝑔𝑐. To determine v𝑝, we write v⟂𝑔𝑐 =
v𝐹 + v𝑝 so, to second order Equation 4.16 becomes

𝑚d(vF + v𝑝)
d𝑡 = F⟂ + 𝑞(vF + vp) × B (4.18)

In accordance with the slowness condition, it is assumed that |dv𝑝/d𝑡| ≪ |dvF/d𝑡| so Equa-
tion 4.18 becomes

0 = −𝑚dv𝐹
d𝑡 + 𝑞v𝑝 × B

Crossing this equation with B gives the general polarization drift

v𝑝 = − 𝑚
𝑞𝐵2

dv𝐹
d𝑡 × B

The most important example of the polarization drift is when v𝐹 is the E × B drift in a
uniform, constant magnetic field so that (E ⟂ B?)

v𝑝 = − 𝑚
𝑞𝐵2

d
d𝑡 (

E × B
𝐵2 ) × B

= 𝑚
𝑞𝐵2

dE
d𝑡

To calculate the middle term on the RHS of Equation 4.18, it is necessary to average over
cyclotron orbits. This middle term is defined as the “grad B” force

F∇𝐵 = 𝑞 ⟨v𝐿(𝑡) × (r𝐿(𝑡) ⋅ ∇)B⟩ (4.19)
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To simplify the algebra for the averaging, a local Cartesian coordinate system is used with 𝑥
axis in the direction of the gyrovelocity at 𝑡 = 0 and 𝑧 axis in the direction of the magnetic
field at the gyrocenter. Thus, the Larmor orbit velocity has the form

v𝐿(𝑡) = 𝑣𝐿0 [ ̂𝑥 cos𝜔𝑐𝑡 − ̂𝑦 sin𝜔𝑐𝑡]

where
𝜔𝑐 = 𝑞𝐵

𝑚
is the cyclotron frequency we know before and the Larmor orbit position has the form

r𝐿(𝑡) =
𝑣𝐿0
𝜔𝑐

[ ̂𝑥 sin𝜔𝑐𝑡 + ̂𝑦 cos𝜔𝑐𝑡]

Inserting the above two expressions in Equation 4.19 gives

F∇𝐵 = 𝑞𝑣
2
𝐿0
𝜔𝑐

⟨[ ̂𝑥 cos𝜔𝑐𝑡 − ̂𝑦 sin𝜔𝑐𝑡] × ([ ̂𝑥 sin𝜔𝑐𝑡 + ̂𝑦 cos𝜔𝑐𝑡] ⋅ ∇)B⟩

Noting that ⟨sin2 𝜔𝑐𝑡⟩ = ⟨cos2 𝜔𝑐𝑡⟩ = 1/2 while ⟨sin𝜔𝑐 cos𝜔𝑐⟩ = 0, this reduces to

F∇𝐵 = 𝑞𝑣2𝐿0
2𝜔𝑐

[ ̂𝑥 × 𝜕B
𝜕𝑦 − ̂𝑦 × 𝜕B

𝜕𝑥 ]

= 𝑚𝑣2𝐿0
2𝐵 [ ̂𝑥 × 𝜕(𝐵𝑦 ̂𝑦 + 𝐵𝑧 ̂𝑧)

𝜕𝑦 − ̂𝑦 × 𝜕(𝐵𝑥 ̂𝑥 + 𝐵𝑧 ̂𝑧)
𝜕𝑥 ]

= 𝑚𝑣2𝐿0
2𝐵 [ ̂𝑧 (𝜕𝐵𝑦

𝜕𝑦 + 𝜕𝐵𝑥
𝜕𝑥 ) − ̂𝑦𝜕𝐵𝑧

𝜕𝑦 − ̂𝑥𝜕𝐵𝑧
𝜕𝑥 ]

But from ∇ ⋅ B = 0, it is seen that 𝜕𝐵𝑦
𝜕𝑦 + 𝜕𝐵𝑥

𝜕𝑥 = −𝜕𝐵𝑧
𝜕𝑧 so the “grad B” force is

F∇𝐵 = −𝑚𝑣2𝐿0
2𝐵 ∇𝐵

where the approximation 𝐵𝑧 ≃ 𝐵 has been used since the magnetic field direction is mainly in
the ̂𝑧 direction.

By applying the guiding center approximation, we reduce the number of independent variables
from 6 (𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧) to 5 (𝑥, 𝑦, 𝑧, 𝑣⟂, 𝑣∥).
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4.7 Summary of Guiding Center Drifts

General force:
v𝑓 = 1

𝑞
F × B
𝐵2 (4.20)

Electric field:
v𝐸 = E × B

𝐵2 (4.21)

Gravitational field:
v𝑔 = 𝑚

𝑞
g × B
𝐵2 (4.22)

Nonuniform electric field:
v𝐸 = (1 + 1

4𝑟
2
𝐿∇2)E × B

𝐵2 (4.23)

Nonuniform magnetic field:

Grad-B:
v∇𝐵 = ±1

2𝑣⟂𝑟𝐿
B ×∇𝐵

𝐵2

= 𝑚𝑣2⟂
2𝑞𝐵3 B ×∇𝐵

(4.24)

Curvature drift:

v𝑐 =
𝑚𝑣2∥
𝑞

R𝑐 × B
𝑅2𝑐𝐵2

=
𝑚𝑣2∥
𝑞𝐵4 B × [B ⋅ ∇B]

=
𝑚𝑣2∥
𝑞𝐵3 B ×∇𝐵 (current-free)

(4.25)

Curved vacuum field:
v𝑐 + v∇𝐵 = 𝑚

𝑞 (𝑣2∥ + 1
2𝑣

2
⟂)

R𝑐 × B
𝑅2𝑐𝐵2

= 𝑚
𝑞

B ×∇𝐵
𝐵3 (𝑣2∥ + 1

2𝑣
2
⟂)

(4.26)

Polarization drift:
v𝑝 = ± 1

𝜔𝑐𝐵
dE
d𝑡 (4.27)
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4.8 Adiabatic Invariants

It is well known in classical mechanics that whenever a system has a periodic motion, the
action integral ∮𝑝𝑑𝑞 taken over a period is a constant of the motion. Here 𝑝 and 𝑞 are
the generalized momentum and coordinate which repeat themselves in the motion. If a slow
change is made in the system, so that the motion is not quite periodic, the constant of the
motion does not change and is then called an adiabatic invariant. By slow here we mean slow
compared with the period of motion, so that the integral ∮𝑝𝑑𝑞 is well defined even though
it is strictly no longer an integral over a closed path. Adiabatic invariants play an important
role in plasma physics; they allow us to obtain simple answers in many instances involving
complicated motions. There are three adiabatic invariants, each corresponding to a different
type of periodic motion.

4.8.1 Adiabatic Invariant of a Pendulum

Perfect symmetry is never attained in reality. This leads to the practical question of how
constants of the motion behave when space and/or time symmetries are “good”, but not
perfect. Does the utility of constants of the motion collapse abruptly when the slightest non-
symmetrical blemish rears its ugly head, does the utility decay gracefully, or does something
completely different happen? To answer these questions, we begin by considering the prob-
lem of a small-amplitude pendulum having a time-dependent, but slowly changing resonant
frequency 𝜔(𝑡). Since 𝜔2 = 𝑔/𝑙, the time-dependence of the frequency might result from either
a slow change in the gravitational acceleration 𝑔 or else from a slow change in the pendulum
length 𝑙. In both cases the pendulum equation of motion will be

d2𝑥
d𝑡2 + 𝜔2(𝑡)𝑥 = 0 (4.28)

This equation cannot be solved exactly for arbitrary 𝜔(𝑡) but if a modest restriction is put
on 𝜔(𝑡) the equation can be solved approximately using the WKB method (Wentzel 1926,
Kramers 1926, Brillouin 1926). This method is based on the hypothesis that the solution for a
time-dependent frequency is likely to be a generalization of the constant-frequency solution

𝑥 = Re [𝐴 exp(𝑖𝜔𝑡)]

where this generalization is postulated to be of the form

𝑥 = Re [𝐴(𝑡)𝑒𝑖 ∫𝑡 𝜔(𝑡′)d𝑡′] (4.29)

Here 𝐴(𝑡) is an amplitude function determined as follows: calculate the first derivative we
get

d𝑥
d𝑡 = Re [𝑖𝜔𝐴𝑒𝑖 ∫𝑡 𝜔(𝑡′)d𝑡′ + d𝐴

d𝑡 𝑒
𝑖 ∫𝑡 𝜔(𝑡′)d𝑡′]
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then the second derivative

d2𝑥
d𝑡2 = Re [(𝑖d𝜔d𝑡 𝐴 + 2𝑖𝜔d𝐴

d𝑡 − 𝜔2𝐴+ d2𝐴
d𝑡2 )𝑒𝑖 ∫𝑡 𝜔(𝑡′)d𝑡′]

and insert this last result into Equation 4.28 which reduces to

𝑖d𝜔d𝑡 𝐴 + 2𝑖𝜔d𝐴
d𝑡 + d2𝐴

d𝑡2 = 0 (4.30)

since the terms involving 𝜔2 cancel exactly. To proceed further, we make an assumption —
the validity of which is to be checked later — that the time dependence of d𝐴/d𝑡 is sufficiently
slow to allow dropping the last term in Equation 4.30 relative to the middle term. The two
terms that remain in Equation 4.30 can then be rearranged as

1
𝜔

d𝜔
d𝑡 = − 2

𝐴
d𝐴
d𝑡

which has the exact solution
𝐴(𝑡) ∼ 1

√𝜔(𝑡)
(4.31)

The assumption of slowness is thus at least self-consistent, for if 𝑡 is indeed slowly changing,
Equation 4.31 shows that At will also be slowly changing and the dropping of the last term in
Equation 4.30 is justified. The slowness requirement can be quantified by assuming that the
frequency has an exponential dependence

𝜔(𝑡) = 𝜔0𝑒𝛼𝑡

Thus,
𝛼 = 1

𝜔
d𝜔
d𝑡

is a measure of how fast the frequency is changing compared to the frequency itself. Hence,
dropping the last term in Equation 4.30 is legitimate if

𝛼 = 1
𝜔

d𝜔
d𝑡 ≪ 4𝜔0 (4.32)

In other words, if Equation 4.32 is satisfied, then the fractional change of the pendulum period
per period is small.

Equation 4.31 indicates that when 𝜔 is time-dependent, the pendulum amplitude is not con-
stant and so the pendulum energy is not conserved. It turns out that what is conserved is the
action integral

𝑆 = ∮𝑣d𝑥 (4.33)
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where the integration is over one period of oscillation. This integral can also be written in
terms of time as

𝑆 = ∫
𝑡0+𝜏

𝑡0
𝑣d𝑥

d𝑡 d𝑡

where 𝑡0 is a time when 𝑥 is at an instantaneous maximum and 𝜏 , the period of a complete
cycle, is defined as the interval between two successive times when d𝑥/d𝑡 = 0 and d2/d𝑡2 has
the same sign (e.g., for a pendulum, 𝑡0 would be a time when the pendulum has swung all the
way to the right and so is reversing its velocity while 𝜏 is the time one has to wait for this to
happen again). To show that action is conserved, Equation 4.33 can be integrated by parts
as

𝑆 = ∫
𝑡0+𝜏

𝑡0
[ d
d𝑡 (𝑥

d𝑥
d𝑡 ) − 𝑥d2𝑥

d𝑡2 ]d𝑡

= [𝑥d𝑥
d𝑡 ]

𝑡0+𝜏

𝑡0
−∫

𝑡0+𝜏

𝑡0
𝑥d2𝑥

d𝑡2 d𝑡

= ∫
𝑡0+𝜏

𝑡0
𝜔2𝑥2d𝑡

(4.34)

where the integrated term has vanished by virtue of the definitions of 𝑡0 and 𝜏 , and Equa-
tion 4.28 has been used to substitute d2𝑥/d𝑡2. Equation 4.29 and Equation 4.31 can be
combined to give

𝑥(𝑡) = 𝑥(𝑡0)√
𝜔(𝑡0)
𝜔(𝑡) cos(∫

𝑡

𝑡0
𝜔(𝑡′)d𝑡′)

so Equation 4.34 becomes

𝑆 = ∫
𝑡0+𝜏

𝑡0
𝜔(𝑡′)2 [𝑥(𝑡0)√

𝜔(𝑡0)
𝜔(𝑡′) cos(∫

𝑡′

𝑡0
𝜔(𝑡′′)d𝑡′′)]d𝑡′

= [𝑥(𝑡0)]2𝜔(𝑡0)∫
𝑡0+𝜏

𝑡0
𝜔(𝑡′) cos2 (∫

𝑡′

𝑡0
𝜔(𝑡′′d𝑡′))d𝑡′

= [𝑥(𝑡0)]2𝜔(𝑡0)∫
2𝜋

0
d𝜉 cos2 𝜉 = 𝜋[𝑥(𝑡0)]2𝜔(𝑡0) = const.

(4.35)

where 𝜉 = ∫𝑡′
𝑡0

𝜔(𝑡′′)d𝑡′′ and d𝜉 = 𝜔(𝑡′)d𝑡′. Equation 4.33 shows that 𝑆 is the area in phase-
space enclosed by the trajectory [𝑥(𝑡), 𝑣(𝑡)] and Equation 4.35 shows that for a slowly changing
pendulum frequency, this area is a constant of the motion. Since the average energy of the
pendulum scales as ∼ [𝜔(𝑡)𝑥(𝑡)]2, we see from Equation 4.31 that the ratio

energy
frequency ∼ 𝜔(𝑡)𝑥2(𝑡) ∼ 𝑆 ∼ const. (4.36)

The ratio in Equation 4.36 is the classical equivalent of the quantum number 𝑁 of a simple
harmonic oscillator because in quantum mechanics the energy 𝐸 of a simple harmonic oscillator
is related to the frequency by the relation 𝐸/ℏ𝜔 = 𝑁 + 1/2.
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This analysis clearly applies to any dynamical system having an equation of motion of the
form of Equation 4.28. Hence, if the dynamics of plasma particles happens to be of this form,
then 𝑆 can be added to our repertoire of constants of the motion.

4.8.2 Extension of WKB method to general adiabatic invariant

Action has the dimensions of (canonical momentum) × (canonical coordinate) so we may
anticipate that for general Hamiltonian systems, the action integral given in Equation 4.33 is
not an invariant because 𝑣 is not, in general, proportional to 𝑃 . We postulate that the general
form for the action integral is

𝑆 = ∮𝑃d𝑄 (4.37)

where the integral is over one period of the periodic motion and 𝑃 ,𝑄 are the relevant canonical
momentum-coordinate conjugate pair. The proof of adiabatic invariance used for Equation 4.33
does not work directly for Equation 4.37; we now present a slightly more involved proof to
show that Equation 4.37 is indeed the more general form of adiabatic invariant.

Figure 4.2: Canonical coordinate-momentum plane.
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Let us define the radius vector in the 𝑄−𝑃 plane to be R = (𝑄,𝑃) and define unit vectors in
the 𝑄 and 𝑃 directions by �̂� and ̂𝑃 ; these definitions are shown in Figure 4.2. Furthermore,
we define the 𝑧 direction as being normal to the 𝑄−𝑃 plane; thus, the unit vector ̂𝑧 = �̂�× ̂𝑃 .
Hamilton’s equations ( ̇𝑃 = −𝜕𝐻/𝜕𝑄, �̇� = 𝜕𝐻/𝜕𝑃 ) may be written in vector form as

dR
d𝑡 = − ̂𝑧 × ∇𝐻 (4.38)

where
∇ = �̂� 𝜕

𝜕𝑄 + ̂𝑃 𝜕
𝜕𝑃

is the gradient operator in the 𝑄−𝑃 plane. Equation 4.38 shows that the phase-space “velocity”
dR/d𝑡 is orthogonal ot ∇𝐻. Hence, R stays on a level contour of 𝐻. If 𝐻 is a constant, then,
in order for the motion to be periodic, the path along this level contour must circle around
and join itself, like a road of constant elevation around the rim of a mountain (or a crater). If
𝐻 is not constant, but slowly changing in time, the contour will circle around and nearly join
itself.

Equation 4.38 can be inverted by crossing it with ̂𝑧 to give

∇𝐻 = ̂𝑧 × dR
d𝑡 (4.39)

For periodic and near-periodic motions, dR/d𝑡 is always in the same sense (always clockwise
or always counterclockwise). Thus, Equation 4.39 shows that an observer following the path
would always see that 𝐻 is increasing on the left-hand side of the path and decreasing on the
right-hand side (or vice versa). For clarity, the origin of the 𝑄 − 𝑃 plane is redefined to be
at a local maximum or minimum of 𝐻. Hence, near the extremum 𝐻 must have the Taylor
expansion

𝐻(𝑃 ,𝑄) = 𝐻extremum + 𝑃 2

2 [𝜕
2𝐻

𝜕𝑃 2 ]
𝑃=0,𝑄=0

+ 𝑄2

2 [𝜕
2𝐻

𝜕𝑄2 ]
𝑃=0,𝑄=0

where the second order derivatives are either both positive (valley) or both negative (hill).
Since 𝐻 is assumed to have a slow dependence on time, these second derivatives will be time-
dependent so that 𝐻 has the form

𝐻 = 𝛼(𝑡)𝑃
2

2 + 𝛽(𝑡)𝑄
2

2 (4.40)

where 𝛼(𝑡) and 𝛽(𝑡) have the same sign. The term 𝐻extremum has been dropped because it
is just an additive constant to the energy and does not affect Hamilton’s equations. From
Equation 4.38 the direction of rotation of R is seen to be counterclockwise if the extremum of
𝐻 is a hill, and clockwise if a valley.

Hamilton’s equations operating on Equation 4.40 give

d𝑃
d𝑡 = −𝛽𝑄, d𝑄

d𝑡 = 𝛼𝑃 (4.41)
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These equations do not directly generate the simple harmonic oscillator equation because of
the time dependence of 𝛼, 𝛽. However, if we define the auxiliary variable

𝜏 = ∫
𝑡
𝛽(𝑡′)d𝑡′

then
d
d𝑡 = d𝜏

d𝑡
d
d𝜏 = 𝛽 d

d𝜏
so Equation 4.41 becomes

d𝑃
d𝜏 = −𝑄, d𝑄

d𝜏 = 𝛼
𝛽𝑃 (4.42)

Substituting for 𝑄 in the right-hand equation using the left-hand equation gives

d2𝑃
d𝜏2 + 𝛼

𝛽𝑃 = 0

which is a simple harmonic oscillator with 𝜔2(𝜏) = 𝛼(𝜏)/𝛽(𝜏). The action integral may be
rewritten as

𝑆 = ∮𝑃 d𝑄
d𝜏 d𝜏

where the integral is over one period of the motion. Using Equation 4.42 and following the
same procedure as was used with Equation 4.35, this becomes

𝑆 = ∮𝑃 2𝛼
𝛽d𝜏 = 𝜆2 ∫[(𝛼(𝜏 ′)

𝛽(𝜏 ′))
1/2

cos2 (∫
𝜏′

(𝛼/𝛽)1/2d𝜏 ′′)]d𝜏 ′

where 𝜆 is a constant dependent on initial conditions. By introducing the orbit phase 𝜙 =
∫𝜏(𝛼/𝛽)1/2d𝜏 , the above becomes

𝑆 = 𝜆2 ∫
2𝜋

0
d𝜙 cos2 𝜙 = const.

Thus, the general action integral is indeed an adiabatic invariant. This proof is of course only
valid in the vicinity of an extremum of 𝐻, i.e., only where 𝐻 can be adequately represented
by Equation 4.40.

4.8.3 Proof for the general adiabatic invariant

We now develop a proof for the general adiabatic invariant. This proof is not restricted to
small oscillations (i.e., being near an extremum of 𝐻) as was the previous discussion. Let the
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Hamiltonian depend on time via a slowly changing parameter 𝜆(𝑡), so that 𝐻 = 𝐻(𝑃 ,𝑄, 𝜆(𝑡)).
From Equation 3.28 the energy is given by

𝐸(𝑡) = 𝐻(𝑃 ,𝑄, 𝜆(𝑡)) (4.43)

and, in principle, this relation can be inverted to give 𝑃 = 𝑃(𝐸(𝑡),𝑄, 𝜆(𝑡)). Suppose a particle
is executing nearly periodic motion in the 𝑄−𝑃 plane. We define the turning point 𝑄𝑡𝑝 as a
position where d𝑄/d𝑡 = 0. Since 𝑄 is oscillating, there will be a turning point associated with
𝑄 having its maximum value and a turning point associated with 𝑄 having its minimum value.
From now on let us only consider turning points where 𝑄 has its maximum value, that is, we
only consider the turning points on the right-hand side of the nearly periodic trajectories in
the 𝑄− 𝑃 plane shown in Figure 4.3.

If the motion is periodic, then the turning point for the 𝑁 + 1th period will be the same as
the turning point for the 𝑁 th period, but if the motion is only nearly periodic, there will be
a slight difference as shown in Figure 4.3. This difference can be characterized by making
the turning point a function of time so 𝑄𝑡𝑝 = 𝑄𝑡𝑝(𝑡). This function is only defined for the
times when d𝑄/d𝑡 = 0. When the motion is not exactly periodic, this turning point is such
that 𝑄𝑡𝑝(𝑡 + 𝜏) ≠ 𝑄𝑡𝑝(𝑡), where 𝜏 is the time interval required for the particle to go from the
first turning point to the next turning point. The action integral is over one entire period
of oscillation starting from a right-hand turning point and then going to the next right-hand
turning point and so can be written as

𝑆 = ∮𝑃d𝑄 = ∫
𝑄𝑡𝑝(𝑡+𝜏)

𝑄𝑡𝑝(𝑡)
𝑃d𝑄

From Equation 3.28 it is seen that 𝑃/𝑚 is not, in general, the velocity and so the velocity d𝑄/d𝑡
is not, in general, proportional to 𝑃 (???). Thus, the turning points are not necessarily at the
locations where 𝑃 vanishes, and in fact 𝑃 need not change sign during a period. However, 𝑆 still
corresponds to the area of phase-space enclosed by one period of the phase-space trajectory.

We can now calculate
d𝑆
d𝑡 = d

d𝑡 ∫
𝑄𝑡𝑝(𝑡+𝜏)

𝑄𝑡𝑝(𝑡)
𝑃(𝐸(𝑡),𝑄, 𝜆(𝑡))d𝑄

= [𝑃 d𝑄
d𝑡 ]

𝑄𝑡𝑝(𝑡+𝜏)

𝑄𝑡𝑝(𝑡)
+∫

𝑄𝑡𝑝(𝑡+𝜏)

𝑄𝑡𝑝(𝑡)
(𝜕𝑃

𝜕𝑡 𝑄
)d𝑄

= ∫
𝑄𝑡𝑝(𝑡+𝜏)

𝑄𝑡𝑝(𝑡)
[(𝜕𝑃

𝜕𝐸)
𝑄,𝜆

d𝐸
d𝑡 + (𝜕𝑃

𝜕𝜆 )
𝑄,𝐸

d𝜆
d𝑡 ]d𝑄

(4.44)

Because d𝑄/d𝑡 = 0 at the turning point, the integrated term vanishes and so there is no
contribution from motion of the turning point. From Equation 4.43 we have

1 = 𝜕𝐻
𝜕𝑃 (𝜕𝑃

𝜕𝐸)
𝑄,𝜆
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Figure 4.3: Nearly periodic-phase space trajectory for slowly changing Hamiltonian. The turn-
ing point 𝑄𝑡𝑝(𝑡) is where 𝑄 is at its maximum.
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and
0 = 𝜕𝐻

𝜕𝑃 (𝜕𝑃
𝜕𝜆 )

𝑄,𝐸
+ 𝜕𝐻

𝜕𝜆
so Equation 4.44 becomes

d𝑆
d𝑡 = ∮(𝜕𝐻

𝜕𝑃 )
−1

[d𝐸
d𝑡 − 𝜕𝐻

𝜕𝜆
d𝜆
d𝑡 ]d𝑄 (4.45)

From Equation 4.43 we have

d𝐸
d𝑡 = 𝜕𝐻

𝜕𝑃
d𝑃
d𝑡 + 𝜕𝐻

𝜕𝑄
d𝑄
d𝑡 + 𝜕𝐻

𝜕𝜆
d𝜆
d𝑡 = 𝜕𝐻

𝜕𝜆
d𝜆
d𝑡 (4.46)

since the first two terms canceled due to Hamilton’s equations. Substitution of Equation 4.46
into Equation 4.45 gives d𝑆/d𝑡 = 0, completing the proof of adiabatic invariance. No assump-
tion has been made here that 𝑃 ,𝑄 are close to the values associated with an extremum of
𝐻.

This proof seems too neat, because it has established adiabatic invariance simply by careful
use of the chain rule, and by taking partial derivatives. However, this observation reveals the
underlying essence of adiabaticity, namely it is the differentiability of 𝐻,𝑃 with respect to 𝜆
from one period to the next and the Hamilton nature of the system, which together provide
the conditions for the adiabatic invariant to exist. If the motion had been such that after one
cycle the motion had changed so drastically that taking a derivative of 𝐻 or 𝑃 with respect
to would not make sense, then the adiabatic invariant would not exist.

4.8.4 The First Adiabatic Invariant

We have already met the quantity
𝜇 = 𝑚𝑣2⟂/2𝐵

and have proved its invariance in spatially and temporally varying B fields. The periodic
motion involved, of course, is the Larmor gyration. If we take 𝑝 to be angular momentum
𝑚𝑣⟂𝑟 and 𝑑𝑞 to be the coordinate d𝜃, the action integral becomes

∮𝑝𝑑𝑞 = ∮𝑚𝑣⟂𝑟d𝜃 = 2𝜋𝑟𝐿𝑚𝑣⟂ = 2𝜋𝑚𝑣2⟂
𝜔𝑐

= 4𝜋𝑚
|𝑞|𝜇

Thus 𝜇 is a constant of the motion as long as 𝑞/𝑚 is not changed. We have proved the invariance
of 𝜇 only with the implicit assumption 𝜔/𝜔𝑐 ≪ 1, where 𝜔 is a frequency characterizing the
rate of change of B as seen by the particle. A proof exists, however, that 𝜇 is invariant even
when 𝜔/𝜔𝑐 ≤ 𝑞. In theorists’ language, 𝜇 is invariant “to all orders in an expansion in 𝜔/𝜔𝑐.”
What this means in practice is that 𝜇 remains much more nearly constant than B does during
one period of gyration.
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It is just as important to know when an adiabatic invariant does not exist as to know when
it does. Adiabatic invariance of � is violated when � is not small compared with 𝜔𝑐 . We give
three examples of this.

• Magnetic Pumping. If the strength of B in a mirror confinement system is varied sinu-
soidally, the particles’ 𝑣⟂ would oscillate; but there would be no gain of energy in the
long run. However, if the particles make collisions, the invariance of � is violated, and the
plasma can be heated. In particular, a particle making a collision during the compression
phase can transfer part of its gyration energy into 𝑣∥ energy, and this is not taken out
again in the expansion phase.

• Cyclotron Heating. Now imagine that the B field is oscillated at the frequency 𝜔𝑐. The
induced electric field will then rotate in phase with some of the particles and accelerate
their Larmor motion continuously. The condition 𝜔 ≪ 𝜔𝑐 is violated, � is not conserved,
and the plasma can be heated.

• Magnetic Cusps. If the current in one of the coils in a simple magnetic mirror system
is reversed, a magnetic cusp is formed. This configuration has, in addition to the usual
mirrors, a spindle-cusp mirror extending over 360∘ in azimuth. A plasma confined in
a cusp device is supposed to have better stability properties than that in an ordinary
mirror. Unfortunately, the loss-cone losses are larger because of the additional loss
region; and the particle motion is nonadiabatic. Since the B field vanishes at the center
of symmetry, 𝜔𝑐 is zero there; and � is not preserved. The local Larmor radius near
the center is larger than the device. Because of this, the adiabatic invariant � does not
guarantee that particles outside a loss cone will stay outside after passing through the
nonadiabatic region. Fortunately, there is in this case another invariant: the canonical
angular momentum 𝑝𝜃 = 𝑚𝑟𝑣𝜃 − 𝑒𝑟𝐴𝜃. This ensures that there will be a population of
particles trapped indefinitely until they make a collision.

4.8.5 The Second Adiabatic Invariant

Consider a particle trapped between two magnetic mirrors: it bounces between them and
therefore has a periodic motion at the “bounce frequency”. A constant of this motion is given
by ∮𝑚𝑣∥𝑑𝑠, where 𝑑𝑠 is an element of path length (of the guiding center) along a field line.
However, since the guiding center drifts across field lines, the motion is not exactly periodic,
and the constant of the motion becomes an adiabatic invariant. This is called the longitudinal
invariant 𝐽 and is defined for a half-cycle between the two turning points

𝐽 = ∫
𝑏

𝑎
𝑣∥𝑑𝑠

We shall prove that 𝐽 is invariant in a static, nonuniform B field; the result is also true for a
slowly time-varying B field.
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Before embarking on this somewhat lengthy proof, let us consider an example of the type
of problem in which a theorem on the invariance of 𝐽 would be useful. As we have already
seen, the earth’s magnetic field mirror-traps charged particles, which slowly drift in longitude
around the earth. If the magnetic field were perfectly symmetric, the particle would eventually
drift back to the same magnetic field line. However, the actual field is distorted by such effects
as the solar wind. In that case, will a particle ever come back to the same magnetic field
line? Since the particle’s energy is conserved and is equal to 1

2𝑚𝑣2⟂ at the turning point,
the invariance of � indicates that |𝐵| remains the same at the turning point. However, upon
drifting back to the same longitude, a particle may find itself on another magnetic field line at
a different altitude. This cannot happen if 𝐽 is conserved. 𝐽 determines the length of the field
lines between turning points, and no two lines have the same length between points with the
same |𝐵|. Consequently, the particle returns to the same magnetic field line even in a slightly
asymmetric field.

To prove the invariance of 𝐽 , we first consider the invariance of 𝑣∥𝛿𝑠, where 𝛿𝑠 is a segment
of the path along B. Because of guiding center drifts, a particle on 𝑠 will find itself on
another magnetic field line 𝛿𝑠′ after a time Δ𝑡. The length of 𝛿𝑠′ is defined by passing planes
perpendicular to B through the end points of 𝛿𝑠. The length of 𝛿𝑠 is obviously proportional
to the radius of curvature:

𝛿𝑠
𝑅𝑐

= 𝛿𝑠′
𝑅′𝑐

so that
𝛿𝑠′ − 𝛿𝑠
Δ𝑡𝛿𝑠 = 𝑅′

𝑐 −𝑅𝑐
Δ𝑡𝑅𝑐

The “radial” component of v𝑔𝑐 is just

v𝑔𝑐 ⋅
R𝑐
𝑅𝑐

= 𝑅′
𝑐 −𝑅𝑐
Δ𝑡

The guiding center drift in curved vacuum field is

v𝑔𝑐 = v𝑐 + v∇𝐵 = ±1
2𝑣⟂𝑟𝐿

B ×∇𝐵
𝐵2 +

𝑚𝑣2∥
𝑞

R𝑐 × B
𝑅2𝑐𝐵2

The curvature drift has no component along R𝑐. Using the above three equations, we have

1
𝛿𝑠

d
d𝑡𝛿𝑠 = v𝑔𝑠 ⋅

R𝑐
𝑅2𝑐

= 1
2
𝑚
𝑞

𝑣2⟂
𝐵3 (B ×∇𝐵) ⋅ R𝑐

𝑅2𝑐

This is the rate of change of 𝛿𝑠 as seen by the particle. We must now get the rate of change
of 𝑣∥ as seen by the particle. The parallel and perpendicular energies are defined by
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𝑊 ≡ 1
2𝑚𝑣2∥ + 1

2𝑚𝑣2∥ = 1
2𝑚𝑣2∥ + 𝜇𝐵 ≡ 𝑊∥ +𝑊⟂

Thus 𝑣∥ can be written

𝑣∥ = [ 2
𝑚(𝑊 − 𝜇𝐵)]

1/2

Here W and � are constant, and only B varies. Therefore,

̇𝑣∥
𝑣∥

= −1
2

𝜇�̇�
𝑊 − 𝜇𝐵 = −1

2
𝜇�̇�
𝑊∥

= − 𝜇�̇�
𝑚𝑣2∥

Since B was assumed static, �̇� is not zero only because of the guiding center motion:

�̇� = d𝐵
dr ⋅ dr

d𝑡 = v𝑔𝑐 ⋅ ∇𝐵 =
𝑚𝑣2∥
𝑞

R𝑐 × B
𝑅2𝑐𝐵2 ⋅ ∇𝐵

Now we have ̇𝑣∥
𝑣∥

= −𝜇
𝑞
(R𝑐 × B) ⋅ ∇𝐵

𝑅2𝑐𝐵2 = −1
2
𝑚
𝑞
𝑣2⟂
𝐵

(R𝑐 × B) ⋅ ∇𝐵
𝑅2𝑐𝐵2

The fractional change in 𝑣∥𝛿𝑠 is

1
𝑣∥𝛿𝑠

d
d𝑡(𝑣∥𝛿𝑠) =

1
𝛿𝑠

d𝛿𝑠
d𝑡 + 1

𝑣∥
d𝑣∥
d𝑡

From the previous derivations we see that the these two terms cancel, so that

𝑣∥𝛿𝑠 = constant

This is not exactly the same as saying that 𝐽 is constant, however. In taking the integral of
𝑣∥𝛿𝑠, between the turning points, it may be that the turning points on 𝛿𝑠′ do not coincide
with the intersections of the perpendicular planes. However, any error in 𝐽 arising from such
a discrepancy is negligible because near the turning points, 𝑣∥ is nearly zero. Consequently,
we have proved

𝐽 = ∫
𝑏

𝑎
𝑣∥𝑑𝑠 = constant

An example of the violation of J invariance is given by a plasma heating scheme called transit-
time magnetic pumping. Suppose an oscillating current is applied to the coils of a mirror
system so that the mirrors alternately approach and withdraw from each other near the bounce
frequency. Those particles that have the right bounce frequency will always see an approaching
mirror and will therefore gain 𝑣∥. 𝐽 is not conserved in this case because the change of B occurs
on a time scale not long compared with the bounce time.
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4.8.6 The Third Adiabatic Invariant

Referring again to the earth dipole case, we see that the slow drift of a guiding center around
the earth constitutes a third type of periodic motion. The adiabatic invariant connected with
this turns out to be the total magnetic flux Φ enclosed by the drift surface,

Φ = ∫B ⋅ dS (4.47)

It is almost obvious that, as B varies, the particle will stay on a surface such that the total
number of magnetic field lines enclosed remains constant. This invariant, Φ, has few appli-
cations because most fluctuations of B occur on a time scale short compared with the drift
period. As an example of the violation of Φ invariance, we can cite some recent work on the
excitation of ultra-low frequency magnetohydrodynamic waves in the ionosphere. These waves
have a long period comparable to the drift time of a particle around the earth. The particles
can therefore encounter the wave in the same phase each time around. If the phase is right,
the wave can be excited by the conversion of particle drift energy to wave energy.

Here are some time scales to remember for a 1 MeV electron/ion in the Earth’s radiation belt
at L shell 4 from Solène Lejosne’s calculator:

Type Gyroperiod Bounce period Drift period3

1 MeV electron 0.22 ms 0.22 s 16 mins
1 MeV ion 135 ms 5.5 s 11 mins

In radiation belt studies, it is typical to consider a quantity that is inversely proportional to
the magnetic flux:

𝐿∗ = 2𝜋𝑀
|𝜙|𝑅𝐸

= 2𝜋𝐵𝑒𝑞𝑅2
𝐸

|𝜙| (4.48)

where 𝑀 is the magnetic moment of the Earth’s dipole field, 𝑅𝐸 is the radius of the Earth,
and 𝐵𝑒𝑞 is the magnetic field strength at the equatorial surface. This presentation of the third
invariant is termed 𝐿∗, or Roederer’s 𝐿 parameter, which is the radial distance to the equatorial
point where the particle would be found if all nondipolar perturbations in the geomagnetic field
were adiabatically turned off leaving only the dipole field (Roederer, 1970). It should be noted
that in a nondipolar field 𝐿∗ does not represent a spatial coordinate, instead 𝐿∗ is a property of
a stably trapped particle (Roederer and Lejosne, 2018). That is, in absence of acceleration or
loss processes, 𝐿∗ defines a surface with constant phase space density. If a particle encounter a
boundary of the radiation belt system (i.e. the magnetopause or atmosphere) during its drift
leading to its loss from the system, the particle does not have an 𝐿∗ value. The particle is said
to be in the drift loss cone.

3Note that for the same energy at the same L shell, the electron drifts slower than the ion!
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Therefore, the 𝐿 and 𝐿∗ parameters coincide in a dipole field, but in a nondipolar field, these
parameters are different. Typically, 𝐿 is used with particle fluxes whereas 𝐿∗ is better suited
for phase space density. An interesting phenomenon from a nondipolar field is the drift-shell
splitting, as been proposed as one of the mechanisms for causing the pressure anisotropy in the
magnetosphere (Chapter 18).

4.9 Ring Current

One typical application of the single particle motion is the study of ring current. Beyond the
lowest order of motion (i.e. gyration combined with parallel drift) of charged particles in the
magnetosphere, let us examine the higher order corrections. For the case of non-time-varying
fields, and a weak electric field, these corrections consist of a combination of E × B drift,
grad-𝐵 drift, and curvature drift:

v1⟂ = E × B
𝐵2 + 𝜇

𝑚Ω�̂� × ∇𝐵 +
𝑣2∥
Ω

̂𝑏 × ( ̂𝑏 ⋅ ∇) ̂𝑏

Let us neglect the E×B drift, since this motion merely gives rise to the convection of plasma
within the magnetosphere, without generating a current. By contrast, there is a net current
associated with grad-𝐵 drift and curvature drift. In the limit in which this current does not
strongly modify the ambient magnetic field (i.e., ∇× B ≃ 0), which is certainly the situation
in the Earth’s magnetosphere, we can write

(B ⋅ ∇)B = −B × (∇× B) ≃ ∇⟂𝐵
𝐵

It follows that the higher order drifts can be combined to give

v1⟂ =
(𝑣 2

⟂ /2 + 𝑣 2
∥ )

Ω𝐵 B ×∇𝐵

For the dipole field Equation 3.4, the above expression yields

v1⟂ ≃ −sgn(Ω) 6 ℰ𝐿2

𝑒𝐵𝐸𝑅𝐸
(1 − 𝐵/2𝐵𝑚)cos5 𝜗(1 + sin2 𝜗)

(1 + 3 sin2 𝜗)2
�̂� (4.49)

where ℰ is the energy of the particle, 𝐵𝐸 is the equatorial magnetic field-strength on the
Earth’s surface, and 𝐵𝑚 is the magnetic field-strength at the mirror points. Note that the
drift is in the azimuthal direction. A positive drift velocity corresponds to eastward motion,
whereas a negative velocity corresponds to westward motion. It is clear that, in addition to
their gyromotion and periodic bouncing motion along field lines, charged particles trapped in
the magnetosphere also slowly precess around the Earth. The ions drift westwards and the
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electrons drift eastwards, giving rise to a net westward current circulating around the Earth.
This current is known as the ring current.

Although the perturbations to the Earth’s magnetic field induced by the ring current are
small, they are still detectable. In fact, the ring current causes a slight reduction in the
Earth’s magnetic field in equatorial regions. The size of this reduction is a good measure of
the number of charged particles contained in the Van Allen belts (Chapter 20). During the
development of so-called geomagnetic storms, charged particles are injected into the Van Allen
belts from the outer magnetosphere, giving rise to a sharp increase in the ring current, and
a corresponding decrease in the Earth’s equatorial magnetic field. These particles eventually
precipitate out of the magnetosphere into the upper atmosphere at high latitudes, giving
rise to intense auroral activity, serious interference in electromagnetic communications, and,
in extreme cases, disruption of electric power grids. The ring current induced reduction in
the Earth’s magnetic field is measured by the so-called Dst index, which is based on hourly
averages of the northward horizontal component of the terrestrial magnetic field recorded at
four low-latitude observatories; Honolulu (Hawaii), San Juan (Puerto Rico), Hermanus (South
Africa), and Kakioka (Japan). A reduction in the Dst index by 600 nT corresponds to a 2%
reduction in the terrestrial magnetic field at the equator.

According to Equation 4.49, the precessional drift velocity of charged particles in the magne-
tosphere is a rapidly decreasing function of increasing latitude (i.e., most of the ring current
is concentrated in the equatorial plane). Since particles typically complete many bounce or-
bits during a full rotation around the Earth, it is convenient to average Equation 4.49 over
a bounce period to obtain the average drift velocity. This averaging can only be performed
numerically. The final answer is well approximated by

⟨𝑣𝑑⟩ ≃
6ℰ𝐿2

𝑒𝐵𝐸 𝑅𝐸
(0.35 + 0.15 sin𝛼eq) (4.50)

The average drift period (i.e., the time required to perform a complete rotation around the
Earth) is simply

⟨𝜏𝑑⟩ =
2𝜋 𝐿𝑅𝐸
⟨𝑣𝑑⟩

≃ 𝜋𝑒𝐵𝐸𝑅2
𝐸

3ℰ𝐿 (0.35 + 0.15 sin𝛼eq)−1

Thus, the drift period for protons and electrons is

⟨𝜏𝑑⟩𝑝 = ⟨𝜏𝑑⟩𝑒 ≃ 1.05
ℰ(MeV)𝐿 (1 + 0.43 sin𝛼eq)−1 hours

Note that MeV energy electrons and ions precess around the Earth with about the same veloc-
ity, only in opposite directions, because there is no explicit mass dependence in Equation 4.50.
It typically takes ∼ 20 mins to perform a full rotation. The drift period only depends weakly
on the equatorial pitch angle 𝛼eq, as is the case for the bounce period. Somewhat paradoxi-
cally, the drift period is shorter on more distant 𝐿-shells. Note, of course, that particles only
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get a chance to complete a full rotation around the Earth if the inner magnetosphere remains
quiescent on time-scales of order an hour, which is, by no means, always the case.

Note that since the rest mass of an electron is 0.511MeV/𝑐2, most of the above formulae
require relativistic correction when applied to MeV energy electrons. Fortunately, however,
there is no such problem for protons, whose rest mass energy is 0.938GeV/𝑐2.
Current theory suggests that the lower latitude (compared with the region I current) region
II current is closely linked to the ring current, or more precisely, the partial ring current
(substorm current wedge?) on the nightside. The ring current is generated from supra-thermal
electrons and ions but not the thermal portion, thus requires extra care on the high energy
tail distribution which may not be present in a model that only resolves the thermal part.

4.10 Particle Acceleration

• Fermi acceleration is the acceleration that charged particles undergo when being repeat-
edly reflected, usually by a magnetic mirror. This is sometimes referred to as diffusive
shock acceleration, which is actually a subclass of Fermi acceleration (Axford, Leer, and
Skadron 1977). There are two types of Fermi acceleration: first-order Fermi acceleration
(in shocks) and second-order Fermi acceleration (in the environment of moving magne-
tized gas clouds). In both cases the environment has to be collisionless in order for the
mechanism to be effective. This is because Fermi acceleration only applies to particles
with energies exceeding the thermal energies, and frequent collisions with surrounding
particles will cause severe energy loss and as a result no acceleration will occur. See more
in wiki and (Fermi 1949).

• Betatron acceleration refers to situations in which the magnetic field strength increases
slowly in time (compared with a gyroperiod), so that 𝜇 remains constant, but the particle
kinetic energy is not constant due to the presence of electric fields (associated with
the time-varying magnetic field). Then, the perpendicular energy is increased due to
constancy of 𝜇.

• Shock drift acceleration. Gradients within the shock transition region may give rise to the
phenomenon of Shock Drift Acceleration (SDA), where ions travel along the shock front
and gyrate through the ramp multiple times before either passing into the downstream
or escaping into the upstream region. The sudden compression of the plasma creates
complex electric field that can accelerate charged particles.

Particle accelerations are important consequences of magnetic reconnection and shocks. In
magnetic reconnection processes, the energy is rapidly converted from magnetic field to parti-
cles in the forms of flows, bulk (“thermal”) heating, and high-energy (“nonthermal”) tails. (Ji
et al. 2022) describes the current understanding of electron acceleration during magnetic recon-
nection in the non-relativistic and relativistic regimes. First-principles numerical simulations
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suggest power-law nonthermal particle populations are more prevalent in systems with low 𝛽
and moderate guide (perpendicular to the reconnection plane) magnetic fields, with accelera-
tion efficiency enhanced in 3D compared to simplified 2D calculations. Multiple acceleration
mechanisms have been studied. In the localized diffusion region near an X-line without a guide
field, particles may become demagnetized, prone to be directly accelerated by the reconnection
electric field as they undergo so-called Speiser or meandering orbits. There is recent labora-
tory evidence for electron acceleration by this mechanism in action during magnetically driven
reconnection at low-𝛽 using laser-powered capacitor coils. There is also numerical evidence
that a substantial fraction of dissipated magnetic energy is carried by particles accelerated by
this mechanism when they are demagnetized and escape from plasmoids in 3D.

Over larger scales when the particles remain magnetized, there are three basic particle accel-
eration processes that dominate in collisionless reconnection: Fermi acceleration which takes
place as particles stream along and drift in relaxing curved magnetic field lines, relatively lo-
calized electric fields 𝐸∥ parallel to the magnetic field directly accelerate particles, and betatron
heating which occurs as particles drift into regions of stronger magnetic field while conserving
the first adiabatic moment 𝜇 = 𝑚𝑣2⟂/𝐵. These mechanisms are described by guiding center
equations of motion for the particles, and the energization rate in the non-relativistic limit is
given approximately by the following equation:

dℰ
𝑑𝑡 = 𝑞𝐸∥𝑣∥ + 𝜇d𝐵

d𝑡 + 𝑞E ⋅ u𝑐 +
1
2𝑚

d
d𝑡 |u𝐸|2 (4.51)

where ℰ is the energy of a particle, u𝐸 is the E × B drift velocity, d
d𝑡 = 𝜕

𝜕𝑡 + u𝐸 ⋅ ∇, 𝐸∥ is the
parallel electric field, and 𝑣∥ is the drift-corrected guiding center parallel velocity. For slowly
varying fields, u𝑐 is the curvature drift of particles and reduces to u𝑐 ∼ (𝑚𝑣2∥/𝑞𝐵)( ̂𝑏 × 𝜅𝜅𝜅),
where 𝜅𝜅𝜅 = ̂𝑏 ⋅ ∇ ̂𝑏 is the magnetic field curvature and ̂𝑏 is the unit vector in the direction
of B. The terms on the right-hand side represent energy gain by the parallel electric field,
betatron heating, Fermi acceleration, and the polarization drift respectively. The first three
mechanisms are sketched in ?@fig-particle-acceleration-reconnection. The polarization
drift is particularly important for lower-energy ions, and this terms accounts for the kinetic
energy gain in the large-scale reconnection outflow jets. Although Equation 4.51 is valid in the
non-relativistic limit, the same basic acceleration mechanisms are responsible for energizing
particles in more extreme relativistic contexts relevant to astrophysical systems.

Particles gain energy when their drift induced by the curvature of the magnetic field lines is
aligned with the reconnection electric field, which is a form of Fermi heating. Fermi acceleration
may resolve two major challenges for heating models. First, it may operate over large volumes
in the presence of many magnetic islands or plasmoids, which may be sampled by electrons
in the presence of 3D ergodic field lines. There are several space observations of energetic
electrons near magnetic islands or plasmoids. Second, the Fermi process naturally generates
power laws because a particle undergoing Fermi acceleration gains energy at a rate proportional
to its energy, 𝛿ℰ ∝ ℰ. In the non-relativistic limit, adiabatic particle energization by Fermi
acceleration along with the other heating mechanisms for magnetized particles leads to a
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Parker-like transport equation for the distribution 𝑓(𝑣∥, 𝑣⟂) of particles within a magnetic flux
tube including time-varying plasma density 𝑛 and magnetic field B:

𝜕𝑓
𝜕𝑡 + �̇�

𝐵𝑣2⟂
𝜕𝑓
𝜕𝑣2⟂

+(�̇�
𝑛 − �̇�

𝐵)𝑣∥
𝜕𝑓
𝜕𝑣∥

= 𝐷{𝑓}
𝜏diff

− 𝑓
𝜏esc

+ 𝑓inj
𝜏inj

(4.52)

where 𝐷{𝑓}
𝜏diff

includes diffusive processes such as pitch-angle or energy scattering, 𝜏esc is a typical
time for particles to escape the reconnection geometry, and 𝑓inj/𝜏inj is a source of newly injected
particles. This transport equation leads to power-law solutions under certain assumptions,
though the Fermi process becomes much less effective at generating power-law nonthermal tails
in the presence of a significant guide magnetic field component. With certain assumptions,
it is possible to solve the Parker equation using the velocity and magnetic fields from MHD
simulations to obtain predictions of the particle acceleration, but this approach does not include
the self-consistent feedback.

4.11 Test Particle Model

The test particle method is not self-consistent, because we only describe the effect of the fields
onto particles, but not vice versa. This reduces the PDEs to ODEs which is much simpler
to solve. Despite of this, we use the trajectories of test particles to infer approximate kinetic
properties of the system. You will see many examples of understanding more complicated
scenario using the drifts derived from test particle motions, especially in terms of stability
analysis.

There are four methods in test particle modelling:

1. Trajectory sampling. It solves individual particle trajectories, but it may not be trivial
to select the samples.

2. Forward Monte Carlo. We inject particles in source regions where 𝑓 is known, and follow
them until they reach the regions of interest. This is similar to PIC, except that the
fields are not self-consistent.

3. Forward Liouville.

4. Backward Liouville. It also makes use of the Liouville’s theorem for 𝑓 , but there is no
sampling, neither in x nor in v space, implying no statistical errors. The procedure
starts by choosing a given point x in space …

122



5 Plasmas as Fluid

In a plasma the situation is much more complicated than that single particle orbits; the E and
B fields are not prescribed but are determined by the positions and motions of the charges
themselves. One must solve a self-consistent problem; that is, find a set of particle trajectories
and field patterns such that the particles will generate the fields as they move along their
orbits and the fields will cause the particles to move in those exact orbits. And this must be
done in a time-varying situation. It sounds very hard, but it is not.

We have seen that a typical plasma density might be 1018 ion–electron pairs per m3. If each
of these particles follows a complicated trajectory and it is necessary to follow each of these,
predicting the plasma’s behavior would be a hopeless task. Fortunately, this is not usually
necessary because, surprisingly, the majority-perhaps as much as 80%-of plasma phenomena
observed in real experiments can be explained by a rather crude model. This model is that
used in fluid mechanics, in which the identity of the individual particle is neglected, and only
the motion of fluid elements is taken into account. Of course, in the case of plasmas, the fluid
contains electrical charges. In an ordinary fluid, frequent collisions between particles keep
the particles in a fluid element moving together. It is surprising that such a model works for
plasmas, which generally have infrequent collisions. But we shall see that there is a reason for
this.

A more refined treatment-the kinetic theory of plasmas-requires more mathematical calculation.
An introduction to kinetic theory is given in Chapter 8.

In some plasma problems, neither fluid theory nor kinetic theory is sufficient to describe the
plasma’s behavior. Then one has to fall back on the tedious process of following the individual
trajectories. Brute-force computer simulation can play an important role in filling the gap
between theory and experiment in those instances where even kinetic theory cannot come
close to explaining what is observed.

5.1 Definitions

Variable Description
𝑚𝑠 mass
𝑞𝑠 charge
𝑛𝑠 number density
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Variable Description
𝜌𝑠 mass density
𝜎𝑠, 𝜌∗ charge density (= 𝑛𝑠𝑞𝑠)
𝑇𝑠 temperature
𝑝𝑠 scalar pressure
u𝑠 flow velocity
J𝑠 current density (= 𝜌∗𝑠u𝑠)
𝑒𝑠 internal energy
𝜙𝑠 potential energy
𝜖𝑠 total energy (= 𝑒𝑠 + us

2

2 + 𝜙𝑠)

where 𝑠 denotes the species (e.g. H+,O+). Do not confuse 𝜎 here with conductivity. Then the
total quantities without subscripts can be written as

𝑛 = ∑
𝑠

𝑛𝑠

𝜌 = ∑
𝑠

𝜌𝑠 = ∑
𝑠

𝑚𝑠𝑛𝑠

𝑝 = ∑
𝑠

𝑝𝑠

𝑇 = ∑
𝑠

𝑛𝑠
𝑛 𝑇𝑠

u = 1
𝜌 ∑

𝑠
𝜌𝑠u𝑠

v𝑠 = u𝑠 − u, relative velocity of the 𝑠𝑡ℎ species
𝜎 = ∑

𝑠
𝜎𝑠 = ∑

𝑠
𝑞𝑠𝑛𝑠

J = ∑
𝑠

J𝑠 = ∑
𝑠

𝜎𝑠u𝑠 = ∑
𝑠

𝜎𝑠v𝑠 + u∑
𝑠

𝜎𝑠 = ∑
𝑠

𝜎𝑠v𝑠 + 𝜎u = J𝑐𝑑 + J𝑐𝑣

where J𝑐𝑑 = ∑
𝑠

𝜎𝑠v𝑠 is the conduction current density

J𝑐𝑣 = 𝜎u is the convection current density

𝜖 = 1
𝜌 ∑

𝑠
𝜌𝑠𝜖𝑠 = 𝑒 + 𝑢2

2 + 𝜙 (internal + kinetic + potential)

It can be easily verified that

∑
𝑠

𝜌𝑠v𝑠 = 0
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In this note we tried to use v for all species/particle-based velocities, and u for all bulk
velocities.

We have 5 independent unknown quantities for each species: 𝑛𝑗,u𝑗, 𝑝𝑗. The pressure can be
replaced by temperature 𝑇𝑗. Additionally, we have the 6 EM field quantities: B,E. For a
2-fluid despcription with ions and electrons, altogether we have 5 ∗ 2 + 6 = 16 unknowns, so
we need 16 equations to determine the system.

5.2 Relation of Plasma to Ordinary Electromagnetics

5.2.1 Maxwell’s Equations

In vacuum:

𝜖0∇ ⋅ E = 𝜎
∇× E = −Ḃ
∇ ⋅ B = 0

∇× B = 𝜇0(J + 𝜖0Ė)

(5.1)

In a medium:

∇ ⋅ D = 𝜎
∇× E = −Ḃ
∇ ⋅ B = 0

∇× H = J + Ḋ
D = 𝜖E
B = 𝜇H

(5.2)

𝜎 and J stand for the “free” charge and current densities. The “bound” charge and current den-
sities arising from polarization and magnetization of the medium are included in the definition
of the quantities D and H in terms of 𝜖 and 𝜇. In a plasma, the ions and electrons comprising
the plasma are the equivalent of the “bound” charges and currents. Since these charges move
in a complicated way, it is impractical to try to lump their effects into two constants 𝜖 and 𝜇.
Consequently, in plasma physics, one generally works with the vacuum equations, in which 𝜎
and J include all the charges and currents, both external and internal.

Note that we have used E and B in the vacuum equations rather than their counterparts D
and H, which are related by the constants 𝜖0 and 𝜇0. This is because the forces 𝑞E and J×B
depend on E and B rather than D and H, and it is not necessary to introduce the latter
quantities as long as one is dealing with the vacuum equations.
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5.2.2 Classical Treatment of Magnetic Materials

Since each gyrating particle has a magnetic moment, it would seem that the logical thing to do
would be to consider a plasma as a magnetic material with a permeability 𝜇𝑚. ((We have put
a subscript 𝑚 on the permeability to distinguish it from the adiabatic invariant 𝜇.) To see why
this is not done in practice, let us review the way magnetic materials are usually treated.

The ferromagnetic domains, say, of a piece of iron have magnetic moments 𝜇𝑖, giving rise to a
bulk magnetization

M = 1
𝑉 ∑

𝑖
𝜇𝑖

per unit volume. This has the same effect as a bound current density equal to

J𝑏 = ∇× M

In the vacuum Ampère’s law, we must include in J both this current and the “free”, or
externally applied, current J𝑓 :

𝜇−1
0 ∇× B = J𝑓 + J𝑏 + 𝜖0Ė

We wish to write this equation in the simple form

∇× H = J𝑓 + 𝜖0Ė

by including J𝑏 in the definition of H. This can be done if we let

H = 𝜇−1
0 B − M

To get a simple relation between B and H, we assume M to be proportional to B or H:

M = 𝜒𝑚H

The constant 𝜒𝑚 is the magnetic susceptibility. We now have

B = 𝜇0(1 + 𝜒𝑚)H ≡ 𝜇𝑚H

This simple relation between B and H is possible because of the linear relation between M
and H.
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In a plasma with a magnetic field, each particle has a magnetic moment 𝜇𝛼, and the quantity
M is the sum of all these 𝜇𝛼’s in 1 m3. But now we have

𝜇𝛼 = 𝑚𝑣2⟂𝛼
2𝐵 ∝ 1

𝐵 M ∝ 1
𝐵

The relation between M and H (or B) is no longer linear, and we cannot write B = 𝜇𝑚H
with 𝜇𝑚 constant. It is therefore not useful to consider a plasma as a magnetic medium.

5.2.3 Classical Treatment of Dielectrics

The polarization P per unit volume is the sum over all the individual moments p𝑖 of the
electric dipoles. This gives rise to a bound charge density

𝜎𝑏 = −∇ ⋅ P (5.3)

In the vacuum equation, we must include both the bound charge and the free charge:

𝜖0∇ ⋅ E = 𝜎𝑓 + 𝜎𝑏

We wish to write this in the simple form

∇ ⋅ D = 𝜎𝑓

by including 𝜎𝑏 in the definition of D. This can be done by letting

D = 𝜖0E + P ≡ 𝜖E

If P is linearly proportional to E,

P = 𝜖0𝜒𝑒E

then 𝜖 is a constant given by

𝜖 = (1 + 𝜒𝑒)𝜖0

There is no a priori reason why a relation like the above cannot be valid in a plasma, so we
may proceed to try to get an expression for 𝜖 in a plasma.
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5.2.4 The Dielectric Constant of a Plasma

We have seen in Section 4.4 that a fluctuating E field gives rise to a polarization current J𝑝.
This leads, in turn, to a polarization charge given by the equation of continuity:

𝜕𝜎𝑝
𝜕𝑡 + ∇ ⋅ J𝑝 = 0

This is the equivalent of Equation 5.3, except that, as we noted before, a polarization effect
does not arise in a plasma unless the electric field is time varying. Since we have an explicit
expression for J𝑝 but not for 𝜎𝑝, it is easier to work with the Ampère’s law:

∇× B = 𝜇0(J𝑓 + J𝑝 + 𝜖Ė)

We wish to write this in the form

∇× B = 𝜇0(J𝑓 + 𝜖Ė)

This can be done if we let

𝜖 = 𝜖0 +
𝑗𝑝
̇𝐸

From Equation 4.12 for J𝑝, we have

𝜖 = 𝜖0 +
𝜌
𝐵2 or 𝜖𝑅 ≡ 𝜖

𝜖0
= 1 + 𝜇0𝜌𝑐2

𝐵2 (5.4)

This is the low-frequency plasma dielectric constant for transverse motions. The qualifications
are necessary because our expression for J𝑝 is valid only for 𝜔2 ≪ 𝜔2

𝑐 and for E perpendicular
to B. The general expression for 𝜖, of course, is very complicated and hardly fits on one
page.

Note that as 𝜌 → 0, 𝜖𝑅 approaches its vacuum value, unity, as it should. As 𝐵 → ∞, 𝜖𝑅 also
approaches unity. This is because the polarization drift v𝑝 then vanishes, and the particles
do not move in response to the transverse electric field. In a usual laboratory plasma, the
second term in Equation 5.4 is large compared with unity. For instance, if 𝑛 = 1016 m−3 and
𝐵 = 0.1T we have (for hydrogen)

𝜇0𝜌𝑐2
𝐵2 = (4𝜋 × 10−7)(1016)(1.67 × 10−27)(3 × 108)2

(0.1)2 = 189
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This means that the electric fields due to the particles in the plasma greatly alter the fields
applied externally. A plasma with large 𝜖 shields out alternating fields, just as a plasma with
small 𝜆𝐷 shields out dc fields.

5.3 Fluid Equations

In (F. F. Chen 2016), this is introduced in the diffusion chapter 5.7, which is a bit weird. In
(Bellan 2008), this is introduced in chapter 2 where Vlasov equation is first derived and then
follows the simplifications which lead to 2-fluid and MHD.

5.3.1 Equation of Continuity

The integral form of mass conservation for each species is

d
d𝑡 ∫𝑉

𝜌𝑠𝑑𝑥3 = 0

The conservation of matter requires that the total number of particles 𝑁𝑠 in a volume V can
change only if there is a net flux of particles across the surface S bounding that volume. Since
the particle flux density is 𝑛𝑠u𝑠, we have, by the divergence theorem,

𝜕𝑁𝑠
𝜕𝑡 = ∫

𝑉

𝜕𝑛𝑠
𝜕𝑡 𝑑𝑉 = −∮𝑛u𝑠 ⋅ dS = −∫

𝑉
∇ ⋅ (𝑛𝑠u𝑠)𝑑𝑉

Since this must hold for any volume V, the integrands must be equal:

𝜕𝑛𝑠
𝜕𝑡 + ∇ ⋅ (𝑛𝑠u𝑠) = 0 (5.5)

There is one such equation of continuity for each species. Any sources or sinks of particles are
to be added to the right-hand side.

5.3.2 Momentum Equation

Maxwell’s equations tell us what E and B are for a given state of the plasma. To solve the
self-consistent problem, we must also have an equation giving the plasma’s response to given
E and B. In the fluid approximation, we consider the plasma to be composed of two or more
interpenetrating fluids, one for each species. In the simplest case, when there is only one
species of ion, we shall need two equations of motion, one for the positively charged ion fluid
and one for the negatively charged electron fluid. In a partially ionized gas, we shall also need
an equation for the fluid of neutral atoms. The neutral fluid will interact with the ions and
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electrons only through collisions. The ion and electron fluids will interact with each other even
in the absence of collisions, because of the E and B fields they generate.

The equation of motion for a single particle is

𝑚dv
d𝑡 = 𝑞(E + v × B) (5.6)

Assume first that there are no collisions and no thermal motions. Then all the particles in a
fluid element move together, and the average velocity u of the particles in the element is the
same as the individual particle velocity v. The fluid equation is obtained simply by multiplying
Equation 5.6 by the density 𝑛:

𝑚𝑛du
d𝑡 = 𝑞𝑛(E + u × B) (5.7)

This is, however, not a convenient form to use. In Equation 5.6, the time derivative is to be
taken at the position of the particles. On the other hand, we wish to have an equation for fluid
elements fixed in space, because it would be impractical to do otherwise. Consider a drop of
cream in a cup of coffee as a fluid element. As the coffee is stirred, the drop distorts into a
filament and finally disperses all over the cup, losing its identity. A fluid element at a fixed
spot in the cup, however, retains its identity although particles continually go in and out of
it.

To make the transformation to variables in a fixed frame, consider G(𝑥, 𝑡) to be any property
of a fluid in one-dimensional x space. The change of G with time in a frame moving with the
fluid is the sum of two terms:

dG(𝑥, 𝑡)
d𝑡 = 𝜕G

𝜕𝑡 + 𝜕G
𝜕𝑥

𝜕𝑥
𝜕𝑡 = 𝜕G

𝜕𝑡 + 𝑢𝑥
𝜕G
𝜕𝑥

The first term on the right represents the change of G at a fixed point in space, and the second
term represents the change of G as the observer moves with the fluid into a region in which
G is different. In three dimensions, this generalizes to

dG
d𝑡 = 𝜕G

𝜕𝑡 + (u ⋅ ∇)G

This is called the convective derivative (Equation 3.2).

In the case of a plasma, we take G to be the fluid velocity u and write Equation 5.7 as

𝑚𝑛[𝜕u
𝜕𝑡 + (u ⋅ ∇)u] = 𝑞𝑛(E + u × B)

where 𝜕u/𝜕𝑡 is the time derivative in a fixed frame.
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Stress Tensor –> scalar pressure

𝑚𝑛[𝜕u
𝜕𝑡 + (u ⋅ ∇)u] = 𝑞𝑛(E + u × B) − ∇𝑝 (5.8)

What we have shown here is only a special case: the transfer of 𝑥 momentum by motion in
the 𝑥 direction; and we have assumed that the fluid is isotropic, so that the same result holds
in the y and z directions. But it is also possible to transfer 𝑦 momentum by motion in the 𝑥
direction, for instance. This shear stress cannot be represented by a scalar 𝑝 but must be given
by a tensor P, the stress tensor, whose components 𝑃𝑖𝑗 = 𝑚𝑛𝑣𝑖𝑣𝑗 specify both the direction
of motion and the component of momentum involved. In the general case the term ∇𝑝 is
replaced by −∇ ⋅ P.

When the distribution function is an isotropic Maxwellian, P is written

P = ⎛⎜
⎝

𝑝 0 0
0 𝑝 0
0 0 𝑝

⎞⎟
⎠

−∇⋅P = ∇𝑝. A plasma could have two temperatures 𝑇⟂ and 𝑇∥ in the presence of a magnetic
field. In that case, there would be two pressures 𝑇⟂ and 𝑇∥ in the presence of a magnetic field.
In that case, there would be two pressure 𝑝⟂ = 𝑛𝑘𝐵𝑇⟂ and 𝑝∥ = 𝑛𝑘𝐵𝑇∥. The stress tensor is
then

P = ⎛⎜
⎝

𝑝⟂ 0 0
0 𝑝⟂ 0
0 0 𝑝∥

⎞⎟
⎠

where the coordinate of the third row or column is the direction of B. This is still diagonal
and shows isotropy in a plane perpendicular to B.

In an ordinary fluid, the off-diagonal elements of P are usually associated with viscosity. When
particles make collisions, they come off with an average velocity in the direction of the fluid
velocity u at the point where they made their last collision. This momentum is transferred to
another fluid element upon the next collision. This tends to equalize u at different points, and
the resulting resistance to shear flow is what we intuitively think of as viscosity. The longer the
mean free path, the farther momentum is carried, and the larger is the viscosity. In a plasma
there is a similar effect which occurs even in the absence of collisions. The Larmor gyration
of particles (particularly ions) brings them into different parts of the plasma and tends to
equalize the fluid velocities there. The Larmor radius rather than the mean free path sets the
scale of this kind of collisionless viscosity. It is a finite-Larmor-radius effect which occurs in
addition to collisional viscosity and is closely related to the v𝐸 drift in a nonuniform E field
(Equation 4.11).
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5.3.2.1 Collisions

If there is a neutral gas, the charged fluid will exchange momentum with it through collisions.
The momentum lost per collision will be proportional to the relative velocity u−u0, where u0
is the velocity of the neutral fluid. If 𝜏 , the mean free time between collisions, is approximately
constant, the resulting force term can be roughly written as −𝑚𝑛(u−u0)/𝜏 . The equation of
motion can be generalized to include anisotropic pressure and neutral collisions as follows:

𝑚𝑛[𝜕u
𝜕𝑡 + (u ⋅ ∇)u] = 𝑞𝑛(E + u × B) − ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃 − 𝑚𝑛(u − u0)

𝜏 (5.9)

This can also be written as (including the pressure term and other forces)

𝜌du
d𝑡 = (𝜌∗E + J × B) − ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃 + f𝑛

or, in an equivalent conservative form,

𝜕(𝜌u)
𝜕𝑡 + ∇ ⋅ (𝜌uu) = (𝜌∗E + J × B) − ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃 + f𝑛

Collisions between charged particles have not been included; these will be discussed in sec-
collision ADD IT!.

5.3.2.2 Comparison with Ordinary Hydrodynamics

Ordinary fluids obey the Navier–Stokes equation

𝜌[𝜕u
𝜕𝑡 + (u ⋅ ∇)u] = −∇𝑝 + 𝜌𝜈∇2u (5.10)

This is the same as Equation 5.9 except for the absence of electromagnetic forces and collisions
between species (there being only one species). The viscosity term 𝜌𝜈∇2u, where 𝜈 is the
kinematic viscosity coefficient, is just the collisional part of ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃 − ∇𝑝 in the absence of
magnetic fields. Equation 5.10 describes a fluid in which there are frequent collisions between
particles. Equation 5.9, on the other hand, was derived without any explicit statement of
the collision rate. Since the two equations are identical except for the E and B terms, can
Equation 5.9 really describe a plasma species? The answer is a guarded yes, and the reasons
for this will tell us the limitations of the fluid theory. This is extremely important to clarify —
there are still quite many people think that collision is assumed for the fluid theory, therefore
do not believe that MHD can be used to describe plasmas.

In the derivation of Equation 5.9, we did actually assume implicitly that there were many
collisions. This assumption came in the derivation of the pressure tensor (Section 8.4) when
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we took the velocity distribution to be Maxwellian. Such a distribution generally comes about
as the result of frequent collisions. However, this assumption was used only to take the average
of 𝑣2. Any other distribution with the same average would give us the same answer. The fluid
theory, therefore, is not very sensitive to deviations from the Maxwellian distribution, but
there are instances in which these deviations are important. Kinetic theory must then be
used.

There is also an empirical observation by Irving Langmuir which helps the fluid theory. In
working with the electrostatic probes which bear his name, Langmuir discovered that the
electron distribution function was far more nearly Maxwellian than could be accounted for by
the collision rate. This phenomenon, called Langmuir’s paradox, has been attributed at times
to high-frequency oscillations. There has been no satisfactory resolution of the paradox, but
this seems to be one of the few instances in plasma physics where nature works in our favor.

Another reason the fluid model works for plasmas is that the magnetic field, when there is
one, can play the role of collisions in a certain sense. When a particle is accelerated, say by
an E field, it would continuously increase in velocity if it were allowed to free-stream. When
there are frequent collisions, the particle comes to a limiting velocity proportional to E. The
electrons in a copper wire, for instance, drift together with a velocity v = 𝜇E, where 𝜇 is the
mobility. A magnetic field also limits free-streaming by forcing particles to gyrate in Larmor
orbits. The electrons in a plasma also drift together with a velocity proportional to E, namely,
v𝐸 = E×B/𝐵2. In this sense, a collisionless plasma behaves like a collisional fluid. Of course,
particles do free-stream along the magnetic field, and the fluid picture is not particularly
suitable for motions in that direction. For motions perpendicular to B, the fluid theory is a
good approximation.

5.3.3 Equation of State

One more relation is needed to close the system of equations. A complete description requires
the equation of energy. However, the simplest way is to use the thermodynamic equation of
state relating 𝑝 to 𝑛:

𝑝 = 𝐶𝜌𝛾 (5.11)

where 𝐶 is a constant and 𝛾 is the ratio of specific heats 𝐶𝑝/𝐶𝜈. The term ∇𝑝 is therefore
given by

∇𝑝
𝑝 = 𝛾∇𝑛

𝑛 (5.12)

For isothermal compression, we have

∇𝑝 = ∇(𝑛𝑘𝐵𝑇 ) = 𝑘𝐵𝑇∇𝑛
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so that, clearly, 𝛾 = 1. For adiabatic compression, 𝑘𝐵𝑇 will also change, giving 𝛾 a value
larger than one. If 𝑁 is the number of degrees of freedom, 𝛾 is given by

𝛾 = (2 + 𝑁)/𝑁

The validity of the equation of state requires that heat flow be negligible; that is, that thermal
conductivity be low. Again, this is more likely to be true in directions perpendicular to B
than parallel to it. Fortunately, most basic phenomena can be described adequately by the
crude assumption of the equation of state.

5.4 Two-Fluid Model

Besides the Vlasov theory (Chapter 8), we can apply the simpler but equally powerful 2-fluid
model, in which electrons and ions are treated as two different fluids. Depending on the form
of the pressure term, we have the 5/6/10-moment equations.

5.4.1 Five-moment

Five-moment refers to (𝜌,u, 𝑝). Under either adiabatic or isothermal assumptions, we can get
rid of the pressure/energy equation and replace it with an equation of state. For simplicity,
let the plasma have only two species: ions and electrons; extension to more species is trivial.
The charge and current densities are then given by

𝜎 = 𝑛𝑖𝑞𝑖 + 𝑛𝑒𝑞𝑒
J = 𝑛𝑖𝑞𝑖v𝑖 + 𝑛𝑒𝑞𝑒v𝑒

We shall neglect collisions and viscosity. The complete equation set is:

𝜖0∇ ⋅ E = 𝑛𝑖𝑞𝑖 + 𝑛𝑒𝑞𝑒
∇× E = −Ḃ

∇ ⋅ B = 0
𝜇−1
0 ∇× B = 𝑛𝑖𝑞𝑖u𝑖 + 𝑛𝑒𝑞𝑒u𝑒 + 𝜖0Ė

𝑚𝑗𝑛𝑗[
𝜕u𝑗
𝜕𝑡 + (u𝑗 ⋅ ∇)u𝑗] = 𝑞𝑗𝑛𝑗(E + u𝑗 × B) − ∇𝑝𝑗 𝑗 = 𝑖, 𝑒

𝜕𝑛𝑗
𝜕𝑡 + ∇ ⋅ (𝑛𝑗u𝑗) = 0 𝑗 = 𝑖, 𝑒

𝑝𝑗 = 𝐶𝑗𝑛𝛾
𝑗 𝑗 = 𝑖, 𝑒

(5.13)

where 𝐶𝑗 is a constant and 𝛾 is the adiabatic index with the approximations in Table 5.2.
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Table 5.2: Equation of state approximations.

Regime Equation of state Name
𝑣ph ≫ 𝑣𝑡𝑠 𝑝𝑠 ∼ 𝑛𝛾

𝑠 adiabatic
𝑣ph ≪ 𝑣𝑡𝑠 𝑝𝑠 = 𝑛𝑠𝑘𝐵𝑇𝑠, 𝑇𝑠 = const. isothermal

There are 16 scalar unknowns: 𝑛𝑖, 𝑛𝑒, 𝑝𝑖, 𝑝𝑒,u𝑖,u𝑒,E, and B. There are apparently 18 scalar
equations if we count each vector equation as three scalar equations. However, two of Maxwell’s
equations are superfluous, since the two of the equations can be recovered from the divergences
of the other two. The simultaneous solution of this set of 16 equations in 16 unknowns gives
a self-consistent set of fields and motions in the fluid approximation.

5.4.2 Six-moment

For monatomic gases, the six-moment equations for all charged fluids (indexed by 𝑠) can be
written as:

𝜕𝜌𝑠
𝜕𝑡 + ∇ ⋅ (𝜌𝑠u𝑠) = 0

𝜕(𝜌𝑠u𝑠)
𝜕𝑡 + ∇ ⋅ [𝜌𝑠u𝑠u𝑠 + 𝑝𝑠⟂𝐼𝐼𝐼 + (𝑝𝑠∥ − 𝑝𝑠⟂) ̂𝑏 ̂𝑏] = 𝑞𝑠

𝑚𝑠
𝜌𝑠(E + u𝑠 × B)

𝜕𝑝𝑠∥
𝜕𝑡 + ∇ ⋅ (𝑝𝑠∥u𝑠) = −2𝑝𝑠∥ ̂𝑏 ⋅ ( ̂𝑏 ⋅ ∇)u𝑠

𝜕𝑝𝑠⟂
𝜕𝑡 + ∇ ⋅ (𝑝𝑠⟂u𝑠) = −𝑝𝑠⟂(∇ ⋅ u𝑠) + 𝑝𝑠⟂ ̂𝑏 ⋅ ( ̂𝑏 ⋅ ∇)u𝑠

(5.14)

The two pressure equations in Equation 5.14 can be combined to give the equation for the
average pressure 𝑝 = (2𝑝⟂ + 𝑝∥)/3:

𝜕𝑝𝑠
𝜕𝑡 + ∇ ⋅ (𝑝𝑠u𝑠) = (𝑝𝑠 − 𝑝𝑠∥) ̂𝑏 ⋅ ( ̂𝑏 ⋅ ∇)u𝑠 − (𝑝𝑠 −

𝑝𝑠∥
3 )∇ ⋅ u𝑠 (5.15)

Alternatively, we can solve for the hydrodynamic energy density 𝑒 = 𝑛u2
2 + 3

2𝑝 for each species:

𝜕𝑒𝑠
𝜕𝑡 + ∇ ⋅ [u𝑠(𝑒𝑠 + 𝑝𝑠) + u𝑠 ⋅ (𝑝𝑠∥ − 𝑝𝑠⟂) ̂𝑏 ̂𝑏] = 𝑞𝑠

𝑚𝑠
𝜌𝑠u𝑠 ⋅ E

which is more of a conservative form and can be beneficial to get better jump conditions
across shock waves. Note, however, that the parallel pressure equation is still solved with
the adiabatic assumption, so non-adiabatic heating is not properly captured. In addition,
the magnetic energy is not included into the energy density, so the jump conditions are only
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approximate (I think this is more of a numerical consideration). In general, there can be many
more source terms on the right hand sides of the above equations corresponding to gravity,
charge exchange, chemical reactions, collisions, etc.

The electric field E and magnetic field B are obtained from Maxwell’s equations:
𝜕B
𝜕𝑡 + ∇× E = 0

𝜕E
𝜕𝑡 − 𝑐2∇× B = −𝑐2𝜇0J

∇ ⋅ E = 𝜌𝑐
𝜖0

∇ ⋅ B = 0
where 𝜌𝑐 = ∑𝑠(𝑞𝑠/𝑚𝑠)𝜌𝑠 is the total charge density and J = ∑𝑠(𝑞𝑠/𝑚𝑠)𝜌𝑠u𝑠 is the current
density.

The last two equations are constraints on the initial conditions; these are not guaranteed to
hold numerically. Classical tricks involves using hyperbolic/parabolic cleaning or a facially-
collocated Yee-type mesh.

5.4.3 Five/Ten-moment

(L. Wang et al. 2020)

• Continuity equation for each species

𝜕(𝑚𝑠𝑛𝑠)
𝜕𝑡 + 𝜕(𝑚𝑠𝑛𝑠𝑢𝑗,𝑠)

𝜕𝑥𝑗
= 0

• Momentum equation for each species

𝑛𝑠𝑚𝑠
du𝑠
d𝑡 = 𝑛𝑠𝑞𝑠(E + u × B) − ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑠 − R𝑠𝛼

or in Einstein’s notation,
𝜕(𝑚𝑠𝑛𝑠𝑢𝑖,𝑠)

𝜕𝑡 = 𝑛𝑠𝑞𝑠(𝐸𝑖 + 𝜖𝑖𝑗𝑘𝑢𝑗,𝑠𝐵𝑘) −
𝜕𝒫𝑖𝑗,𝑠
𝜕𝑥𝑗

−𝑅𝑖,𝑠𝛼

where 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol. The moments are defined as

𝑛𝑠(x) ≡ ∫𝑓𝑠dv

𝑢𝑖,𝑠(x) ≡
1

𝑛𝑠(x)
∫𝑣𝑖𝑓𝑠dv

𝒫𝑖𝑗,𝑠(x) ≡ 𝑚𝑠 ∫𝑣𝑖𝑣𝑗𝑓𝑠dv
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with 𝑓𝑠(x,v, 𝑡) being the phase space distribution function. We will neglect the subscript
𝑠 hereinafter for convenience. For completeness, 𝒫𝑖𝑗 relates to the more familiar thermal
pressure tensor

𝑃𝑖𝑗 ≡ 𝑚∫(𝑣𝑖 − 𝑢𝑖)(𝑣𝑖 − 𝑢𝑖)𝑓dv

by
𝒫𝑖𝑗 = 𝑃𝑖𝑗 + 𝑛𝑚𝑢𝑖𝑢𝑗

For simplicity, non-ideal effects like viscous dissipation are neglected. The electric and magnetic
fields E and B are evolved using Maxwell equations

𝜕B
𝜕𝑡 + ∇× E = 0

𝜕E
𝜕𝑡 − 𝑐2∇× B = − 1

𝜖0
∑
𝑠

𝑞𝑠𝑛𝑠u𝑠

∇ ⋅ B = 0
∇ ⋅ E = 𝜖−1

0 ∑
𝑠

𝑛𝑠𝑞𝑠

with 𝑐 = 1/√(𝜇0𝜖0) being the speed of light.

To close the system, the second order moment 𝒫𝑖𝑗 or 𝑃𝑖𝑗 must be specified. For example, a
cold fluid closure simply sets 𝑃𝑖𝑗 = 0, while an isothermal equation of state (EOS) assumes
that the temperature is constant. Or, assuming zero heat flux and that the pressure tensor is
isotropic, we can write an adiabatic EOS for 𝑃𝑖𝑗 = 𝑝𝐼𝑖𝑗,

𝜕𝜖
𝜕𝑡 + ∇ ⋅ [(𝑝 + 𝜖)u] = 𝑛𝑞u ⋅ E

where
𝜖 ≡ 𝑝

𝛾 − 1 + 1
2𝑚𝑛u2

is the total fluid (thermal + kinetic) energy and 𝛾 is the adiabatic index, setting to 5/3 for
a fully ionized plasma. For a plasma with 𝑆 species (𝑠 = 1, ..., 𝑆) this system is closed and
has a total of 5𝑆 + 6 equations, and are here referred to as the five-moment model. More
general models can be obtained by retaining the evolution equations for all six components of
the pressure tensor in the so-called ten-moment model

𝒫𝑖𝑗,𝑠
𝜕𝑡 + 𝜕𝒬𝑖𝑗𝑚,𝑠

𝜕𝑥𝑚
= 𝑛𝑠𝑞𝑠𝑢𝑖,𝑠𝐸𝑗 +

𝑞𝑠
𝑚𝑠

𝜖𝑖𝑚𝑙𝒫𝑚𝑗,𝑠𝐵𝑙 (5.16)

where the third moment
𝒬𝑖𝑗𝑚,𝑠(x) ≡ 𝑚𝑠 ∫𝑣𝑖𝑣𝑗𝑣𝑚𝑓𝑠dv
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relates to the heat flux tensor defined in the fluid frame

𝑄𝑖𝑗𝑚 ≡ 𝑚∫(𝑣𝑖 − 𝑢𝑖)(𝑣𝑗 − 𝑢𝑗)(𝑣𝑚 − 𝑢𝑚)dv

by
𝒬𝑖𝑗𝑚 = 𝑄𝑖𝑗𝑚 + 𝑢𝑖𝒫𝑗𝑚 − 2𝑛𝑚𝑢𝑖𝑢𝑗𝑢𝑚

Again, the equations here must be closed by some approximation for the heat-flux tensor.
Another option is to include evolution equations for even higher order moments, e.g., the ten
independent components of the heat-flux tensor.

Theoretically, the multifluid-Maxwell equations approach the Hall magnetohydrodynamics
(MHD) under asymptotic limits of vanishing electron mass (𝑚𝑒 → 0) and infinite speed of
light (𝑐 → ∞). All waves and effects within the two-fluid picture are retained, for exam-
ple, the light wave, electron and ion inertial effects like the ion cyclotron wave and whistler
wave. Particularly, through properly devised heat-flux closures, the ten-moment model could
partially capture nonlocal kinetic effects like Landau damping, in a manner similar to the
gyrokinetic models.

Although multifluid-Maxwell models provide a more complete description of the plasma than
reduced, asymptotic models like MHD, they are less frequently used. The reason for this is
the fast kinetic scales involved. Retaining the electron inertia adds plasma-frequency and cy-
clotron time-scale, while non-neutrality adds Debye length spatial-scales. Further, inclusion
of the displacement currents means that EM waves must be resolved when using an explicit
scheme. Fortunately, the restrictions due to kinetic scales are introduced only through the
non-hyperbolic source terms of the momentum equation, the Ampère’s law, and the pressure
equation. Therefore we may eliminate these restrictions by updating the source term sepa-
rately either exactly or using an implicit algorithm (Note: BATSRUS applies the point-implicit
scheme.). This allows larger time steps and leads to significant speedup, especially with realis-
tic electron/ion mass ratios. The speed of light constraint still exists, however, can be greatly
relaxed, using reduced values for the speed of light and/or sub-cycling Maxwell equations.
Of course, an implicit Maxwell solver, or a reduced set of electromagnetic equations like the
Darwin approximation1, can also relax the time-step restrictions.

5.4.4 Characteristic wave speeds

The fastest wave speed in the 5/6/10-moment equations is the speed of light 𝑐. Theoretically,
the characteristic wave speeds shall be consistent and fallback to MHD in the isotropic 5-
moment case.

Numerically, however, using 𝑐 in the numerical fluxes makes the scheme rather diffusive (?).
The discretization time step is limited by the Courant-Friedrichs-Lewy (CFL) condition based

1the Darwin approximation ignores light waves by neglecting 𝜕E𝜕𝑡 in Amperè’s law.
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on the speed of light. In practice, we can reduce the speed of light to a value that is a factor
of 2-3 faster than the fastest flow and fast wave speed to speed up the simulation.

5.5 Generalized Ohm’s Law

The generalized Ohm’s law can be derived from two-fluid equations. Landau once pointed out
that the validity of describing plasma behaviors with two-fluid equations is based on the fact
that the time scale of ions and electrons to reach an equilibrium Maxwellian distribution is
much smaller than that of the heat exchange between species. The Ohm’s law is established
upon the collisions between electrons, ions and neutral species, and is used to describe the
relation between J and E, B, u.

5.5.1 Basic definitions and assumptions

Assume plasma consists of electrons and ionized H+. We use 𝑒, 𝑖, 𝑎 as subscripts for electron,
ion and neutral species respectively.

𝑞𝑒 = −𝑞𝑖 = −𝑒
𝑚𝑒 ≪ 𝑚𝑖 ≈ 𝑚𝑎

With the definition of ionization degree in Equation 2.1,

𝛼 = 𝑛𝑖
𝑛𝑖 + 𝑛𝑎

(5.17)

we have 𝑛𝑖
𝑛𝑎

= 𝛼
1 − 𝛼

𝑛𝑖
2𝑛𝑖 + 𝑛𝑎

= 𝛼
1 + 𝛼

𝑛𝑎
2𝑛𝑖 + 𝑛𝑎

= 1 − 𝛼
1 + 𝛼

The quasi-neutrality assumption gives

𝜌∗𝑒 + 𝜌∗𝑖 = 0 ⇒ 𝑛𝑒 = 𝑛𝑖
𝜌𝑒 = 𝑚𝑒𝑛𝑒 ≪ 𝜌𝑖 = 𝑚𝑖𝑛𝑖

Assume a system of ideal gas in thermal equilibrium,

𝑇𝑒 = 𝑇𝑖 = 𝑇𝑎
𝑝 = 𝑝𝑒 + 𝑝𝑖 + 𝑝𝑎
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Using the ionization degree defined in Equation 5.17, we have

𝑝𝑒 = 𝑝𝑖 =
𝑛𝑖

2𝑛𝑖 + 𝑛𝑎
𝑝 = 𝛼

1 + 𝛼𝑝

𝑝𝑎 = 𝑛𝑎
2𝑛𝑖 + 𝑛𝑎

𝑝 = 1 − 𝛼
1 + 𝛼𝑝

Also, we have
𝑣𝑒,𝑡ℎ ≫ 𝑣𝑖,𝑡ℎ

Assume that the flow velocity is much smaller than the thermal speed,

|v𝑠| ≪ |v𝑠,𝑡ℎ|, 𝑠 = 𝑒, 𝑖, 𝑎.

Typical time scale must satisfy 𝜏0 ≫ 𝜏collision.

Finally, we ignore viscosity and non-EM force in the derivation.

The average velocity of protons with respect to bulk velocity of the plasma, the velocity
difference between electron and ion, and the average velocity of neutral particles are

v𝑖 = u𝑖 − u
v𝑒𝑖 = u𝑒 − u𝑖

u𝑎 = u − 𝑛𝑖
𝑛𝑎

(v𝑖 +
𝑚𝑒
𝑚𝑖

v𝑒𝑖)

The average momenta of electrons relative to protons and neutral particles are

I𝑒𝑖 = 𝑚𝑒v𝑒𝑖

I𝑒𝑎 = 𝑚𝑒 [(1 + 𝑛𝑖𝑚𝑒
𝑛𝑎𝑚𝑖

)v𝑒𝑖 +(1 + 𝑛𝑖
𝑛𝑎

)v𝑖] ≈ 𝑚𝑒 [v𝑒𝑖 + ( 1
1 − 𝛼)v𝑖]

I𝑖𝑎 = 𝑚𝑖(u𝑖 − u𝑎) = 𝑚𝑖(v𝑖 + u − u𝑎) =
1

1 − 𝛼𝑚𝑖v𝑖 +
𝛼

1 − 𝛼𝑚𝑒v𝑒𝑖

Note that from Newton’s third law, ΔI𝑠𝑘 = −ΔI𝑘𝑠.

5.5.2 Equation of motion for each species

5.5.2.1 For electrons

𝑚𝑒𝑛𝑒
𝑑u𝑒
𝑑𝑡 = 𝑚𝑒𝑛𝑖

𝑑
𝑑𝑡 (v𝑒𝑖 + v𝑖 + u)

= −∇𝑝𝑒 − 𝑛𝑖𝑒 [E + (v𝑒𝑖 + v𝑖 + u) × B] + f𝑐𝑒
(5.18)
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where the collisional force

f𝑐𝑒 = −𝑛𝑖𝑚𝑒v𝑒𝑖 (𝜏−1
𝑒𝑖 + 𝜏−1

𝑒𝑎 ) − 1
1 − 𝛼𝑛𝑖𝑚𝑒v𝑖𝜏−1

𝑒𝑎 (5.19)

Proof :

f𝑐𝑠𝑘 ⋅ 𝜏𝑠𝑘 = 𝑛𝑠ΔI𝑠𝑘, where 𝜏𝑠𝑘 is the average collision interval.

ΔI𝑠𝑘 = −ΔI𝑘𝑠

Assuming elastic collision, we have

ΔI𝑠𝑘 = − 𝑚𝑠𝑚𝑘
𝑚𝑠 +𝑚𝑘

v𝑠𝑘

⇒ ΔI𝑒𝑘 = − 𝑚𝑘
𝑚𝑒 +𝑚𝑘

𝑚𝑒v𝑒𝑘 ≈ −I𝑒𝑘(ignore electron mass)

ΔI𝑖𝑎 = − 𝑚𝑎
𝑚𝑎 +𝑚𝑖

𝑚𝑖v𝑖𝑎 ≈ −1
2I𝑖𝑎(ion mass=neutron mass)

Therefore the collision force of electron is

f𝑐𝑒 = −𝑛𝑖I𝑒𝑖𝜏−1
𝑒𝑖 − 𝑛𝑖I𝑒𝑎𝜏−1

𝑒𝑎 = −𝑛𝑖𝑚𝑒v𝑒𝑖 (𝜏−1
𝑒𝑖 + 𝜏−1

𝑒𝑎 ) − 1
1 − 𝛼𝑛𝑖𝑚𝑒v𝑖𝜏−1

𝑒𝑎

The collision force between ion and neutral is

f𝑐𝑖𝑎 = −1
2𝑛𝑖I𝑖𝑎𝜏−1

𝑖𝑎

�

5.5.2.2 For protons

𝑚𝑖𝑛𝑖
𝑑u𝑖
𝑑𝑡 = 𝑚𝑖𝑛𝑖

𝑑
𝑑𝑡(v𝑖 + u) = −∇𝑝𝑖 + 𝑛𝑖𝑒 [E + (v𝑖 + u × B)] + f𝑐𝑖 (5.20)

where the collision force is

f𝑐𝑖 = f𝑐𝑖𝑎 + f𝑐𝑖𝑒 = 𝑛𝑖𝑚𝑒v𝑒𝑖𝜏−1
𝑒𝑖 − 𝛼

2(1 − 𝛼)𝑛𝑖𝑚𝑒v𝑒𝑖𝜏−1
𝑖𝑎 − 1

2(1 − 𝛼)𝑛𝑖𝑚𝑖v𝑖𝜏−1
𝑖𝑎 (5.21)
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5.5.2.3 For the whole plasma

If we do not consider the effect of other forces on plasma and ignore electron mass (𝑚𝑒𝑛𝑒 ≪
𝑚𝑖𝑛𝑖),

𝑚𝑖(𝑛𝑖 + 𝑛𝑎)
𝑑u
𝑑𝑡 = −∇𝑝 + J × B = −∇𝑝 − 𝑛𝑖𝑒v𝑒𝑖 × B (5.22)

where the total current density is

J = ∑
𝑠

𝑛𝑠𝑞𝑠u𝑠 = −𝑛𝑖𝑒(v𝑒𝑖 + v𝑖 + u) + 𝑛𝑖𝑒(v𝑖 + u) = −𝑛𝑖𝑒v𝑒𝑖

Physically we usually think of current in plasma as the velocity difference between electrons
and ions.

5.5.3 Preconditions

If an external B-field is present and the conductor is not at rest but moving at velocity u, then
an extra term must be added to account for the current induced by the Lorentz force on the
charge carriers:

J = 𝜎(E + u × B)
where 𝜎 is the electric conductivity.

In the rest frame of the moving conductor this term drops out because u = 0. There is no
contradiction because the electric field in the rest frame differs from the E-field in the lab
frame: E′ = E + u × B. Electric and magnetic fields are relative and related by the Lorentz
transformation.

If the current J is alternating because the applied voltage or E-field varies in time, then
reactance must be added to resistance to account for self-inductance (see electrical impedance).
The reactance may be strong if the frequency is high or the conductor is coiled. (hyzhou: This
is related to the Ponderamotive force. I have some questions here because the time derivative
of velocities are all neglected here, which in turn makes the derivation only applicable to a
steady system. The obvious problem then is that the generalized Ohm’s law may not hold in
a time-dependent system!)

5.5.4 Derivation

Negligible terms:

• 𝑑v𝑒
𝑑𝑡 in Equation 5.18 and 𝑑v𝑖

𝑑𝑡 in Equation 5.20, because |v| ≪ |vth|
• 𝑑u

𝑑𝑡 in Equation 5.18. From Equation 5.22 and 𝑚𝑒 ≪ 𝑚𝑖,

𝑚𝑒𝑛𝑖
𝑑u
𝑑𝑡 = 𝑚𝑒

𝑚𝑖

𝑛𝑖
𝑛𝑖 + 𝑛𝑎

(−∇𝑝 − 𝑛𝑖𝑒v𝑒𝑖 × B) ≪ 1
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From Equation 5.18,

𝑚𝑒𝑛𝑖
𝑑u
𝑑𝑡 = −∇𝑝𝑒 − 𝑛𝑖𝑒v𝑒𝑖 × B − 𝑛𝑖𝑒[E + (v𝑖 + u) × B] + f𝑐𝑒

The above two equations give

0 = −∇𝑝𝑒 − 𝑛𝑖𝑒v𝑒𝑖 × B − 𝑛𝑖𝑒[E + (v𝑖 + u) × B]

− 𝑛𝑖𝑚𝑒v𝑒𝑖 (𝜏−1
𝑒𝑖 + 𝜏−1

𝑒𝑎 ) − 1
1 − 𝛼𝑛𝑖𝑚𝑒v𝑖𝜏−1

𝑒𝑎
(5.23)

Equation 5.20, Equation 5.22 and Equation 5.23 are the three main equations we need to
derive the generalized Ohm’s law.

If we define the ratios of gyro-period and collision time as

𝜅𝑒𝑖 ≡
1

Ω𝑒𝜏𝑒𝑖
= 𝑚𝑒

𝑒𝐵 𝜏−1
𝑒𝑖

𝜅𝑒𝑎 ≡ 1
Ω𝑒𝜏𝑒𝑎

= 𝑚𝑒
𝑒𝐵 𝜏−1

𝑒𝑎

𝜅𝑖𝑎 ≡ 1
2Ω𝑖𝜏𝑖𝑎

= 𝑚𝑖
2𝑒𝐵𝜏−1

𝑖𝑎

and ion current density as
J𝑖 = 𝑛𝑖𝑒v𝑖

we can write the three main equations above as

0 = −∇𝑝𝑒 − 𝑛𝑖𝑒(E + u × B) + J × B − J𝑖 × B + (𝜅𝑒𝑖 + 𝜅𝑒𝑎)𝐵J − 1
1 − 𝛼𝜅𝑒𝑎𝐵J𝑖 (5.24)

𝑚𝑖𝑛𝑖
𝑑u
𝑑𝑡 = −∇𝑝𝑖 + 𝑛𝑖𝑒(E + u × B) + J𝑖 × B

− (𝜅𝑒𝑖 −
𝛼

1 − 𝛼
𝑚𝑒
𝑚𝑖

𝜅𝑖𝑎)𝐵J − 1
1 − 𝛼𝜅𝑖𝑎𝐵J𝑖

(5.25)

1
𝛼𝑚𝑖𝑛𝑖

𝑑u
𝑑𝑡 = −∇𝑝 + J × B (5.26)

Subtracting Equation 5.25 from Equation 5.26 and Equation 5.24, we get the ion current
density as

J𝑖 =
1 − 𝛼

(𝜅𝑒𝑎 + 𝜅𝑖𝑎)𝐵
[𝛼∇𝑝 −∇(𝑝𝑒 + 𝑝𝑖) + (1 − 𝛼)J × B + (𝜅𝑒𝑎 + 𝛼

1 − 𝛼
𝑚𝑒
𝑚𝑖

𝜅𝑖𝑎)𝐵J]

= 1 − 𝛼
(𝜅𝑒𝑎 + 𝜅𝑖𝑎)𝐵

[𝛼(𝛼 − 1)
𝛼 + 1 ∇𝑝 + (1 − 𝛼)J × B + (𝜅𝑒𝑎 + 𝛼

1 − 𝛼
𝑚𝑒
𝑚𝑖

𝜅𝑖𝑎)𝐵J]
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Then we can eliminate 𝑑u
𝑑𝑡 and J𝑖 from the three main equations and get the generalized Ohm’s

law
∇𝑝𝑒 +

𝛼(𝛼 − 1)
𝛼 + 1 𝑟𝑒∇𝑝 =− 𝑛𝑖𝑒(E + u × B) + [1 − 2𝑟𝑒(1 − 𝛼) − 𝛼𝑚𝑒

𝑚𝑖
𝑟𝑖]J × B

+ [𝜅𝑒𝑖 − (1 − 𝑟𝑒)𝜅 − 𝛼
1 − 𝛼

𝑚𝑒
𝑚𝑖

𝑟𝑒𝜅𝑖𝑎]𝐵J

+ (1 − 𝛼)2
(𝜅𝑒𝑎 + 𝜅𝑖𝑎)𝐵

[ 𝛼
𝛼 + 1∇𝑝 × B − J × B × B]

where
𝑟𝑒 = 𝜅𝑒𝑎

𝜅𝑒𝑎 + 𝜅𝑖𝑎
, 𝑟𝑖 =

𝜅𝑖𝑎
𝜅𝑒𝑎 + 𝜅𝑖𝑎

5.5.5 Simplification of Generalized Ohm’s Law

1. If the mean free path of protons is much smaller than that of electrons, i.e. the cross
section of proton is much smaller than that of electron,

𝜏𝑖𝑎
𝜏𝑒𝑎

= 𝑙𝑖𝑎 ⋅ 𝑣𝑒,𝑡ℎ
𝑙𝑒𝑎 ⋅ 𝑣𝑖,𝑡ℎ

∝ (𝑚𝑖
𝑚𝑒

)
1/2

⋅ 𝑙𝑖𝑎𝑙𝑒𝑎
≪ (𝑚𝑖

𝑚𝑒
)
1/2

⇒𝜅𝑒𝑎
𝜅𝑖𝑎

= 2 Ω𝑖𝜏𝑖𝑎
Ω𝑒𝜏𝑒𝑎

∝ 2𝑚𝑒
𝑚𝑖

⋅ 𝜏𝑖𝑎𝜏𝑒𝑎
∝ 2(𝑚𝑒

𝑚𝑖
)
1/2

⋅ 𝑙𝑖𝑎𝑙𝑒𝑎
≪ 1

⇒𝑟𝑒 = 𝜅𝑒𝑎
𝜅𝑒𝑎 + 𝜅𝑖𝑎

≪ 1 𝑟𝑖 =
𝜅𝑖𝑎

𝜅𝑒𝑎 + 𝜅𝑖𝑎
≈ 1

Therefore we have

∇𝑝𝑒 =− 𝑛𝑖𝑒(E + u × B) + J × B + (𝜅𝑒𝑖 + 𝜅𝑒𝑎)𝐵J + (1 − 𝛼)2
𝜅𝑖𝑎𝐵

[ 𝛼
𝛼 + 1∇𝑝 × B − J × B × B]

J = 𝑛𝑖𝑒
(𝜅𝑒𝑖 + 𝜅𝑒𝑎)𝐵

(E + u × B) + 1
(𝜅𝑒𝑖 + 𝜅𝑒𝑎)𝐵

(∇𝑝𝑒 − J × B)

− (1 − 𝛼)2
𝜅𝑖𝑎(𝜅𝑒𝑖 + 𝜅𝑒𝑎)𝐵

[ 𝛼
𝛼 + 1∇𝑝 × B − J × B × B]

2. If EM field is dominant, i.e. EM force ≫ thermal pressure gradient, |J × B| ≫ |∇𝑝| ∼
|∇𝑝𝑒|, then

J = 𝜎(E + u × B) − 𝜎
𝑛𝑖𝑒

J × B + 𝜎
𝑛𝑖𝑒

2(1 − 𝛼)2Ω𝑖𝜏𝑖𝑎
𝐵 J × B × B

where 𝜎 is the electrical conductivity,

𝜎 = 𝑛𝑖𝑒2
𝑚𝑒(𝜏−1

𝑒𝑖 + 𝜏−1𝑒𝑎 )
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3. For a fully ionized plasma, 𝛼 = 1 ⇒ 𝜅𝑒𝑎 = 𝜅𝑖𝑎 = 0, we have

J = 𝜎(E + u × B) + 𝜎
𝑛𝑖𝑒

(∇𝑝𝑒 − J × B)

where
𝜎 = 𝑛𝑖𝑒2𝜏𝑒𝑖

𝑚𝑒

Note that the electron pressure gradient term here shows an amazing effect: it can generate
EM field out of nothing! This is one theory in astrophysics which describes the origin of EM
field.

4. For a fully ionized plasma, if EM field is dominant, we have

J = 𝜎(E + u × B) − 𝜎
𝑛𝑖𝑒

J × B = 𝜎(E + u × B) − Ω𝑒𝜏𝑒𝑖J × b

5. If there is weak magnetic field and dense plasma, i.e. 𝑛𝑖 ≫ 1, |B| ≪ 1,

J = 𝜎(E + u × B)

5.5.6 Discussions

In Section 5.6.1, we will see that a relatively simple form can be obtained by assuming that
the electron inertia is much smaller than the Lorentz force, which is a good approximation
when considering only the perpendicular velocity to the magnetic field.

E = −u × B + 𝜂J + 1
𝑒𝑛J × B − 1

𝑒𝑛∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑒 +
𝑚𝑒
𝑛𝑒2 [

𝜕J
𝜕𝑡 + ∇ ⋅ (Ju + uJ)] (5.27)

where the first term on the right-hand side is the convection term, the second term is the
resistivity term (conductive term), the third term is called the Hall term, the fourth term is
the electron pressure term, and the fifth term is called the electron inertia term, since it is
proportional to the mass of electrons.

Note that both u and J are the first-order moments, with u being the (weighted) sum of
the first-order moment of electrons and ions while J being the difference between them. The
generalized Ohm’s law is actually the difference between the electrons’ and ions’ first-order
moment equations. The generalized Ohm’s law is an equation that governs the time evolution
of J. Also note that Ampère’s law, with the displacement current retained, is an equation
governing the time evolution of E. However, in the approximation of the resistive MHD, the
time derivative terms 𝜕E/𝜕𝑡 and 𝜕J/𝜕𝑡 are ignored in Ampère’s law and Ohm’s law, respec-
tively. In this approximation, Ohm’s law is directly solved to determine E and Ampère’s law
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is directly solved to determine J. [Introduction to plasma physics: with space and laboratory
applications, D. A. Gurnett and A. Bhattacharjee.]

E⏟
𝑎
+u × B⏟

𝑏
− 1

𝜎J⏟
𝑐

− J × B
𝑒𝑛𝑒⏟
𝑑

+ 1
𝑛𝑒𝑒

∇(𝑛𝑒𝑘𝐵𝑇𝑒)⏟⏟⏟⏟⏟⏟⏟
𝑒

= 0

Denote each term above with a to e. From the single-fluid MHD momentum equation, let
𝜔 be the oscillation frequency of the perturbed velocity, and variable in scalar form be the
characteristic magnitude of that quantity,

𝜌(𝜕u
𝜕𝑡 + u ⋅ ∇u) = J × B −∇𝑝 + 𝜌g

⇒ 𝜔𝜌𝑈 ∼ 𝐽𝐵
(5.28)

Using and the assumptions of MHD, the relations between each term in generalized Ohm’s
law are

𝑏
𝑑 = 𝑈𝐵

𝐽𝐵/𝑒𝑛𝑒
= 𝑒𝑛𝑒𝑈𝐵

𝜔𝜌𝑈 = 𝑒𝑛𝑒𝐵
𝜔𝑛𝑒𝑚𝑖

= Ω𝑖
𝜔 ≫ 1

𝑐
𝑑 = 𝐽/𝜎

𝐽𝐵/𝑒𝑛𝑒
= 𝑒𝑛𝑒

𝐵𝜎 = 𝑒𝑛𝑒
𝐵𝑒2𝑛𝑒/𝜈𝑒𝑖𝑚𝑒

= 𝜈𝑒𝑖
Ω𝑒

≪ 1
𝑏
𝑑 = 𝑈

𝐽/𝑒𝑛𝑒
≪ 1, if J is carried by u𝑒

which generates direct contradiction with the MHD assumption that u ≪ u𝑒 if currents are
mostly carried by electrons. (WHAT ABOUT THE PRESSURE TERM SCALING? The
gradient implies that it is related to the system size; the pressure implies that it is also related
to thermal motion?)

There is an interesting point about the electron pressure term. If we assume an isotropic
plasma with 𝑛𝑖 = 𝑛𝑒 and an adiabatic process 𝑃/𝑛𝛾 = 𝐶 where 𝐶 is a constant and 𝛾 is the
adiabatic index, we have

E∇𝑃𝑒
= ∇𝑃𝑒

𝑛 = ∇𝑃𝑖
𝑛 = ∇(𝐶𝑛𝛾)

𝑛
= 𝐶𝛾𝑛𝛾−2∇𝑛 = 𝐶 𝛾

𝛾 − 1∇𝑛𝛾−1
(5.29)

Equation 5.29 indicates that the associated electric field is a potential field that only relates
to density.
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5.5.7 Ohm’s Law in a Multi-Ion System

E = −∑
𝑖

u𝑖 × B + 𝜂J + 1
𝑒𝑛𝑒

J × B − 1
𝑒𝑛𝑒

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑒

+ 𝑚𝑒
𝑛𝑒𝑒2

[𝜕J
𝜕𝑡 + ∇ ⋅ (Ju + uJ)]

(5.30)

where the quasi-neutrality holds
𝑒𝑛𝑒 = ∑

𝑖
𝑞𝑖𝑛𝑖

5.6 Magnetohydrodynamics

Particle motion in the two-fluid system was described by the individual species’ mean velocities
u𝑒,u𝑖 and by the pressures ⃡⃡⃡ ⃡⃡𝑃𝑒, ⃡⃡⃡ ⃡⃡𝑃𝑖, which provide an accounting for the mean square of the
random deviation of the velocity from its average value. Magnetohydrodynamics is an alternate
description of the plasma where, instead of using u𝑒,u𝑖 to describe mean motion, two new
velocity variables that are a linear combination of u𝑒,u𝑖 are used. As will be seen below, this
means a slightly different definition for pressure must also be used.

The new velocity-like variables are

1. the current density
J = ∑

𝑠
𝑛𝑠𝑞𝑠u𝑠

which is essentially the relative velocity between ions and electrons, and

2. the center-of-mass velocity
u = 1

𝜌 ∑
𝑠

𝑚𝑠𝑛𝑠u𝑠

where
𝜌 = ∑

𝑠
𝑚𝑠𝑛𝑠

is the total mass density.

Magnetohydrodynamics is primarily concerned with low-frequency, long-wavelength, magnetic
behavior of the plasma. There are three basic assumptions in MHD:

𝜖𝜔/4𝜋𝜎 ≪ 1,
(𝑣/𝑐)2 ≪ 1,
𝜆/𝐿 ≪ 1,
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where 𝜔 is the plasma frequency, 𝑣 is the plasma bulk speed, 𝜆 is the average free distance,
and 𝐿 is the system characteristic length.

Standard orderings of ideal MHD can also be written as

𝜖 ∼ 𝜔/Ω𝑐 ∼ 𝑘𝜌

where the plasma varies on frequency scales 𝜔 small compared to the gyrofrequency Ω𝑐, and
varies on spatial scales 1/𝑘 long compared to the gyroradius 𝜌. (Here, 𝜖 means a “small” value.)
Thus it covers phenomenon related to compressional and shear Alfvén waves and instabilities,
ion acoustic waves, and ion and electron kinetic effects such as Landau damping. However, it
does not include drift-waves or other micro-instabilities because they result from finite Larmor
radius (FLR) effects which vanish in the usual MHD ordering.

Single fluid MHD is somehow inconsistent since there is only one velocity. The definition of
current using velocity cannot be applied, and the current can only be given by Ampère’s law
(without the displacement current), J = ∇× B/𝜇0.

Multiplying Equation 5.5 by 𝑚𝑠 and summing over species gives the MHD continuity equa-
tion

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0 (5.31)

To obtain an MHD equation of motion we take the first moment of the Vlasov equation and
multiply the single species momentum equation by 𝑚𝑠 and sum over species,

𝜕
𝜕𝑡 ∑𝑠

𝑚𝑠 ∫v𝑓𝑠dv + 𝜕
𝜕x ⋅∑

𝑠
∫𝑚𝑠vv𝑓𝑠dv +∑

𝑠
𝑞𝑠 ∫v 𝜕

𝜕v ⋅ [(E + v × B)𝑓𝑠] = 0 (5.32)

The right-hand side is zero since R𝑒𝑖 + R𝑖𝑒 = 0, i.e., the total plasma cannot exert drag on
itself. We now define random velocities relative to u (rather than to u𝑠 as was the case for
the two-fluid equations) so that the second term can be written as

∑
𝑠

∫𝑚𝑠vv𝑓𝑠dv = ∑
𝑠

∫𝑚𝑠(v′ + u)(v′ + u)𝑓𝑠dv = ∑
𝑠

∫𝑚𝑠v′v′𝑓𝑠dv + 𝜌uu (5.33)

where ∑𝑠 ∫𝑚𝑠v′𝑓dv = 0 has been used to eliminate terms linear in v′. The MHD pressure
tensor is now defined in terms of the random velocities relative to u and is given by

⃡⃡⃡ ⃡⃡𝑃MHD = ∑
𝑠

∫𝑚𝑠v′v′𝑓𝑠dv (5.34)

We insert Equation 5.33 and Equation 5.34 in Equation 5.32, integrate by parts on the ac-
celeration term, and perform the summation over species to obtain the MHD equation of
motion

𝜕(𝜌u)
𝜕𝑡 + ∇ ⋅ (𝜌uu) = (∑

𝑠
𝑛𝑠𝑞𝑠)E + J × B −∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃MHD (5.35)
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MHD is typically used to describe phenomena having spatial scales large enough for the plasma
to be essentially neutral, i.e., ∑𝑠 𝑛𝑠𝑞𝑠 = 0 so that the E term can be dropped. Just as in
the two-fluid situation, the left-hand side of Equation 5.35 contains a factor times the MHD
continuity equation, since the left-hand side can be expanded as

𝜕(𝜌u)
𝜕𝑡 + ∇ ⋅ (𝜌uu) = [�������𝜕𝜌

𝜕𝑡 + ∇ ⋅ (𝜌u)]u + 𝜌𝜕u
𝜕𝑡 + 𝜌u ⋅ ∇u

= 𝜌(𝜌𝜕u
𝜕𝑡 + 𝜌u ⋅ ∇u)

This leads to the standard form for the MHD equation of motion,

𝜌Du
D𝑡 = J × B −∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃MHD (5.36)

where
D
D𝑡 ≡ 𝜕

𝜕𝑡 + u ⋅ ∇

is the convective derivative defined using the center-of-mass velocity. This notation is used
to emphasize the difference from single species treatment. Scalar approximations of the MHD
pressure tensor will be postponed until after discussing the MHD Ohm’s law and its implica-
tions.

5.6.1 MHD Ohm’s law

Equation 5.36 provides one equation relating J and u; let us now find the other one. In order
to do this, consider the two-fluid electron equation of motion,

𝑚𝑒
du𝑒
d𝑡 = −𝑒(E + u𝑒 × B) − 1

𝑛𝑒
∇(𝑛𝑒𝑘𝐵𝑇𝑒) − 𝜈𝑒𝑖𝑚𝑒(u𝑒 − u𝑖) (5.37)

In MHD we are interested in low-frequency phenomena with large spatial scales. If the charac-
teristic time scale of the phenomenon is long compared to the electron cyclotron motion, then
the electron inertia term 𝑚𝑒du𝑒/d𝑡 can be dropped since it is small compared to the magnetic
force term −𝑒(u𝑒 × B). This assumption is reasonable for velocities perpendicular to B, but
can be a poor approximation for the velocity component parallel to B, since parallel velocities
do not provide a magnetic force. Since u𝑒 − u𝑖 = −J/𝑛𝑒𝑒 and u𝑖 ≃ u, Equation 5.37 reduces
to the generalized Ohm’s law

E + u × B − 1
𝑛𝑒𝑒

J × B + 1
𝑛𝑒𝑒

∇(𝑛𝑒𝑘𝐵𝑇𝑒) = 𝜂J (5.38)

(What if we consider ion species with charge larger than 1?) The term −J × B/𝑛𝑒𝑒 on the
left-hand side is called the Hall term and can be neglected in either of the following two cases:
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1. The pressure term in the MHD equation of motion, Equation 5.36 is negligible compared
to the other two terms, which therefore must balance, giving

|J| ∼ 𝜔𝜌|u|/|B|

Here 𝜔 ∼ D/D𝑡 is the characteristic frequency of the phenomenon. In this case comparison
of the Hall term with the U×B term shows that the Hall term is small by a factor ∼ 𝜔/𝜔𝑐𝑖,
where 𝜔𝑐𝑖 = 𝑞𝑖𝐵/𝑚𝑖 is the ion cyclotron frequency. Thus dropping the Hall term is justified
for phenomena having characteristic frequencies small compared to 𝜔𝑐𝑖.

2. The electron-ion collision frequency is large compared to the electron cyclotron frequency
𝜔𝑐𝑒 = 𝑞𝑒𝐵/𝑚𝑒, in which case the Hall term may be dropped since it is small by a factor
𝜔𝑐𝑒/𝜈𝑒𝑖 compared to the right-hand side resistive term 𝜂J = (𝑚𝑒𝜈𝑒𝑖/𝑛𝑒𝑒2)J.

5.6.2 Ideal MHD

If the Hall term is dropped, the system is called ideal MHD. Typically, Equation 5.38 will not
be used directly; instead its curl will be used to provide the induction equation

−𝜕B
𝜕𝑡 + ∇× (u × B) − 1

𝑛𝑒𝑒
∇𝑛𝑒 ×∇𝑘𝐵𝑇𝑒 = ∇×( 𝜂

𝜇0
∇× B)

Usually the density gradient is parallel to the temperature gradient so that the thermal elec-
tromotive force term (𝑛𝑒𝑒)−1∇𝑛𝑒×∇𝑘𝐵𝑇𝑒 can be dropped, or the thermal term is often simply
ignored, in which case the induction equation reduces to

−𝜕B
𝜕𝑡 + ∇× (u × B) = ∇× ( 𝜂

𝜇0
∇× B) (5.39)

or written in the form of Ohm’s law

E + u × B = 𝜂J (5.40)

If the resistive term 𝜂J is so small as to be negligible compared to the other terms in Equa-
tion 5.40, then the plasma is said to be ideal or perfectly conducting. From the Lorentz
transformation of electromagnetic theory we realize that

E + u × B = E′

where E′ is the electric field observed in the frame moving with velocity u. This implies
that the magnetic flux in ideal plasmas is time-invariant in the frame moving with velocity u,
because otherwise Faraday’s law would imply the existence of an electric field in the moving
frame. The frozen-in flux concept is the essential “bed-rock” concept underlying ideal MHD.
While this concept is often an excellent approximation, it must be kept in mind that the
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concept becomes invalid in situations when any one of the electron inertia, electron pressure,
or Hall terms becomes important and leads to different, more complex behavior.

The frozen-in flux concept is frequently expressed in a slightly different form as a frozen-in field
concept, i.e., it is often said that magnetic field lines are frozen into the plasma so that the
plasma and magnetic field lines move together as an ensemble. While this point of view can
be quite intuitive and useful, it contains some ambiguity because an ideal plasma can actually
move across magnetic field lines in certain situations. These situations are such that magnetic
flux is preserved within the plasma even though it is moving across field lines.

A formal proof of the frozen-in flux property will now be established by direct calculation of
the rate of change of the magnetic flux through a surface 𝑆(𝑡) bounded by a material line 𝐶(𝑡),
i.e., a closed contour that moves with the plasma. This magnetic flux is

Φ(𝑡) = ∫
𝑆(𝑡)

B(x, 𝑡) ⋅ ds

and the flux changes with respect to time due to either (i) the explicit time dependence of
B(𝑡) or (ii) changes in the surface 𝑆(𝑡) resulting from plasma motion. The rate of change of
flux is thus

DΦ
D𝑡 = lim

𝛿𝑡→0
(

∫𝑆(𝑡+𝛿𝑡) B(x, 𝑡 + 𝛿𝑡) ⋅ ds − ∫𝑆(𝑡) B(x, 𝑡) ⋅ ds
𝛿𝑡 )

The displacement of a segment dl of the bounding contour 𝐶 is u𝛿𝑡, where u is the velocity of
this segment. The incremental change in surface area due to this displacement is Δ𝑆 = u𝛿𝑡×dl.
The rate of change of flux can thus be expressed as

DΦ
D𝑡 = lim

𝛿𝑡→0
(

∫𝑆(𝑡+𝛿𝑡) (B + 𝛿𝑡𝜕B
𝜕𝑡 ) ⋅ ds − ∫𝑆(𝑡) B ⋅ ds
𝛿𝑡 )

= lim
𝛿𝑡→0

(
∫𝑆(𝑡) (B + 𝛿𝑡𝜕B

𝜕𝑡 ) ⋅ ds + ∮𝐶 B ⋅ u𝛿𝑡 × dl − ∫𝑆(𝑡) B ⋅ ds
𝛿𝑡 )

= ∫
𝑆(𝑡)

𝜕B
𝜕𝑡 ⋅ ds +∮

𝐶
B ⋅ u × dl

= ∫
𝑆(𝑡)

𝜕B
𝜕𝑡 ⋅ ds +∮

𝐶
dl ⋅ (B ⋅ u)

= ∫
𝑆(𝑡)

[𝜕B
𝜕𝑡 + ∇× (B × u)] ⋅ dS

Thus, if
𝜕B
𝜕𝑡 + ∇× (B × u) = 0 (5.41)
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then
DΦ
D𝑡 = 0

so that the magnetic flux linked by any closed material line is constant. Therefore, magnetic
flux is frozen into an ideal plasma because Equation 5.39 reduces to Equation 5.41 if 𝜂 = 0.
Equation 5.41 is called the ideal MHD induction equation.

5.6.2.1 Equation of state

Double adiabatic laws

A procedure analogous to that which led to Equation 5.11 or Equation 8.28 gives the MHD
adiabatic relation

𝑝MHD

𝜌𝛾 = const.

where again 𝛾 = (𝑁 +2)/𝑁 and 𝑁 is the number of dimensions of the system. It was shown in
the previous section that magnetic flux is conserved in the plasma frame. This means that, as
shown in Figure 5.1, a tube of plasma initially occupying the same volume as a magnetic flux
tube is constrained to evolve in such a way that ∫B ⋅ ds stays constant over the plasma tube
cross-section. For a flux tube of infinitesimal cross-section, the magnetic field is approximately
uniform over the cross-section and we may write this as 𝐵𝐴 = const, where 𝐴 is the cross-
sectional area.

Figure 5.1: Magnetic flux tube with flux Φ = 𝐵𝐴.
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Let us define two temperatures for this magnetized plasma, namely 𝑇⟂, the temperature
corresponding to motions perpendicular to the magnetic field, and 𝑇∥, the temperature corre-
sponding to motions parallel to the magnetic field. If for some reason (e.g., anisotropic heating
or compression) the temperature develops an anisotropy such that 𝑇⟂ ≠ 𝑇∥ and if collisions
are infrequent, this anisotropy will persist for a long time, since collisions are the means by
which the two temperatures equilibrate. Thus, rather than assuming that the MHD pressure
is fully isotropic, we consider the less restrictive situation where the MHD pressure tensor is
given by

⃡⃡⃡ ⃡⃡𝑃MHD = ⎡⎢
⎣

𝑝⟂ 0 0
0 𝑝⟂ 0
0 0 𝑝∥

⎤⎥
⎦

= 𝑝⟂I + (𝑝∥ − 𝑝⟂) ̂𝑏 ̂𝑏

The first two coordinates (𝑥, 𝑦-like) in the above matrix refer to the directions perpendicular
to the local magnetic field B and the third coordinate (𝑧-like) refers to the direction parallel
to B. The tensor expression on the right-hand side is equivalent (here I is the unit tensor) but
allows for arbitrary, curvilinear geometry. We now develop separate adiabatic relations for the
perpendicular and parallel directions:

• Parallel direction: here the number of dimensions is 𝑁 = 1 so that 𝛾 = 3 and so the
adiabatic law gives

𝑝1𝐷∥
𝜌31𝐷

= const. (5.42)

where 𝜌1𝐷 is the one-dimensional mass density; i.e., 𝜌1𝐷 ∼ 1/𝐿, where 𝐿 is the length
along the flux tube in Figure 5.1. The three-dimensional mass density, which has been
used implicitly until now, has the proportionality 𝜌 ∼ 1/𝐿𝐴, where 𝐴 is the cross-
section of the flux tube; similarly the three-dimensional pressure has the proportionality
𝑝∥ ∼ 𝜌𝑇∥. However, we must be careful to realize that 𝑝1𝐷∥ ∼ 𝜌1𝐷𝑇∥ so, using 𝐵𝐴 = const.,
Equation 5.42 can be recast as

const. =
𝑝1𝐷∥
𝜌31𝐷

∼
𝜌1𝐷𝑇∥
𝜌31𝐷

∼ 𝑇∥𝜌21𝐷 ∼ ( 1
𝐿𝐴)𝑇∥(𝐿𝐴)3𝐵2

or
𝑝∥𝐵2

𝜌3 = const. (5.43)

• Perpendicular direction: here the number of dimensions is 𝑁 = 2 so that 𝛾 = 2 and the
adiabatic law gives

𝑝2𝐷⟂
𝜌22𝐷

= const. (5.44)

where 𝑝2𝐷⟂ is the 2-D perpendicular pressure, and has dimensions of energy per unit area,
while 𝜌2𝐷 is the 2-D mass density and has dimensions of mass per unit area. Thus,
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𝜌2𝐷 ∼ 1/𝐴 so 𝑝2𝐷⟂ ∼ 𝜌2𝐷𝑇⟂ ∼ 𝑇⟂/𝐴, in which case Equation 5.44 can be recast as

const. =
𝑝∥𝐵2

𝜌3 = 𝑇⟂𝐴 ∼ ( 1
𝐿𝐴)𝑇⟂

𝐿𝐴
𝐵

or 𝑝⟂
𝜌𝐵 = const. (5.45)

Equation 5.43 and Equation 5.45 are called the double adiabatic or CGL laws after Chew,
Goldberger, and Low (Chew, Goldberger, and Low 1956) who first developed these laws.

Single adiabatic law

If collisions are sufficiently frequent to equilibrate the perpendicular and parallel temperatures,
then the pressure tensor becomes fully isotropic and the dimensionality of the system is 𝑁 = 3
so that 𝛾 = 5/3. There is now just one pressure and one temperature and the adiabatic
relation becomes 𝑝

𝜌5/3 = const. (5.46)

5.6.2.2 MHD approximations for Maxwell’s equations

The various assumptions contained in MHD lead to a simplifying approximation of Maxwell’s
equations. In particular, the assumption of charge neutrality in MHD makes Poisson’s equation
superfluous because Poisson’s equation prescribes the relationship between non-neutrality and
the electrostatic component of the electric field. The assumption of charge neutrality also has
implications for the current density. To see this, the two-fluid continuity equation is multiplied
by 𝑞𝑠 and then summed over species to obtain the charge conservation equation

𝜕
𝜕𝑡 (∑

𝑠
𝑛𝑠𝑞𝑠)+∇ ⋅ J = 0 (5.47)

Thus, charge neutrality implies
∇ ⋅ J = 0

Let us now consider Ampère’s law

∇× B = 𝜇0J + 𝜇0𝜖0Ė

Taking the divergence gives
∇⋅

which is equivalent to Equation 5.47 if Poisson’s equation is invoked.
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Finally, MHD is restricted to phenomena having characteristic velocities 𝑉ph slow compared to
the speed of light in vacuum, 𝑐 = (𝜇0𝜖0)−1/2. Again, 𝑡char is assumed to represent the charac-
teristic time scale for a given phenomenon and 𝑙char is assumed to represent the corresponding
characteristic length scale so that 𝑉ph ∼ 𝑙char/𝑡char. Faraday’s equation gives the scaling

∇× E = −Ḃ → 𝐸 ∼ 𝐵𝑙char/𝑡char

On comparing the magnitude of the displacement current term in Ampère’s law to the left-hand
side it is seen that

𝜇0𝜖0|Ė|
|∇ × B| ∼

𝑐−2𝐸/𝑡char
𝐵/𝑙char

∼ (𝑉ph
𝑐 )

2

Thus, if 𝑉ph ≪ 𝑐 the displacement current term can be dropped from Amperè’s law resulting
in the so-called “pre-Maxwell” form (i.e. Darwin approximation)

∇× B = 𝜇0J (5.48)

The divergence of Equation 5.48 gives ∇ ⋅ J = 0 so it is unnecessary to specify it separately.

5.6.2.3 Complete equation set

In the most common sense, ideal MHD involves equations of compressible, adiabatic and
inviscid fluid:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌u) = 0

𝜕𝜌u
𝜕𝑡 + ∇ ⋅ (𝜌uu − 1

𝜇0
BB + 𝑝∗) = 0

𝜕ℰ
𝜕𝑡 + ∇ ⋅ [(ℰ + 𝑝∗)u − 1

𝜇0
B(B ⋅ u)] = 0

𝜕B
𝜕𝑡 − ∇× (u × B) = 0

𝑝∗ = 𝑝 + B ⋅ B
2𝜇0

ℰ = 𝑝
𝛾 − 1 + 𝜌u ⋅ u

2 + B ⋅ B
2𝜇0

(5.49)

where 𝜌 is the mass density, u the velocity, ℰ the total energy density, B the magnetic field,
𝑝 the thermal pressure, and 𝛾 the adiabatic index (ratio of specific heats). Microscopic dissi-
pations of any kind (viscosity, resistivity, or conduction) are not included in ideal MHD. Note
that there is only one constant 𝜇0 appeared in Equation 5.49. The introduction of temperature
comes with a new constant 𝑅 ≡ 2𝑘𝐵/𝑚:

𝑝 = 𝜌𝑅 𝑇
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Many often in simulations, the dimensionless units are applied. Equation 5.49 under the
dimensionless units can be written as

𝜕𝜌∗
𝜕𝑡∗

+∇∗ ⋅ (𝜌∗u∗) = 0
𝜕𝜌∗u∗
𝜕𝑡∗

+∇∗ ⋅ (𝜌∗u∗u∗ − B∗B∗ + 𝑝∗∗) = 0
𝜕ℰ∗
𝜕𝑡∗

+∇∗ ⋅ [(ℰ∗ + 𝑝∗∗)u∗ − B∗(B∗ ⋅ u∗)] = 0
𝜕B∗
𝜕𝑡∗

−∇∗ × (u∗ × B∗) = 0

𝑝∗∗ = 𝑝∗ +
B∗ ⋅ B∗

2
ℰ∗ = 𝑝∗

𝛾 − 1 + 𝜌∗u∗ ⋅ u∗
2 + B∗ ⋅ B∗

2

(5.50)

where the subscripts ∗ denotes the variables in dimensionless units, and the adiabatic equation
of state is given as

𝑝∗ = 𝜌∗𝑇∗

In more theoretical derivations, for simplicity the energy equation is substituted with either
single adiabatic law Equation 5.46 or double adiabatic law Equation 5.43 and Equation 5.45.
If we drop the isotropic assumption and instead use separate pressure equations for the parallel
and perpendicular components as in Equation 5.14, we get the anisotropic MHD equations.

These equations provide a self-consistent description of phenomena that satisfy all the various
assumptions we have made, namely:

1. The plasma is charge-neutral since characteristic lengths are much longer than a Debye
length;

2. The characteristic velocity of the phenomenon under consideration is slow compared to
the speed of light;

3. The pressure and density gradients are parallel, so there is no electrothermal EMF;
4. The time scale is long compared to both the electron and ion cyclotron periods.

Even though these assumptions are self-consistent, they may not accurately portray a real
plasma and so MHD models, while intuitively appealing, must be used with caution.

Finally, it is worth mentioning that MHD plasmas can be categorized yet another way, namely
according to the relative importance of the magnetic force J×B compared to the hydrodynamic
force ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃 . If the magnetic force is negligible compared to the hydrodynamic force, then
there is not much point in using MHD because in this case the system of equations is simply
classical hydrodynamics. Thus, the only non-trivial MHD situations are where the magnetic
and hydrodynamic forces are of comparable importance or where the magnetic force is much
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more important than the hydrodynamic force. Using Equation 5.48, the nominal ratio of the
hydrodynamic force to the magnetic force is defined as

𝛽 = 𝑝
𝐵2/2𝜇0

∼ ∇ ⋅ ⃖⃖⃖ ⃖⃖ ⃖𝑃
J × B ∼ 𝑝/𝐿

𝐵2/2𝜇0𝐿

The characteristic gradient scale length 𝐿 is assumed to be comparable for both types of
forces and so cancels out in the comparison. Low-𝛽 plasmas are those where 𝐵2/2𝜇0 is much
larger than 𝑝 so the hydrodynamic force is negligible compared to the magnetic force, whereas
𝛽 = 𝒪(1) plasmas are those where the magnetic and hydrodynamic forces are comparable. The
different 𝛽 regime has important implications on the validity of many approximations seen in
later chapters.

5.6.3 Hall MHD

As an extension to the ideal/resistive MHD model, Hall MHD decouples the electron and ion
motions by retrieving the Hall term in the generalized Ohm’s law

E = −u × B + 𝜂J + 1
𝑒𝑛J × B − ∇𝑝𝑒

𝑛𝑒

where the first term on the right-hand-side is the convective term, the second is the resistive
term, the third is the Hall term, and the fourth is the electron pressure gradient term. The
electron pressure scalar is simplified from the electron pressure tensor, which is obtained from
an independent electron pressure equation.

The Hall MHD equations are

𝜕𝜌
𝜕𝑡 = −∇ ⋅ (𝜌u)

𝜕(𝜌u)
𝜕𝑡 = −∇ ⋅ (𝜌uu + (𝑝 + 𝑝𝑒) ̄̄𝐼 + 𝐵2

2𝜇0
̄̄𝐼 − BB

𝜇0
)

𝜕𝑒
𝜕𝑡 = −∇ ⋅ [(𝜖 + 𝑝)u + (𝜖𝑒 + 𝑝𝑒)u𝑒 + u𝑒 ⋅ (

B2

𝜇0
̄̄𝐼 − BB

𝜇0
)− B × 𝜂J]

𝜕B
𝜕𝑡 = −∇× [u𝑒 × B + 𝜂J − ∇𝑝𝑒

𝑛𝑒 ]
𝜕𝑝𝑒
𝜕𝑡 + ∇ ⋅ (𝑝𝑒u𝑒) = −(𝛾 − 1)𝑝𝑒∇ ⋅ u𝑒

(5.51)

where ̄̄𝐼 is the identity matrix, 𝜌 is the mass density, u is the plasma bulk velocity, B is the
magnetic field, 𝑝𝑒 is the electron pressure, 𝑝 is the ion thermal pressure, J = ∇× B/𝜇0 is the
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current density, 𝜖 = 𝜌u2/2 is the hydrodynamic energy density, and 𝜖𝑒 = 𝜌u2
𝑒/2 is the electron

hydrodynamic energy density. The Hall velocity is defined as

v𝐻 = − J
𝑛𝑒

and the electron bulk velocity is given by

u𝑒 = u + v𝐻

The total energy density is (I may have a coefficient error here for 𝑝𝑒!)

𝑒 = 1
2𝜌u2 + 1

𝛾 − 1(𝑝 + 𝑝𝑒) +
B2

2𝜇0

where 𝛾 is the adiabatic index. Note that in Hall MHD only (𝜌,u,B, 𝑝, 𝑝𝑒) are unknowns; all
others are derived quantities.

5.7 Fluid Drifts Perpendicular to B

Since a fluid element is composed of many individual particles, one would expect the fluid
to have drifts perpendicular to B if the individual guiding centers have such drifts. However,
since the ∇𝑝 term appears only in the fluid equations, there is a drift associated with it which
the fluid elements have but the particles do not have. For each species, we have an equation
of motion

𝑚𝑛[ 𝜕u
𝜕𝑡⏟
1

+(u ⋅ ∇)u⏟
2

] = 𝑞𝑛(E + u × B⏟
3

) − ∇𝑝 (5.52)

Consider the ratio of term 1 to term 3:

term 1
term 3 ≈ ∣𝑚𝑛𝑖𝜔𝑣⟂

𝑞𝑛𝑣⟂𝐵
∣ ≈ 𝜔

𝜔𝑐

Here we have taken 𝜕/𝜕𝑡 = 𝑖𝜔 and are concerned only with v⟂. For drifts slow compared with
the time scale associated with 𝜔𝑐, we may neglect term 1. We shall also neglect the (u ⋅ ∇)u
term and show a posteriori that this is all right. Let E and B be uniform, but let 𝑛 and 𝑝
have a gradient. This is the usual situation in a magnetically confined plasma column (Fig.
3.4 ADD FIGURE!). Taking the cross product of Equation 5.52 with B, we have (neglecting
the left-hand side)
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0 = 𝑞𝑛[E × B + (u⟂ × B) × B] − ∇𝑝 × B
= 𝑞𝑛[E × B + B(����u⟂ ⋅ B) − u⟂B2] − ∇𝑝 × B
= 𝑞𝑛[E × B − u⟂B2] − ∇𝑝 × B

Therefore,
u⟂ = E × B

𝐵2 − ∇𝑝 × B
𝑞𝑛𝐵2 ≡ u𝐸 + u𝐷

where
u𝐸 ≡ E × B

𝐵2 E × B drift

u𝐷 ≡ −∇𝑝 × B
𝑞𝑛𝐵2 Diamagnetic drift (5.53)

The drift u𝐸 is the same as for guiding centers, but there is now a new drift u𝐷, called the
diamagnetic drift. Since u𝐷 is perpendicular to the direction of the gradient, our neglect of
(u ⋅ ∇)u is justified if E = 0. If E = −∇𝜙 ≠ 0 (i.e. a potential field), (u ⋅ ∇)u is still zero if
∇𝜙 and ∇𝑝 are in the same direction; otherwise, there could be a more complicated solution
involving (u ⋅ ∇)u.

With the help of Equation 5.12, we can write the diamagnetic drift as

u𝐷 = ±𝛾𝑘𝐵𝑇
𝑒𝐵

̂𝑧 × ∇𝑛
𝑛 (5.54)

In particular, for an isothermal plasma in the geometry of Fig.3.4 (ADD IT!), in which ∇𝑛 =
𝜕𝑛𝜕𝑟 ̂𝑟 = 𝑛′ ̂𝑟 (𝑛′ < 0), we have the following formulas familiar to experimentalists who have
worked with Q-machines

u𝐷𝑖 =
𝑘𝐵𝑇𝑖
𝑒𝐵

𝑛′

𝑛
̂𝜃

u𝐷𝑒 = −𝑘𝐵𝑇𝑒
𝑒𝐵

𝑛′

𝑛
̂𝜃

The physical reason for this drift can be seen from Figure 5.2. Here we have drawn the orbits
of ions gyrating in a magnetic field. There is a density gradient toward the left, as indicated
by the density of orbits. Through any fixed volume element there are more ions moving
downward than upward, since the downward-moving ions come from a region of higher density.
There is, therefore, a fluid drift perpendicular to ∇𝑛 and B, even though the guiding centers
are stationary. The diamagnetic drift reverses sign with 𝑞 because the direction of gyration
reverses. The magnitude of u𝐷 does not depend on mass because the 𝑚−1/2 dependence of
the velocity is cancelled by the 𝑚1/2 dependence of the Larmor radius—less of the density
gradient is sampled during a gyration if the mass is small.
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Figure 5.2: Origin of the diamagnetic drift.
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Since ions and electrons drift in opposite directions, there is a diamagnetic current. For
𝛾 = 𝑍 = 1, this is given by

J𝐷 = 𝑛𝑒(u𝐷𝑖 + u𝐷𝑒) =
B
𝐵2 ×∇(𝑝𝑖 + 𝑝𝑒) = (𝑘𝐵𝑇𝑖 + 𝑘𝐵𝑇𝑒)

B ×∇𝑛
𝐵2 (5.55)

In the particle picture, one would not expect to measure a current if the guiding centers do not
drift. In the fluid picture, the current J𝐷 flows wherever there is a pressure gradient. These
two viewpoints can be reconciled if one considers that all experiments must be carried out in
a finite-sized plasma. Suppose the plasma were in a rigid box (Fig. 3.6 ADD IT!). If one were
to calculate the current from the single-particle picture, one would have to take into account
the particles at the edges which have cycloidal paths. Since there are more particles on the
left than on the right, there is a net current downward, in agreement with the fluid picture.

The reader may not be satisfied with this explanation because it was necessary to specify
reflecting walls. If the walls were absorbing or if they were removed, one would find that
electric fields would develop because more of one species—the one with larger Larmor radius—
would collected than the other. Then the guiding centers would drift, and the simplicity of
the model would be lost. Alternatively, one could imagine trying to measure the diamagnetic
current with a current probe (Fig. 3.7 ADD IT!). This is just a transformer with a core of
magnetic material. The primary winding is the plasma current threading the core, and the
secondary is a multiturn winding all around the core. Let the whole thing be infinitesimally
thin, so it does not intercept any particles. It is clear from Fig. 3.7 that a net upward current
would be measured, there being higher density on the left than on the right, so that the
diamagnetic current is a real current. From this example, one can see that it can be quite
tricky to work with the single-particle picture. The fluid theory usually gives the right results
when applied straightforwardly, even though it contains “fictitious” drifts like the diamagnetic
drift.

What about the grad-B and curvature drifts which appeared in the single-particle picture?
The curvature drift also exists in the fluid picture, since the centrifugal force is felt by all
the particles in a fluid element as they move around a bend in the magnetic field. A term
̄𝐹𝑐𝑓 = 𝑛𝑚𝑣2∥/𝑅𝑐 = 𝑛𝑘𝐵𝑇∥/𝑅𝑐 has to be added to the right-hand side of the fluid equation of

motion. This is equivalent to a gravitational force 𝑚𝑛𝑔, with 𝑔 = 𝑘𝐵𝑇∥/𝑚𝑅𝑐, and leads to a
drift u𝑔 = (𝑚/𝑞)(g × B)/𝐵2, as in the particle picture (Equation 4.5).

The grad-B drift, however, does not exist for fluids. It can be shown on thermodynamic
grounds that a magnetic field does not affect a Maxwellian distribution. This is because the
Lorentz force is perpendicular to v and cannot change the energy of any particle. The most
probable distribution 𝑓(v) in the absence of B is also the most probable distribution in the
presence of B. If 𝑓(v) remains Maxwellian in a nonuniform B field, and there is no density
gradient, then the net momentum carried into any fixed fluid element is zero. There is no fluid
drift even though the individual guiding centers have drifts; the particle drift in any fixed fluid
element cancel out. To see this pictorially, consider the orbits of two particles moving through
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Figure 5.3: In a nonuniform B field the guiding centers drift but the fluid elements do not.

a fluid element in a nonuniform B field (Figure 5.3). Since there is no E field, the Larmor
radius changes only because of the gradient in B; there is no acceleration, and the particle
energy remains constant during the motion. If the two particles have the same energy, they
will have the same velocity and Larmor radius while inside the fluid element. There is thus
a perfect cancellation between particle pairs when their velocities are added to give the fluid
velocity.

When there is a nonuniform E field, it is not easy to reconcile the fluid and particle pictures.
Then the finite-Larmor-radius effect of Section 4.3 causes both a guiding center drift and a
fluid drift, but these are not the same; in fact, they have opposite signs! The particle drift was
calculated in Chapter 4, and the fluid drift can be calculated from the off-diagonal elements
of P. It is extremely difficult to explain how the finite-Larmor-radius effects differ. A simple
picture like Fig. 3.6 will not work because one has to take into account subtle points like the
following: in the absence of a density gradient, the density of guiding centers is not the same
as the density of particles! (???)

(I need to think carefully about these pictures.)

5.8 Fluid Drifts Parallel to B

The 𝑧 component of the fluid equation of motions is

𝑚𝑛[𝜕𝑢𝑧
𝜕𝑡 + (u ⋅ ∇)𝑢𝑧] = 𝑞𝑛𝐸𝑧 −

𝜕𝜙
𝜕𝑧 (5.56)
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The convective term can often be neglected because it is much smaller than the 𝜕𝑢𝑧/𝜕𝑡 term.
We shall avoid complicated arguments here and simply consider cases in which 𝑢𝑧 is spatially
uniform. Using Equation 5.56, we have

𝜕𝑢𝑧
𝜕𝑡 = 𝑞

𝑚𝐸𝑧 −
𝛾𝑘𝐵𝑇
𝑚𝑛

𝜕𝑛
𝜕𝑧 (5.57)

This shows that the fluid is accelerated along B under the combined electrostatic and pressure
gradient forces. A particularly important result is obtained by applying Equation 5.57 to
massless electrons. Taking the limit 𝑚 → 0 and specifying 𝑞 = −𝑒 and E = −∇𝜙, we have

𝑞𝐸𝑧 = 𝑒𝜕𝜙𝜕𝑧 = 𝛾𝑘𝐵𝑇𝑒
𝑛

𝜕𝑛
𝜕𝑧

Electrons are so mobile that their heat conductivity is almost infinite. We may then assume
isothermal electrons and take 𝛾 = 1. Integrating, we have

𝑒𝜙 = 𝑘𝐵𝑇𝑒 ln𝑛 + 𝐶

or
𝑛 = 𝑛0 exp(𝑒𝜙/𝑘𝐵𝑇𝑒) (5.58)

This is just the Boltzmann relation for electrons.

What this means physically is that electrons, being light, are very mobile and would be accel-
erated to high energies very quickly if there were a net force on them. Since electrons cannot
leave a region en masse without leaving behind a large ion charge, the electrostatic and pres-
sure gradient forces on the electrons must be closely in balance. This condition leads to the
Boltzmann relation. Note that Equation 5.58 applies to each magnetic field lines separately.
Different field lines may be charged to different potentials arbitrarily unless a mechanism is
provided for the electrons to move across B. The conductors on which field lines terminate can
provide such a mechanism, and the experimentalist has to take these end effects into account
carefully.

Figure 5.4 shows graphically what occurs when there is a local density clump in the plasma.
Let the density gradient be toward the center of the diagram, and suppose 𝑘𝐵𝑇 is constant.
There is then a pressure gradient toward the center. Since the plasma is quasineutral, the
gradient exists for both the electron and ion fluids. Consider the pressure gradient force F𝑝 on
the electron fluid. It drives the mobile electrons away from the center, leaving the ions behind.
The resulting positive charge generates a field E whose force F𝐸 on the electrons opposes F𝑝.
Only when F𝐸 = −F𝑝 is a steady state achieved. If B is a constant, E is an electrostatic field
E = −∇𝜙, and 𝜙 must be large at the center, where 𝑛 is large. This is just what Equation 5.58
tells us. The deviation from stric neutrality adjusts itself so that there is just enough charge
to set up the E field required to balance the forces on the electrons.
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Figure 5.4: Physical reason for the Boltzmann relation between density and potential.

5.9 The Plasma Approximation

The previous example reveals an important characteristic of plasmas that has wide application.
We are used to solving for E from Poisson’s equation when we are given the charge density
𝜎. In a plasma, the opposite procedure is generally used. E is found from the equations of
motion, and Poisson’s equation is used only to find 𝜎. The reason is that a plasma has an
overriding tendency to remain neutral. If the ions move, the electrons will follow. E must
adjust itself so that the orbits of the electrons and ions preserve neutrality. The charge density
is of secondary importance; it will adjust itself so that Poisson’s equation is satisfied. This is
true, of course, only for low-frequency motions in which the electron inertia is not a factor.

In a plasma, it is usually possible to assume 𝑛𝑖 = 𝑛𝑒 and ∇ ⋅ E ≠ 0 at the same time. We
shall call this the plasma approximation. It is a fundamental trait of plasmas, one which is
difficult for the novice to understand. Do not use Poisson’s equation to obtain E unless it
is unavoidable! In the set of fluid equations Equation 5.13, we may now eliminate Poisson’s
equation and also eliminate one of the unknowns by setting 𝑛𝑖 = 𝑛𝑒 = 𝑛.

The plasma approximation is almost the same as the condition of quasineutrality discussed
earlier but has a more exact meaning. Whereas quasineutrality refers to a general tendency for
a plasma to be neutral in its state of rest, the plasma approximation is a mathematical shortcut
that one can use even for wave motions. As long as these motions are slow enough that both
ions and electrons have time to move, it is a good approximation to replace Poisson’s equation
by the equation 𝑛𝑖 = 𝑛𝑒. Of course, if only one species can move and the other cannot follow,
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such as in high-frequency electron waves, then the plasma approximation is not valid, and E
must be found from Maxwell’s Equation 5.1 rather than from the ion and electron equations
of motion. Ampère’s law with the displacement current retained gives the time evolution of
E:

dE
d𝑡 = 1

𝜖0
(∇× B

𝜇0
− J)

We shall return to the question of the validity of the plasma approximation when we come
to the theory of ion waves. At that time, it will become clear why we had to use Poisson’s
equation in the derivation of Debye shielding. For electron waves, we can also show that with
a simple “modified” electron test particle model that updates the electric field while keeping
the magnetic field constant, we can retain the plasma oscillation and electron Berstein wave.
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6 Diffusion and Resisvity

6.1 Diffusion and Mobility in Weakly Ionized Gases

The infinite, homogeneous plasmas assumed in the previous chapter for the equilibrium condi-
tions are, of course, highly idealized. Any realistic plasma will have a density gradient, and the
plasma will tend to diffuse toward regions of low density. For example, the central problem in
controlled thermonuclear reactions is to impede the rate of diffusion by using a magnetic field.
Before tackling the magnetic field problem, however, we shall consider the case of diffusion in
the absence of magnetic fields. A further simplification results if we assume that the plasma is
weakly ionized, so that charge particles collide primarily with neutral atoms rather than with
one another. The case of a fully ionized plasma is deferred to a later section, since it results in
a nonlinear equation for which there are few simple illustrative solutions. In any case, partially
ionized gases are not rare: High-pressure arcs and ionospheric plasmas fall into this category,
and most of the early work on gas discharges involved fractional ionizations between 103 and
106, when collisions with neutral atoms are dominant.

The picture, then, is of a nonuniform distribution of ions and electrons in a dense background
of neutrals (Fig. 5.1 ADD IT!). As the plasma spreads out as a result of pressure-gradient
and electric field forces, the individual particles undergo a random walk, colliding frequently
with the neutral atoms. We begin with a brief review of definitions from atomic theory.

6.2 Collision Parameters

When an electron, say, collides with a neutral atom, it may lose any fraction of its initial
momentum, depending on the angle at which it rebounds. In a head-on collision with a heavy
atom, the electron can lose twice its initial momentum, since its velocity reverses sign after
the collision. The probability of momentum loss can be expressed in terms of the equivalent
cross section 𝜎 that the atoms would have if they were perfect absorbers of momentum.

In Fig. 5.2, electrons are incident upon a slab of area 𝐴 and thickness d𝑥 containing 𝑛𝑛 neutral
atoms per m3. The atoms are imagined to be opaque spheres of cross-sectional area 𝜎; that is,
every time an electron comes within the area blocked by the atom, the electron loses all of its
momentum. The number of atoms in the slab is 𝑛𝑛𝐴d𝑥. The fraction of the slab blocked by
atoms is 𝑛𝑛𝐴𝜎d𝑥/𝐴 = 𝑛𝑛𝜎d𝑥. If a flux Γ of electrons is incident on the slab, the flux emerging
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on the other side is Γ′ = Γ(1−𝑛𝑛𝜎d𝑥). Thus the change of Γ with distance is dΓ/d𝑥 = −𝑛𝑛𝜎Γ,
or

Γ = Γ0𝑒−𝑛𝑛𝜎𝑥 ≡ Γ0𝑒−𝑥/𝜆𝑚

In a distance 𝜆𝑚, the flux would be decreased to 1/𝑒 of its initial value. The quantity 𝜆𝑚 is
the mean free path for collisions:

𝜆𝑚 = 1/𝑛𝑛𝜎 (6.1)

After traveling a distance 𝜆𝑚, a particle will have had a good probability of making a collision.
The mean time between collisions, for particles of velocity 𝑣, is given by

𝜏 = 𝜆𝑚/𝑣

and the mean frequency of collisions is

𝜏−1 = 𝑣/𝜆𝑚 = 𝑛𝑛𝜎𝑣 (6.2)

If we now average over particles of all velocities 𝑣 in a Maxwellian distribution, we have what
is generally called the collision frequency 𝜈:

𝜈 = 𝑛𝑛𝜎𝑣 (6.3)

6.3 Diffusion Parameters

The fluid equation of motion including collisions is, for any species 𝑠,

𝑚𝑛dv
d𝑡 = 𝑚𝑛[𝜕v

𝜕𝑡 + (v ⋅ ∇)v] = 𝑞𝑠𝑛E −∇𝑝 −𝑚𝑛𝜈v

The averaging process used to compute 𝜈 is such as to make the last equation correct; we
need not be concerned with the details of this computation. The quantity 𝜈 must, however,
be assumed to be a constant in order for the equation to be useful. We shall consider a steady
state in which 𝜕v/𝜕𝑡 = 0. If v is sufficiently small (or 𝜈 sufficiently large), a fluid element will
not move into regions of different E and ∇𝑝 in a collision time, and the convective derivative
dv/d𝑡 will also vanish. Setting the left-hand side to zero, we have, for an isothermal plasma,

v = 1
𝑚𝑛𝜈 (𝑞𝑠𝑛E − 𝑘𝐵𝑇∇𝑛) = 𝑞𝑠

𝑚𝜈E − 𝑘𝐵𝑇
𝑚𝑣

∇𝑛
𝑛

The coefficients above are called the mobility and the diffusion coefficient:

𝜇 ≡ |𝑞|/𝑚𝜈 Mobility (6.4)
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𝐷 ≡ 𝑘𝐵𝑇/𝑚𝜈 Diffusion coefficient (6.5)

These will be different for each species. Note that 𝐷 is measured in m2/𝑠. The transport
coefficients 𝜇 and 𝐷 are connected by the Einstein relation:

𝜇 = |𝑞|𝐷/𝑘𝐵𝑇 (6.6)

With the help of these definitions, the flux Γ𝑠 of the sth species can be written

Γ𝑠 = 𝑛v𝑠 = ±𝜇𝑠𝑛E −𝐷𝑠∇𝑛 (6.7)

Fick’s law of diffusion is a special case of this, occurring when either E = 0 or the particles
are uncharged, so that 𝜇 = 0:

Γ = −𝐷∇𝑛 Fick’s law

This equation merely expresses the fact that diffusion is a random-walk process, in which a net
flux from dense regions to less dense regions occurs simply because more particles start in the
dense region. This flux is obviously proportional to the gradient of the density. In plasmas,
Fick’s law is not necessarily obeyed. Because of the possibility of organized motions (plasma
waves), a plasma may spread out in a manner which is not truly random.

6.4 Decay of a Plasma by Diffusion

6.4.1 Ambipolar Diffusion

We now consider how a plasma created in a container decays by diffusion to the walls. Once
ions and electrons reach the wall, they recombine there. The density near the wall, therefore,
is essentially zero. The fluid equations of motion and continuity govern the plasma behavior;
but if the decay is slow, we need only keep the time derivative in the continuity equation. The
time derivative in the equation of motion, will be negligible if the collision frequency 𝜈 is large.
We thus have

𝜕𝑛
𝜕𝑡 + ∇ ⋅ Γ𝑠 = 0 (6.8)

with Γ𝑠 given by Equation 6.7. It is clear that if Γ𝑖 and Γ𝑒 were not equal, a serious charge
imbalance would soon arise. If the plasma is much larger than a Debye length, it must be
quasineutral; and one would expect that the rates of diffusion of ions and electrons would
somehow adjust themselves so that the two species leave at the same rate. How this happens
is easy to see. The electrons, being lighter, have higher thermal velocities and tend to leave the
plasma first. A positive charge is left behind, and an electric field is set up of such a polarity
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as to retard the loss of electrons and accelerate the loss of ions. The required E field is found
by setting Γ𝑖 = Γ𝑒 = Γ. From @Equation 6.7, we can write

Γ = 𝜇𝑖𝑛E −𝐷𝑖∇𝑛 = −𝜇𝑒𝑛E −𝐷𝑒∇𝑛

E = 𝐷𝑖 −𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛
𝑛

The common flux Γ is then given by

Γ = 𝜇𝑖
𝐷𝑖 −𝐷𝑒
𝜇𝑖 + 𝜇𝑒

∇𝑛−𝐷𝑖∇𝑛

= 𝜇𝑖𝐷𝑖 − 𝜇𝑖𝐷𝑒 − 𝜇𝑖𝐷𝑖 − 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

∇𝑛

= −𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

∇𝑛

This is Fick’s law with a new diffusion coefficient

𝐷𝑎 ≡ 𝜇𝑖𝐷𝑒 + 𝜇𝑒𝐷𝑖
𝜇𝑖 + 𝜇𝑒

(6.9)

called the ambipolar diffusion coefficient. If this is constant, the continuity equation above
becomes simply

𝜕𝑛
𝜕𝑡 = 𝐷𝑎∇2𝑛 (6.10)

The magnitude of Da can be estimated if we take 𝜇𝑒 ≫ 𝜇𝑖. That this is true can be seen from
Equation 6.4. Since 𝜈 is proportional to the thermal velocity, which is proportional to 𝑚−1/2,
𝜇 is proportional to 𝑚−1/2. Equation 6.4 and Equation 6.9 then give

𝐷𝑎 ≈ 𝐷𝑖 +
𝜇𝑖
𝜇𝑒

𝐷𝑒 = 𝐷𝑖 +
𝑇𝑒
𝑇𝑖

𝐷𝑖

For 𝑇𝑒 = 𝑇𝑖, we have
𝐷𝑎 ≈ 2𝐷𝑖

The effect of the ambipolar electric field is to enhance the diffusion of ions by a factor of
two, and the diffusion rate of the two species together is primarily controlled by the slower
species.
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6.4.2 Diffusion in a Slab

The diffusion Equation 6.10 can easily be solved by the method of separation of variables. We
let

𝑛(r, 𝑡) = 𝑇 (𝑡)𝑆(r)

whereupon Equation 6.10, with the subscript on 𝐷𝑎 understood, becomes

𝑆 d𝑇
d𝑡 = 𝐷𝑇∇2𝑆

1
𝑇

d𝑇
d𝑡 = 𝐷

𝑆 ∇2𝑆

Since the left side is a function of time alone and the right side a function of space alone, they
must both be equal to the same constant, which we shall call −1/𝜏 . The function 𝑇 then
obeys the equation

d𝑇
d𝑡 = −𝑇

𝜏 (6.11)

with the solution
𝑇 = 𝑇0𝑒−𝑡/𝜏

The spatial part 𝑆 obeys the equation

∇2𝑆 = − 1
𝐷𝜏 𝑆 (6.12)

In slab geometry, this becomes
d2𝑆
d𝑥2 = − 1

𝐷𝜏 𝑆 (6.13)

with the solution
𝑆 = 𝐴 cos 𝑥

(𝐷𝜏)1/2 +𝐵 sin 𝑥
(𝐷𝜏)1/2 (6.14)

We would expect the density to be nearly zero at the walls (Fig. 5.3 ADD IT!) and to have one
or more peaks in between. The simplest solution is that with a single maximum. By symmetry,
we can reject the odd (sine) term in Equation 6.14. The boundary conditions 𝑆 = 0 at 𝑥 = ±𝐿
then requires

𝐿
(𝐷𝜏)1/2 = 𝜋

2
or

𝜏 = (2𝐿𝜋 )
2 1
𝐷
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Combining all the equations above, we have

𝑛 = 𝑛0𝑒−𝑡/𝜏 cos 𝜋𝑥
2𝐿

This is called the lowest diffusion mode. The density distribution is a cosine, and the peak
density decays exponentially with time. The time constant 𝜏 increases with 𝐿 and varies
inversely with 𝐷, as one would expect.

There are, of course, higher diffusion modes with more than one peak. Suppose the initial
density distribution is as shown by the top curve in Fig. 5.4 ADD IT. Such an arbitrary
distribution can be expanded in a Fourier series:

𝑛 = 𝑛0(∑
𝑙

𝑎𝑙 cos
(𝑙 + 1

2)𝜋𝑥
𝐿 ∑

𝑚
𝑏𝑚 sin 𝑚𝜋𝑥

𝐿 )

We have chosen the indices so that the boundary condition at 𝑥 = ±𝐿 is automatically satisfied.
To treat the time dependence, we can try a solution of the form

𝑛 = 𝑛0(∑
𝑙

𝑎𝑙𝑒−𝑡/𝜏𝑙 cos
(𝑙 + 1

2)𝜋𝑥
𝐿 ∑

𝑚
𝑏𝑚𝑒−𝑡/𝜏𝑚 sin 𝑚𝜋𝑥

𝐿 )

Substituting this into the diffusion Equation 6.10, we see that each cosine term yields a relation
of the form

− 1
𝜏𝑙

= −𝐷[(𝑙 + 𝜋
2)

𝜋
𝐿]

2

and similarly for the sine terms. Thus the decay time constant for the 𝑙th mode is given by

𝜏𝑙 = [ 𝐿
(𝑙 + 1

2)𝜋
]
2 1
𝐷

The fine-grained structure of the density distribution, corresponding to large 𝑙 numbers, decays
faster, with a smaller time constant 𝜏𝑙. The plasma decay will proceed as indicated in Fig. 5.4
ADD IT. First, the fine structure will be washed out by diffusion. Then the lowest diffusion
mode, the simple cosine distribution of Fig. 5.3 ADD IT, will be reached. Finally, the peak
density continues to decay while the plasma density profile retains the same shape.

I WANT TO DO A SIMULATION ON THIS! TRY METHODOFLINES.JL?
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6.4.3 Diffusion in a Cylinder

The spatial part of the diffusion equation, eq-diffusion_spatial, reads, in cylindrical geome-
try,

d2𝑆
𝑑𝑟2 + 1

𝑟
𝑑𝑆
𝑑𝑟 + 1

𝐷𝜏 𝑆 = 0 (6.15)

This differs from Equation 6.13 by the addition of the middle term, which merely accouts
for the change in coordinates. The need for the extra term is illustrated simply in Fig. 5.5
ADD IT. If a slice of plasma in (a) is moved toward larger x without being allowed to ex-
pand, the density would remain constant. On the other hand, if a shell of plasma in (b) is
moved toward larger 𝑟 with the shell thickness kept constant, the density would necessar-
ily decrease as 1/𝑟. Consequently, one would expect the solution to Equation 6.15 to be
like a damped cosine (Fig. 5.6 ADD IT). This function is called a Bessel function of order
zero, and eq-diffusion_spatial_cylinder is called Bessel’s equation (of order zero). Instead of
the symbol cos, it is given the symbol 𝐽0. The function 𝐽0(𝑟/[𝐷𝜏]1/2) is a solution to eq-
diffusion_spatial_cylinder, just as cos[𝑥/(d𝜏)1/2] is a solution to eq-diffusion_spatial. Both
cos 𝑘𝑥 and 𝐽0(𝑘𝑟) are expressible in terms of infinite series.

FIGURE: Motion of a plasma slab in rectilinear and cylindrical geometry, illustrating the
difference between a cosine and a Bessel function.

To satisfy the boundary condition 𝑛 = 0 at 𝑟 = 𝑎, we must set 𝑎/(𝐷𝜏)1/2 equal to the first
zero of 𝐽0; namely, 2.4. This yields the decay time constant 𝜏 . The plasma again decays
exponentially, since the temporal part of the diffusion equation, Equation 6.11, is unchanged.
We have described the lowest diffusion mode in a cylinder. Higher diffusion modes, with more
than one maximum in the cylinder, will be given in terms of Bessel functions of higher order,
in direct analogy to the case of slab geometry.

6.5 Steady State Solutions

In many experiments, a plasma is maintained in a steady state by continuous ionization or
injection of plasma to offset the losses. To calculate the density profile in this case, we must
add a source term to the equation of continuity:

𝜕𝑛
𝜕𝑡 − 𝐷∇2𝑛 = 𝑄(r)

The sign is chosen so that when 𝑄 is positive, it represents a source and contributes to positive
𝜕𝑛/𝜕𝑡. In steady state, we set 𝜕𝑛/𝜕𝑡 = 0 and are left with a Poisson-type equation for 𝑛(r).
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6.5.1 Constant Ionization Function

In many weakly ionized gases, ionization is produced by energetic electrons in the tail of the
Maxwellian distribution. In this case, the source term 𝑄 is proportional to the electron density
𝑛. Setting 𝑄 = 𝑍𝑛, where 𝑍 is the “ionization function”, we have

∇2𝑛 = −(𝑍/𝐷)𝑛

This is the same equation as that for S, Equation 6.12. Consequently, the density profile is
a cosine or Bessel function, as in the case of a decaying plasma, only in this case the density
remains constant. The plasma is maintained against diffusion losses by whatever heat source
keeps the electron temperature at its constant value and by a small influx of neutral atoms to
replenish those that are ionized.

6.5.2 Plane Source

We next consider what profile would be obtained in slab geometry if there is a localized source
on the plane 𝑥 = 0. Such a source might be, for instance, a slit-collimated beam of ultraviolet
light strong enough to ionize the neutral gas. The steady state diffusion equation is then

d𝑛

d𝑥2 = −𝑄
𝐷𝛿(0)

Except at 𝑥 = 0, the density must satisfy 𝜕2𝑛/𝜕𝑥2 = 0. This obviously has the solution (Fig.
5.7 ADD IT)

𝑛 = 𝑛0(1 − |𝑥|
𝐿 )

The plasma has a linear profile. The discontinuity in slope at the source is characteristic of
𝛿-function sources.

6.5.3 Line Source

Finally, we consider a cylindrical plasma with a source located on the axis. Such a source might,
for instance, be a beam of energetic electrons producing ionization along the axis. Except at
𝑟 = 0, the density must satisfy

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝑛
𝜕𝑟 ) = 0

The solution that vanishes at 𝑟 = 𝑎 is

𝑛 = 𝑛0 ln(𝑎/𝑟)

The density becomes infinite at 𝑟 = 0 (Fig. 5.8); it is not possible to determine the density
near the axis accurately without considering the finite width of the source.
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6.6 Recombination

When an ion and an electron collide, particularly at low relative velocity, they have a finite
probability of recombining into a neutral atom. To conserve momentum, a third body must
be present. If this third body is an emitted photon, the process is called radiative recombina-
tion. If it is a particle, the process is called three-body recombination. The loss of plasma by
recombination can be represented by a negative source term in the equation of continuity. It
is clear that this term will be proportional to 𝑛𝑒𝑛𝑖 = 𝑛2. In the absence of the diffusion terms,
the equation of continuity then becomes

𝜕𝑛
𝜕𝑡 = −𝛼𝑛2

The constant of proportionality 𝛼 is called the recombination coefficient and has units of
m3/s. This is a nonlinear equation for 𝑛. This means that the straightforward method for
satisfying initial and boundary conditions by linear superposition of solutions is not available.
Fortunately, it is such a simple nonlinear equation that the solution can be found by inspection.
It is 1

𝑛(r, 𝑡) = 1
𝑛0(r)

+ 𝛼𝑡

where 𝑛0(r) is the initial density distribution. After the density has fallen far below its initial
value, it decays reciprocally with time, 𝑛 ∝ 1/𝛼𝑡. This is a fundamentally different behavior
from the case of diffusion, in which the time variation is exponential.

Figure 5.9 (ADD IT!) shows the results of measurements of the density decay in the afterglow
of a weakly ionized H plasma. When the density is high, recombination, which is proportional
to 𝑛2, is dominant, and the density decays reciprocally. After the density has reached a low
value, diffusion becomes dominant, and the decay is thenceforth exponential.

6.7 Diffusion Across a Magnetic Field

The rate of plasma loss by diffusion can be decreased by a magnetic field; this is the problem
of confinement in controlled fusion research. Consider a weakly ionized plasma in a magnetic
field (fig-gyration-collision ADD IT!). Charged particles will move along B by diffusion and
mobility according to Equation 6.7, since B does not affect motion in the parallel direction.
Thus we have, for each species,

Γ𝑧 = ±𝜇𝑛𝐸𝑧 −𝐷𝜕𝑛
𝜕𝑧

If there were no collisions, particles would not diffuse at all in the perpendicular direction
— they would continue to gyrate about the same magnetic field line. There are, of course,
particle drifts across B because of electric fields or gradients in B, but these can be arranged
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to be parallel to the walls. For instance, in a perfectly symmetric cylinder (fig-drift-cylinder
ADD IT!), the gradients are all in the radial direction, so that the guiding center drifts are in
the azimuthal direction. The drifts would then be harmless.

FIGURE: A charged particle in a magnetic field will gyrate about the same line of force until
it makes a collision. #fig-gyration-collision

FIGURE: Particle drifts in a cylindrically symmetric plasma column do not lead to losses.#fig-
drift-cylinder

When there are collisions, particles migrate across B to the walls along the gradients. They
do this by a random-walk process (fig-diffusion-collision-neutral ADD IT!). When an ion, say,
collides with a neutral atom, the ion leaves the collision traveling in a different direction. It
continues to gyrate about the magnetic field in the same direction, but its phase of gyration
is changed discontinuously. (The Larmor radius may also change, but let us suppose that the
ion does not gain or lose energy on the average.)

FIGURE: Diffusion of gyrating particles by collisions with neutral atoms.#fig-diffusion-
collision-neutral

The guiding center, therefore, shifts position in a collision and undergoes a random walk. The
particles will diffuse in the direction opposite ∇𝑛. The step length in the random walk is no
longer 𝜆𝑚, as in magnetic-field-free diffusion, but has instead the magnitude of the Larmor
radius 𝑟𝐿. Diffusion across B can therefore be slowed down by decreasing 𝑟𝐿; that is, by
increasing B.

To see how this comes about, we write the perpendicular component of the fluid equation of
motion for either species as follows:

6.7.1 Ambipolar Diffusion Across B

Because the diffusion and mobility coefficients are anisotropic in the presence of a magnetic
field, the problem of ambipolar diffusion is not as straightforward as in the 𝐵 = 0 case.
Consider the particle fluxes perpendicular to B (Fig. 5.13 ADD IT!). Ordinarily, since Γ𝑒⟂ is
smaller than Γ𝑖⟂, a transverse electric field would be set up so as to aid electron diffusion and
retard ion diffusion. However, this electric field can be short-circuited by an imbalance of the
fluxes along B. That is, the negative charge resulting from Γ𝑒⟂ < Γ𝑖⟂ can be dissipated by
electrons escaping along the field lines. Although the total diffusion must be ambipolar, the
perpendicular part of the losses need not be ambipolar. The ions can diffuse out primarily
radially, while the electrons diffuse out primarily along B. Whether or not this in fact happens
depends on the particular experiment. In short plasma columns with the field lines terminating
on conducting plates, one would expect the ambipolar electric field to be short-circuited out.
Each species then diffuses radially at a different rate. In long, thin plasma columns terminated
by insulating plates, one would expect the radial diffusion to be ambipolar because escape along
B is arduous.
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Mathematically, the problem is to solve simultaneously the continuity Equation 6.8 for ions
and electrons. It is not the fluxes �𝑗, but the divergence ∇ ⋅ �𝑗 which must be set equal to each
other. Separating ∇ ⋅ �𝑗 into perpendicular and parallel components, we have

∇ ⋅ �𝑖 = ∇⟂ ⋅ (𝜇𝑖𝑛E⟂ −𝐷𝑖⟂∇𝑛) + 𝜕
𝜕𝑧(𝜇𝑖𝑛𝐸𝑧 −𝐷𝑖

𝜕𝑛
𝜕𝑧 )

∇ ⋅ �𝑒 = ∇⟂ ⋅ (𝜇𝑒𝑛E⟂ −𝐷𝑒⟂∇𝑛) + 𝜕
𝜕𝑧( − 𝜇𝑒𝑛𝐸𝑧 −𝐷𝑒

𝜕𝑛
𝜕𝑧 )

The equation resulting from setting ∇⋅�𝑖 = ∇⋅�𝑒 cannot easily be separated into one-dimensional
equations. Furthermore, the answer depends sensitively on the boundary conditions at the
ends of the field lines. Unless the plasma is so long that parallel diffusion can be neglected
altogether, there is no simple answer to the problem of ambipolar diffusion across a magnetic
field.

6.8 Collisions in Fully Ionized Plasmas

When the plasma is composed of ions and electrons alone, all collisions are Coulomb collisions
between charged particles. However, there is a distinct difference between

• collisions between like particles (ion–ion or electron–electron collisions) and
• collisions between unlike particles (ion–electron or electron–ion collisions).

Consider two identical particles colliding (Fig. 5.16 ADD IT!). If it is a head-on collision, the
particles emerge with their velocities reversed; they simply interchange their orbits, and the
two guiding centers remain in the same places. The result is the same as in a glancing collision,
in which the trajectories are hardly disturbed. The worst that can happen is a 90∘ collision,
in which the velocities are changed 90∘ in direction. The orbits after collision will then be the
dashed circles, and the guiding centers will have shifted. However, it is clear that the “center
of mass” of the two guiding centers remains stationary. For this reason, collisions between like
particles give rise to very little diffusion. This situation is to be contrasted with the case of ions
colliding with neutral atoms. In that case, the final velocity of the neutral is of no concern, and
the ion random-walks away from its initial position. In the case of ion–ion collisions, however,
there is a detailed balance in each collision; for each ion that moves outward, there is another
that moves inward as a result of the collision.

When two particles of opposite charge collide, however, the situation is entirely different (Fig.
5.17 ADD IT!). The worst case is now the 180∘ collision, in which the particles emerge
with their velocities reversed. Since they must continue to gyrate about the magnetic field
lines in the proper sense, both guiding centers will move in the same direction. Unlike-particle
collisions give rise to diffusion. The physical picture is somewhat different for ions and electrons
because of the disparity in mass. The electrons bounce off the nearly stationary ions and
random-walk in the usual fashion. The ions are slightly jostled in each collision and move about
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as a result of frequent bombardment by electrons. Nonetheless, because of the conservation of
momentum in each collision, the rates of diffusion are the same for ions and electrons, as we
shall show.

6.8.1 Plasma Resistivity

The fluid equations of motion including the effects of charged-particle collisions may be written
as follows

𝑚𝑖𝑛
dv𝑖
d𝑡 = 𝑒𝑛(E + v𝑖 × B) − ∇𝑝𝑖 −∇ ⋅ 𝜋𝜋𝜋𝑖 + P𝑖𝑒

𝑚𝑒𝑛
dv𝑒
d𝑡 = −𝑒𝑛(E + v𝑒 × B) − ∇𝑝𝑒 −∇ ⋅ 𝜋𝜋𝜋𝑒 + P𝑒𝑖

(6.16)

The terms P𝑖𝑒 and P𝑒𝑖 represent, respectively, the momentum gain of the ion fluid caused by
collisions with electrons, and vice versa. The stress tensor P𝑗 has been split into the isotropic
part 𝑝𝑗 and the anisotropic viscosity tensor 𝜋𝜋𝜋𝑗. Like-particle collisions, which give rise to
stresses within each fluid individually, are contained in 𝜋𝜋𝜋𝑗. Since these collisions do not give
rise to much diffusion, we shall ignore the terms ∇ ⋅ 𝜋𝜋𝜋𝑗. As for the terms P𝑖𝑒 and P𝑒𝑖, which
represent the friction between the two fluids, the conservation of momentum requires

P𝑖𝑒 = −P𝑒𝑖

We can write P𝑒𝑖 in terms of the collision frequency in the usual manner:

P𝑒𝑖 = 𝑚𝑛(v𝑖 − v𝑒)𝜈𝑒𝑖

and similarly for P𝑖𝑒. Since the collisions are Coulomb collisions, one would expect P𝑒𝑖 to
be proportional to the Coulomb force, which is proportional to 𝑒2 (for singly-charged ions).
Furthermore, P𝑒𝑖 must be proportional to the density of electrons 𝑛𝑒 and to the density of
scattering centers 𝑛𝑖, which, of course, is equal to 𝑛𝑒. Finally, P𝑒𝑖 should be proportional to
the relative velocity of the two fluids. On physical grounds, then, we can write P𝑒𝑖 as

P𝑒𝑖 = 𝜂𝑒2𝑛2(v𝑖 − v𝑒) (6.17)

where 𝜂 is a constant of proportionality. Comparing this with the last equation, we see that

𝜈𝑒𝑖 =
𝑛𝑒2
𝑚 𝜂 (6.18)

The constant 𝜂 is the specific resistivity of the plasma; that this jibes with the usual meaning
of resistivity will become clear shortly.
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6.8.2 Mechanics of Coulomb Collisions

When an electron collides with a neutral atom, no force is felt until the electron is close to the
atom on the scale of atomic dimensions; the collisions are like billiard-ball collisions. When
an electron collides with an ion, the electron is gradually deflected by the long-range Coulomb
field of the ion. Nonetheless, one can derive an effective cross section for this kind of collision.
It will suffice for our purposes to give an order-of-magnitude estimate of the cross section. In
Fig. 5.18 ADD IT!, an electron of velocity v approaches a fixed ion of charge 𝑒. In the absence
of Coulomb forces, the electron would have a distance of closest approach 𝑟0, called the impact
parameter. In the presence of a Coulomb attraction, the electron will be deflected by an angle
𝜒, which is related to 𝑟0. The Coulomb force is

FIGURE:Orbit of an electron making a Coulomb collision with an ion.#fig-coulomb-collision

𝐹 = − 𝑒2
4𝜋𝜖0𝑟2

This force is felt during the time the electron is in the vicinity of the ion; this time is roughly

𝑇 ≈ 𝑟0/𝑣

The change in the electron’s momentum is therefore approximately

Δ(𝑚𝑣) = |𝐹𝑇 | ≈ 𝑒2
4𝜋𝜖0𝑟0𝑣

We wish to estimate the cross section for large-angle collisions, in which 𝜒 ≥ 90∘. For a 90∘
collision, the change in 𝑚𝑣 is of the order of 𝑚𝑣 itself. Thus

Δ(𝑚𝑣) ≃ 𝑚𝑣 ≃ 𝑒2/4𝜋𝜖0𝑟0𝑣, 𝑟0 = 𝑒2/4𝜋𝜖0𝑚𝑣2 (6.19)

The cross section is then
𝜎 = 𝜋𝑟20 = 𝑒4/16𝜋𝜖20𝑚2𝑣4

The collision frequency is, therefore,

𝜈𝑒𝑖 = 𝑛𝜎𝑣 = 𝑛𝑒4/16𝜋𝜖20𝑚2𝑣3 (6.20)

and the resistivity is

𝜂 = 𝑚
𝑛𝑒2 𝜈𝑒𝑖 =

𝑒2
16𝜋𝜖20𝑚𝑣3 (6.21)
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For a Maxwellian distribution of electrons, we may replace 𝑣2 by 𝑘𝐵𝑇𝑒/𝑚 for our order-of-
magnitude estimate:

𝜂 ≈ 𝜋𝑒2𝑚1/2

(4𝜋𝜖0)2(𝑘𝐵𝑇𝑒)3/2
(6.22)

This is the resistivity based on large-angle collisions alone. In practice, because of the long
range of the Coulomb force, small-angle collisions are much more frequent, and the cumulative
effect of many small-angle deflections turns out to be larger than the effect of large-angle
collisions. It was shown by Spitzer that Equation 6.22 should be multiplied by a factor lnΛ:

𝜂 ≈ 𝜋𝑒2𝑚1/2

(4𝜋𝜖0)2(𝑘𝐵𝑇𝑒)3/2
lnΛ (6.23)

where
Λ = 𝜆𝐷/𝑟0 = 12𝜋𝑛𝜆3

𝐷

This factor represents the maximum impact parameter, in units of 𝑟0 as given by Equation 6.19,
averaged over a Maxwellian distribution. The maximum impact parameter is taken to be 𝜆𝐷
because Debye shielding suppresses the Coulomb field at larger distances. Although Λ depends
on 𝑛 and 𝑘𝐵𝑇𝑒, its logarithm is insensitive to the exact values of the plasma parameters.
Typical values of lnΛ are given below (𝜆𝐷 defined in Section 2.4).

𝑘𝐵𝑇𝑒 [eV] 𝑛 [m−3] lnΛ
0.2 1015 10.7 (Q-machine)
2 1017 11.8 (lab plasma)
100 1019 15.4 (typical torus)
104 1021 20.0 (fusion reactor)
103 1027 9.6 (laser plasma)

It is evident that lnΛ varies only a factor of two as the plasma parameters range over many
orders of magnitude. For most purposes, it will be sufficiently accurate to let lnΛ = 10
regardless of the type of plasma involved.

6.8.3 Physical Meaning of �

Let us suppose that an electric field E exists in a plasma and that the current that it drives
is all carried by the electrons, which are much more mobile than the ions. Let 𝐵 = 0 and
𝑘𝐵𝑇𝑒 = 0, so that ∇ ⋅ P𝑒 = 0. Then, in steady state, the electron equation of motion from
Equation 6.16 reduces to

𝑒𝑛E = P𝑒𝑖 (6.24)
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Since j = 𝑒𝑛(v𝑖 − v𝑒), Equation 6.17 can be written

P𝑒𝑖 = 𝜂𝑒𝑛j

so that Equation 6.24 becomes
E = 𝜂j (6.25)

This is simply Ohm’s law, and the constant 𝜂 is just the specific resistivity. The expression for
𝜂 in a plasma, as given by Equation 6.22 or Equation 6.23, has several features which should
be pointed out.

1. In Equation 6.23, we see that 𝜂 is independent of density (except for the weak dependence
in lnΛ). This is a rather surprising result, since it means that if a field E is applied to a
plasma, the current j, as given by Equation 6.25, is independent of the number of charge
carriers. The reason is that although 𝑗 increases with 𝑛𝑒, the frictional drag against
the ions increases with 𝑛𝑖. Since 𝑛𝑒 = 𝑛𝑖 these two effects cancel. This cancellation
can be seen in Equation 6.20 and Equation 6.21. The collision frequency 𝜈𝑒𝑖 is indeed
proportional to 𝑛, but the factor 𝑛 cancels out in 𝜂. A fully ionized plasma behaves quite
differently from a weakly ionized one in this respect. In a weakly ionized plasma, we
have j = −𝑛𝑒v𝑒,v𝑒 = −𝜇𝑒E, so that j = 𝑛𝑒𝜇𝑒E. Since the electron mobility 𝜇𝑒 depends
only on the density of neutrals, the current is proportional to the plasma density 𝑛.

2. Equation 6.23 shows that 𝜂 is proportional to 𝑇−3/2
𝑒 . As a plasma is heated, the Coulomb

cross section decreases, and the resistivity drops rather rapidly with increasing temper-
ature. Plasmas at thermonuclear temperatures (tens of keV) are essentially collisionless;
this is the reason so much theoretical research is done on collisionless plasmas. Of course,
there must always be some collisions; otherwise, there wouldn’t be any fusion reactions
either. An easy way to heat a plasma is simply to pass a current through it. The 𝐼2𝑅
or 𝜂𝑗2 losses then turn up as an increase in electron temperature. This is called ohmic
heating. The (𝑘𝐵𝑇𝑒)−3/2 dependence of 𝜂, however, does not allow this method to be
used up to thermonuclear temperatures. The plasma becomes such a good conductor at
temperatures above 1 keV that ohmic heating is a very slow process in that range.

3. Equation 6.20 shows that 𝜈𝑒𝑖 varies as 𝑣−3. The fast electrons in the tail of the velocity
distribution make very few collisions. The current is therefore carried mainly by these
electrons rather than by the bulk of the electrons in the main body of the distribution.
The strong dependence on 𝑣 has another interesting consequence. If an electric field is
suddenly applied to a plasma, a phenomenon known as electron runaway can occur. A
few electrons which happen to be moving fast in the direction of −E when the field is
applied will have gained so much energy before encountering an ion that they can make
only a glancing collision. This allows them to pick up more energy from the electric field
and decrease their collision cross section even further. If E is large enough, the cross
section falls so fast that these runaway electrons never make a collision. They form an
accelerated electron beam detached from the main body of the distribution.
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6.8.4 Numerical Values of �

Exact computations of 𝜂 which take into account the ion recoil in each collision and are properly
averaged over the electron distribution were first given by Spitzer. The following result for
hydrogen is sometimes called the Spitzer resistivity:

𝜂∥ = 5.2 × 10−5 𝑍 lnΛ
𝑇 3/2[eV] [ohm ⋅ m] (6.26)

Here 𝑍 is the ion charge number, which we have taken to be 1 elsewhere. Since the dependence
on 𝑚𝑖 is weak, these values can also be used for other gases. The subscript ∥ means that this
value of 𝜂 is to be used for motions parallel to B. For motions perpendicular to B, one should
use 𝜂⟂ given by

𝜂⟂ = 2.0𝜂∥

This does not mean that conductivity along B is only two times better than conductivity
across B. A factor like 𝜔2

𝑐𝜏2 still has to be taken into account. The factor 2.0 comes from a
difference in weighting of the various velocities in the electron distribution. In perpendicular
motions, the slow electrons, which have small Larmor radii, contribute more to the resistivity
than in parallel motions.

For 𝑘𝐵𝑇𝑒 = 100 eV, Equation 6.26 yields

𝜂 = 5 × 10−7 [ohm ⋅ m]

This is to be compared with various metallic conductors:

material 𝜂 [ohm ⋅ m]
copper 2 × 10−8

stainless steel 7 × 10−7

mercury 1 × 106

A 100-eV plasma, therefore, has a conductivity like that of stainless steel.
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6.8.5 Pulsed Currents

When a steady-state current is drawn between two electrodes aligned along the magnetic field,
electrons are the dominant current carrier, and sheaths are set up at the cathode to limit
the current to the set value. When the current is pulsed, however, it takes time to set up
the current distribution. It was shown by Stenzel and Urrutia that this time is controlled
by whistler waves (R-waves), which must travel the length of the device to communicate the
voltage information.

6.8.6 Collisions Between Species

Y.Y talked about this during his lecture that the collision rate among ions or electrons is much
larger than the collision rate between ions and electrons. I need to go back to the notes. See
also StackExchange Q&A.

6.8.7 Conductivity Tensor

Resistivity is the inverse of conductivity. Consider the effect of collisions as friction in the
equation of motion for electrons:

𝑚du𝑒
d𝑡 = 𝑞(E + u𝑒 × B) − 𝑚𝜈𝑐(u𝑒 − u′)

where u′ is the velocity of the collision targets.

• In unmagnetized plasma, let B = 0.

Assume a steady state with cold electrons (u𝑒 = v𝑒) and non-moving targets u′ = 0, we can
easily have

E = −𝑚𝑒𝜈𝑐
𝑒 u𝑒

Since the electron current is defined as

j = −𝑒𝑛𝑒u𝑒

we have from the last two equations

j = 𝑛𝑒𝑒2
𝑚𝑒𝜈𝑐

E ≡ 𝜎E (6.27)

where 𝜎 is the classical conductivity.
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• In magnetized plasma, let B = 𝑏 ̂𝑧.

Similar to the steady unmagnetized case,

0 = −𝑒(E + u𝑒 × B) − 𝜈𝑐𝑚𝑒u𝑒

In order to avoid confusion, let 𝜎0 denote the classical conductivity from Equation 6.27. Using
the definition of current density and writing in scalar forms, we now have

𝑗𝑥 = 𝜎0𝐸𝑥 − Ω𝑒
𝜈𝑐

𝑗𝑦

𝑗𝑦 = 𝜎0𝐸𝑦 − Ω𝑒
𝜈𝑐

𝑗𝑥
𝑗𝑧 = 𝜎0𝐸𝑧

the solution of which gives

𝑗𝑥 = 𝜈2
𝑐

𝜈2𝑐 +Ω2𝑒
𝜎0𝐸𝑥 − Ω𝑒𝜈𝑐

𝜈2𝑐 +Ω2𝑒
𝐸𝑦

𝑗𝑦 = 𝜈2
𝑐

𝜈2𝑐 +Ω2𝑒
𝜎0𝐸𝑦 − Ω𝑒𝜈𝑐

𝜈2𝑐 +Ω2𝑒
𝐸𝑥

𝑗𝑧 = 𝜎0𝐸𝑧

or in matrix form,

⎛⎜
⎝

𝑗𝑥
𝑗𝑦
𝑗𝑧
⎞⎟
⎠

= ⎛⎜
⎝

𝜎𝑃 −𝜎𝐻 0
𝜎𝐻 𝜎𝑃 0
0 0 𝜎∥

⎞⎟
⎠

⎛⎜
⎝

𝐸𝑥
𝐸𝑦
𝐸𝑧

⎞⎟
⎠

where

𝜎𝑃 = 𝜈2
𝑐

𝜈2𝑐 +Ω2𝑒
𝜎0 Pedersen conductivity (⟂ B& ∥ E)

𝜎𝐻 = Ω𝑒𝜈𝑐
𝜈2𝑐 +Ω2𝑒

𝜎0 Hall conductivity (⟂ B& ⟂ E)

𝜎∥ = 𝜎0 = 𝑛𝑒𝑒2
𝑚𝑒𝜈𝑐

parallel conductivity (∥ B)
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Magnetic field-aligned currents (FACs) are very important in plasma physics. From ?@fig-
conductivity, we see that Ω𝑒 ≃ 𝜈𝑐 is the most complicated regime where the three conduc-
tivities are comparable, and Ω𝑒 ≫ 𝜈𝑐 is the most anisotropic regime as particles are tightly
bound in the perpendicular direction but free to move along B.

KeyNotes.plot_conductivity()

The study of conductivity is most relevant in the Earth’s ionosphere, where Ω𝑒 ≃ 𝜈𝑐 happens
at about 100 km above from the ground, and 𝜎0 is on the order of 100 S/m. Ionosphere forms
within the atmosphere through the mechanisms of electron impact ionization and photoion-
ization and in turn contribute in a crucial way to the plasma interactions. The ionosphere
is electrically conductive and thus carry part of a current system that is continued outside
the ionosphere by plasma currents. The properties of the ionospheric currents are usually
described in terms of the electrical conductivity of the ionosphere. Because a strong back-
ground magnetic field threads the ionosphere, the conductivities are strongly anisotropic. In
the direction of the magnetic field, the conductivity is referred to as the parallel or Birkeland
conductivity. The Birkeland conductivity 𝜎∥ is so high that it short-circuits the field-aligned
component of the ionospheric electric field, and normally electrical equipotentials align with
the ionospheric magnetic field lines for quasi-static (> 1min) large-scale electrodynamic condi-
tions. Perpendicular to the magnetic field direction, the conductivity has components parallel
to the electric field 𝜎𝑃 and perpendicular to the electric field 𝜎𝐻.

Because the electric field vanishes in the field-aligned direction through the ionosphere (E∥ = 0),
it is meaningful to integrate the transverse 𝜎𝑃 and 𝜎𝐻 along the magnetic field direction to
evaluate the Pedersen and Hall conductances Σ𝑃 and Σ𝐻, respectively. For any E,

ΣΣΣ ⋅ E = Σ𝑃E +Σ𝐻 ̂𝑏 × E

The continuity of currents gives

∇ ⋅ j + 𝜕𝜌∗
𝜕𝑡 = 0

∇ ⋅ (𝜎𝜎𝜎 ⋅ E) = −𝜕𝜌∗

𝜕𝑡
∫∇ ⋅ (𝜎𝜎𝜎 ⋅ E)𝑑𝑧 = −∫ 𝜕𝜌∗

𝜕𝑡 𝑑𝑧

∇ ⋅ (∫𝜎𝜎𝜎𝑑𝑧 ⋅ E) = −𝜌∗𝑣∥
∇ ⋅ (ΣΣΣ ⋅ E) = −𝑗∥
∇ ⋅ (ΣΣΣ ⋅ ∇Φ) = 𝑗∥

(6.28)
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E = −∇Φ, and 𝑗∥ is defined such that upward (+𝑧) is considered positive. Here we assume
that B is aligned with ̂𝑧; a more realistic geometry requires the consideration of inclination
angle. See Equation 19.1 and note the sign difference between the definitions of 𝑗∥.
The forces that act on a flux tube in the ionosphere can be expressed in terms of these
conductances and the force balance expressions can consequently be used to derive other
properties of the ionospheric flow such as its velocity. (???)

Mass loading contributes to the electrodynamics of the plasma interaction in ways that are
analogous to the contributions of the ionospheric conductivities. Pickup ionization conserves
momentum. An increase of the ion density results in a reduction of the flow velocity and its
associated electric field. Thus in developing the theory of the interaction, pickup effects can
be directly incorporated into the above conductances and the interaction region extends well
above the atmospheric exobase.

The Pedersen current (aligned with the electric field) exerts forces that slow the flow in the
ionosphere. The Hall current flows perpendicular to the electric and magnetic field, thereby
breaking the symmetry of the interaction. The Hall current results in a rotation of the flow
away from the corotation direction and produces ionospheric asymmetries.

6.9 Diffusion of Fully Ionized Plasmas

The magnetic induction equation can be derived from Faraday’s law and Ohm’s law. If mag-
netic diffusivity 𝜂 is constant, we can write it in the form

𝜕B
𝜕𝑡 = ∇× (u × B) + 𝜂∇2B

We define magnetic Reynold number 𝑅𝑚 as the ratio of the convection term and the diffusion
term:

𝑅𝑚 ≡ ∇× (u × B)
𝜂∇2B ∼ 𝑢𝐵𝐿2

0
𝜂𝐿0𝐵

= 𝑢𝐿0
𝜂

There are two extreme cases of 𝑅𝑚. One thing that you should keep in mind is that this is no
longer ideal MHD because E + u × B ≠ 0.
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6.9.1 Small 𝑅𝑚 condition

If 𝑅𝑚 ≪ 1, the convection part can be ignored, (e.g. u ≈ 0)

𝜕B
𝜕𝑡 = 𝜂∇2B

This is a diffusion equation, meaning that unlike in ideal MHD, plasma no longer ties to the
magnetic field. The diffusion time scale 𝜏0 can be derived as follows:

𝐵
𝜏0

= 𝜂 𝐵
𝐿0

2 ⇒ 𝜏0 = 𝐿0
2

𝜂 = 𝜇𝜎𝐿0
2

𝜎 is the electrical conductivity, which is a derived parameter from Ohm’s law. For fully ionized
plasma, 𝜎 = 𝑛𝑖𝑒2𝜏𝑒𝑖

𝑚𝑒
.

The magnetic diffusivity can be written as

𝜂 = 1
𝜇𝜎 = 𝑚𝑒

𝜇𝑛𝑖𝑒2𝜏𝑒𝑖
= 𝑚𝑒𝑛𝑒 lnΛ

𝜇𝑛𝑖𝑒2 ⋅ 5.45 × 105𝑇 3/2 = 5.2 × 107 lnΛ
𝑇 3/2

where lnΛ is the Coulomb logarithm (generally 10 ∼ 20 which is insensitive to 𝑛 and 𝑇 ,
Section 6.8.2).

Examples:

1. Evolution of solar coronal magnetic field and the energy release of solar flares in solar
corona.

𝑇 = 107𝐾, 𝑛 = 1014𝑚−3, ⇒ 𝜂 = 1 𝑚2𝑠−1

For supergranules, 𝐿0 = 107𝑚 = 10𝑀𝑚, (𝑅𝑠 = 700𝑀𝑚), the diffusion time scale 𝜏𝑑 = 1014𝑠 ≈
3 × 106yr, which is very very long.

For flare, the observed diffusion time scale is 𝜏𝑑 = 1𝑠 ⇒ 𝐿0 = 1𝑚. The magnetic reconnection
(in solar corona) diffusion time scale is about 𝜏𝑑 = 100𝑠 ⇒ 𝐿0 = 10𝑚. The viewing angle at
1𝐴𝑈 to the sun is about 2000 arcsec, where 1 arcsecond corresponds to 700km on the sun.
Right now the best resolution we have is about 0.2 ∼ 0.5 arcsecond, which is about 100km.
This means that we are three orders of magnitude beyond the resolution we need to observe
electron diffusion region on the sun!

2. Requirement of dynamo
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If there is no such thing as a magnetic dynamo, the geomagnetic field will have been already
gone. In the core of Earth, 𝜂 ≈ 1𝑚2𝑠−1, radius of Earth 𝐿0 = 6 × 106𝑚 ⇒ 𝜏𝑑 ≈ 4 × 1012𝑠 ≈
106yr. However, the age of our Earth is about 109yr ≫ 106yr. This indicates that somthing is
generating magnetic field inside the core.

3. Current sheet

Consider an ideal configuration of magnetic field,

B = 𝐵(𝑥, 𝑡) ̂𝑦,

where

𝐵(𝑥, 0) = { +𝐵0 𝑥 > 0
−𝐵0 𝑥 < 0

Then the magnetic diffusion equation can be written as

𝜕𝐵
𝜕𝑡 = 𝜂𝜕

2𝐵
𝜕𝑥2

There is an analytic solution

𝐵(𝑥, 𝑡) = 𝐵0 erf(𝜉)

where

𝜉 = 𝑥√4𝜂𝑡

and

erf(𝜉) = 2√𝜋 ∫
𝜉

0
𝑒−𝑧2𝑑𝑧

is the error function. It has some basic properties as follows:

erf(𝜉) ⇒ { 1 , 𝜉 → +∞
−1 , 𝜉 → −∞

erf(𝜉) = 2√𝜋(𝜉 −
𝜉3
3 + 𝜉5

10 − 𝜉7
42 + ...) ≈ 2𝜉√𝜋 , |𝜉| ≪ 1
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The shape is shown in Figure 6.1.

Figure 6.1: Error function.

|𝐵(𝑥, 𝑡)| ≈
⎧{
⎨{⎩

𝑥√𝜋𝜂𝑡𝐵0 , |𝜉| ≪ 1 or |𝑥| ≪ √𝜋𝜂𝑡
𝐵0 , |𝜉| ≫ 1 or |𝑥| ≫ √𝜋𝜂𝑡
0.995𝐵0 , |𝜉| = 2 or |𝑥| = 2√𝜋𝜂𝑡

If you want to draw this time-variant magnetic field at two different times 𝑡1 and 𝑡2 (𝑡1 < 𝑡2),
you should have less dense lines at 𝑡2 than 𝑡1. An example plot is present in Figure 6.2.

Conclusion:

1. In a certain amount of time, B decreases in the near region and stays the same in the
far region.

2.
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Figure 6.2: Magnetic field at 𝑡 = 0.1, 1, 10, respectively.
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𝑗𝑧 = 1
𝜇

d𝐵
d𝑥 ,

𝛿 = 2√4𝜂𝑡, (characteristic breadth)
d𝛿
d𝑡 = 2√𝜂

𝑡 , (characteristic speed)

3.

𝑗 = ∫
∞

−∞
𝑗𝑧d𝑥 = 1

𝜇 ∫
∞

−∞
d𝐵 = 2𝐵0

𝜇 = const.

The current sheet gets thickened with time, but the total current in 𝑧 remains the same.

4. Dissipation of magnetic energy, 𝑊𝐵 = 𝐵2
2𝜇 ???

𝜕
𝜕𝑡 ∫

∞

−∞
(𝑊0 −𝑊𝐵)d𝑥 = − 𝜕

𝜕𝑡 ∫
∞

−∞

𝐵(𝑥)2
2𝜇 d𝑥

6.9.2 Large 𝑅𝑚 condition

If 𝑅𝑚 ≪ 1, the diffusion part can be ignored,

𝜕B
𝜕𝑡 = ∇× (u × B)

When the conductivity is large, the diffusion coefficient becomes very small, and frozen-in flux
phenomenon happens.

1. Frozen-flux theorem

The magnetic field lines are frozen in the plasma flow. The magnetic flux through a surface
moving with the plasma is conserved,

dΦ
d𝑡 = 0,

where
Φ = ∫B ⋅ dA.

ADD FIGURES!!!

Proof.
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Consider a surface 𝑆 with boundary Γ. the magnetic flux through 𝑆 is

Φ = ∬
𝑠

B ⋅ dA

Then the time derivative of flux can be written as

Φ̇ = ∬
𝑠

Ḃ ⋅ dA +∬
𝑠

B ⋅ dȦ

= ∬
𝑠
(−∇× E) ⋅ dA +∬

𝑠
B ⋅ dȦ

= ∬
𝑠
∇× (u × B) ⋅ dl +∬

𝑠
B ⋅ dȦ

= ∮
Γ

u × B ⋅ dl +∬
𝑠

B ⋅ dȦ

The change of area can be expressed as

ΔA = (uΔ𝑡) × dl,
dȦ = u × dl.

Substituting into the above equation, we have

Φ̇ = ∮
Γ

u × B ⋅ dl +∮
Γ

B ⋅ (u × dl) = 0

Keep in mind we are still under MHD approximation

𝜕|B|
𝜕𝑡 ≪ Ω𝑖|B|

This looks like the conservation of magnetic moment.

�

2. Stretching of magnetic field lines

𝑑B
d𝑡 = 𝜕B

𝜕𝑡 + (u ⋅ ∇)B = ∇× (u × B) + (u ⋅ ∇)B = (B ⋅ ∇)u − B(∇ ⋅ u)

where the first term on the right is the shear motion and the second term is the expansion
related change.
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Combined with the continuity equation,

d𝜌
d𝑡 + 𝜌∇ ⋅ u = 0

we can get
d
d𝑡(

B
𝜌 ) = (B

𝜌 ⋅ ∇)u (6.29)

Proof.

dB
d𝑡 = (B ⋅ ∇)u + B

𝜌
d𝜌
d𝑡

1
𝜌

dB
d𝑡 − B

𝜌2
d𝜌
d𝑡 = (B

𝜌 ⋅ ∇)u
�

Compare Equation 6.29 and Equation 3.1, we have

B
𝜌 ∝ l

i.e. B/𝜌 and l has the same form of variation. If density does not change much, the magnetic
field strength will be proportional to 𝑙.

6.10 Pitch Angle Scattering

This section first follows Tautz et al. (2013). This paper gives the definition of pitch angle
scattering in terms of diffusion coefficient, typical behavior of pitch angle scattering, and
consequent pitch angle distribution.

Strongly pitch-angle–anisotropic phase space distribution functions cannot be properly ac-
counted for by the diffusion approximation. Examples include solar energetic particles (SEPs),
heliospheric particle populations such as Jovian electron jets and suprathermal ion species
accelerated at interplanetary traveling shocks.

The key to this problem is the determination of the pitch-angle diffusion coefficient 𝐷𝜇𝜇 that
occurs in the Fokker-Planck transport equation. In general, one can distinguish at least three
different methods of addressing this problem.

First, the wave number k-dependence of the turbulent power spectrum 𝐺(𝑘) can be specified
to derive analytical approximations for 𝐷𝜇𝜇. The quasi-linear theory (QLT) derived by Jokipii
(1966) has been the standard theory, until it was realized that QLT is not only inaccurate but,
in fact, invalid for some scenarios. For the example of isotropic turbulence, it has been known
that QLT cannot properly describe pitch-angle scattering, because it neglects 90° scattering
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and leads to infinitely large mean-free paths. This problem was remedied by the application
of the second-order QLT (Shalchi 2005; Tautz et al. 2008), which considers deviations from
the unperturbed spiral orbits that were assumed in QLT.

Second, to allow for more complex turbulence properties and to validate the permissibility of
the analytical perturbation theories, one can resort to test particle simulations in specified
turbulent magnetic fields. By tracing particle trajectories, the mean square displacements and
the associated diffusion parameters can be obtained.

Third, rather than entirely specifying the turbulent magnetic fields, one can perform direct
numerical simulations to compute solutions to the magnetohydrodynamic equations, while the
test-particle trajectories are still integrated as in the previous method. Such computations
do not require assumptions regarding the turbulence spectrum that is seen by the energetic
particles. They are, however, limited regarding the extent of the inertial range of the turbulence
spectrum, owing to computational constraints.

Perhaps the most important transport process of high-energy particles is represented by pitch-
angle scattering, i.e., by stochastic variations in 𝜇 = 𝑣∥/𝑣 = cos 𝜃 with range [−1, 1] , where 𝜃
is the angle between B0 the mean magnetic field and v the particle velocity. This process is
related to diffusion along the mean magnetic field, which is described by the parallel diffusion
coefficient, 𝜅∥, or the parallel mean free path, 𝜆∥ = (3/𝑣)𝜅∥, which are also related to the
cosmic ray anisotropy.

The time evolution of the pitch angle is shown in Figure 6.3 for a sample of typical single-
particle trajectories. It is indeed confirmed that particles with 𝜇 ≈ [0,±1] almost retain their
original pitch angle. However, scattering through 90° can occur, a fact that is not included in
QLT.

6.10.1 Definition of Pitch Angle Scattering

The usual definition of pitch-angle scattering can be found in the so-called Taylor-Green-Kubo
(TGK) formalism (Taylor 1922; Green 1951; Kubo 1957; Shalchi 2011) as

𝐷𝜇𝜇(𝜇) = ∫
∞

0
d𝑡 ⟨ ̇𝜇(𝑡) ̇𝜇(0)⟩

= 1
2

d
d𝑡 ⟨Δ𝜇(𝑡)2⟩

(6.30)

where the second line employs the definition Δ𝜇(𝑡) = 𝜇(𝑡) − 𝜇(0). It can be shown that both
versions agree with each other, if 𝑡 is high enough that the expression becomes asymptotically
time-independent.

The combination of diffusion (Fick 1855) and random walk (Chandrasekhar 1943) motivated
the usual definition of the diffusion in terms of the mean-square displacement (e.g., Tautz
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Figure 6.3: Pitch-angle cosine, 𝜇 = 𝑣∥/𝑣 as a function of the normalized time, 𝜏 = Ω𝑡 for a
relative slab turbulence strength 𝛿𝐵/𝐵0 = 10−2. Four particles with initial pitch
angles in the range 0.1 < 𝜇0 < 0.8 are highlighted.
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2012) 𝜅 = ⟨Δ𝑥2⟩ /(2𝑡), which can also be used for a third expression for 𝐷𝜇𝜇, namely

𝐷𝜇𝜇 = 1
2𝑡 ⟨Δ𝜇(𝑡)2⟩ (6.31)

which is again valid if 𝑡 is high enough. However, the formal limit 𝑡 → ∞ is forbidden since
|Δ𝜇| cannot exceed a value of 2. For high enough times, 𝐷𝜇𝜇 will always be dominated
by the 1/𝑡 dependence, independent of the choice of the formula. Therefore, a meaningful,
time-independent value for 𝐷𝜇𝜇 can be obtained if and only if

1. 𝑡 is long enough that the initial conditions become insignificant;
2. 𝑡 is short enough that the behavior of 𝐷𝜇𝜇 is not already dominated by the 1/𝑡 propor-

tionality.

6.11 Cosmic Ray Diffusion

Cosmic-ray (CR) diffusion in turbulent and magnetized media is a fundamental problem in
space physics and astrophysics. CR diffusion strongly depends on the properties of magnetohy-
drodynamic (MHD) turbulence that they interact with. In the presence of magnetic fields, the
CR diffusion perpendicular and parallel to the magnetic field needs to be treated separately.
Within the inertial range of MHD turbulence, the superdiffusion of turbulent magnetic fields
causes the perpendicular superdiffusion of CRs. In the direction parallel to the magnetic field,
most earlier studies are focused on the diffusion induced by gyroresonant scattering. Due to
the scale-dependent anisotropy of Alfvén and slow modes in MHD turbulence, Alfvén and slow
modes are inefficient in scattering the CRs with gyroradii much smaller than the turbulence in-
jection scale, while fast modes are identified as the more efficient agent of scattering. In 2020s,
strong scattering of CRs by sharp intermittent magnetic field bends in MHD turbulence is
proposed to be important for affecting CR parallel diffusion. The enhanced local scattering
can be associated with the intermittent and fractal structure of MHD turbulence.

The resonant scattering faces its long-standing 90° problem in the framework of the quasi-linear
theory (QLT, Jokipii 1966). To resolve this issue, nonresonant interactions such as magnetic
mirroring was explored. This consideration of the mirroring effect naturally solves the 90°
problem and limits the pitch-angle range for gyroresonant scattering. Magnetic mirrors can
naturally form in MHD turbulence due to compressions of magnetic fields, which are induced
by pseudo-Alfvénic modes in an incompressible medium and slow and fast modes in a compress-
ible medium. Unlike the trapping effect of magnetic mirrors considered for compressible MHD
waves, in MHD turbulence CRs do not experience trapping due to the perpendicular superdif-
fusion of turbulent magnetic fields. Instead, they bounce among different magnetic mirrors
and move diffusively along the local magnetic field, which leads to a new diffusion mechanism
termed mirror diffusion. The mirror diffusion accounts for the suppressed diffusion of CRs
when the mirroring condition is satisfied.
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6.11.1 Perpendicular Superdiffusion of Mirroring CRs

The perpendicular superdiffusion of CRs is caused by that of turbulent magnetic fields and
takes place within the inertial range of MHD turbulence (Lazarian & Yan 2014). To simulate
the CR scenario, each CR can be represented by a beam of charged particles initially close to
each other with the same pitch-angle cosine 𝜇0 and 𝑟𝐿. The superdiffusion is obtained by 1.
measuring the perpendicular separation of each pair of particle trajectories and obtain its rms
value for all pairs; 2. averaging over all beams as the measured perpendicular displacement
⟨√⟨𝛿𝑥⟂⟩⟩.

6.11.2 Parallel Mirror Diffusion

In the presence of a magnetic mirror with a longitudinal magnetic gradient, CRs with 𝑟𝐿
smaller than the mirror size 𝑙∥ and 𝜇 satisfying

𝜇 < √ 𝛿𝐵∥
𝐵0 + 𝛿𝐵∥

(6.32)

can be reflected by the magnetic mirror under the mirror force, where 𝛿𝐵∥ is the parallel
magnetic fluctuation over 𝑙∥ and 𝐵0 is the mean magnetic field strength. The mirror force is

𝐹∥ = −𝑀
𝜕𝐵∥
𝜕𝑙∥

where M is the magnetic moment

𝑀 = 𝛾𝑚𝑢2
⟂

2𝐵
For mirroring CRs with their motion along the magnetic field dominated by magnetic mirroring,
there is no stochastic change of 𝜇, and M is a constant, known as the first adiabatic invariant.
The particle is reflected at different mirror points (i.e., regions with stronger B) multiple
times and move back and forth in the direction parallel to the magnetic field. However, in
the direction perpendicular to the B0, the particle is not trapped due to the perpendicular
superdiffusion of turbulent magnetic fields (see previous subsection). As expected, CRs are
not trapped between two magnetic mirror points, but diffusively move along the magnetic field
in MHD turbulence due to the perpendicular superdiffusion.

6.11.3 Transition between Mirror Diffusion and Scattering Diffusion

CRs with sufficiently small 𝜇 (Equation 6.32) are subject to the nonresonant mirroring inter-
action and undergo the mirror diffusion. For CRs with larger 𝜇, their parallel diffusion is
dominated by the resonant pitch-angle scattering and undergo the scattering diffusion. The
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transition between mirror diffusion and scattering diffusion takes place as 𝜇 stochastically
changes due to the gyroresonant scattering. The transition between the two diffusion regimes
is expected to occur at a critical 𝜇 as 𝜇𝑐.

In compressible MHD turbulence, under the consideration that fast modes are mainly respon-
sible for mirroring and scattering, �c is given by (Lazarian & Xu, 2021)

𝜇𝑐 = min{𝜇max, 𝜇eq}
where

𝜇max = √ 𝛿𝐵𝑓
𝐵0 + 𝛿𝐵𝑓

and

𝜇eq ≈ ⎡⎢
⎣

14
𝜋 (𝛿𝐵𝑓

𝐵0
)

2
( 𝑟𝐿
𝐿inj

)
1
2⎤⎥
⎦

2
11

corresponds to the pitch-angle cosine where mirroring and scattering are in balance, with 𝛿𝐵𝑓
as the magnetic fluctuation at 𝐿inj the injection length of fast modes.

For incompressible MHD turbulence, pseudo-Aflvén modes are responsible for mirroring. Un-
der the consideration of inefficient scattering by Alfvén and pseudo-Alfvén modes for CRs with
𝑟𝐿 ≪ 𝐿inj, we have

𝜇max = √ 𝛿𝐵𝑠
𝐵0 + 𝛿𝐵𝑠

where 𝛿𝐵𝑠 is the magnetic fluctuation of pseudo-Alfvén modes at 𝐿inj. As pseudo-Alfv́en modes
are slaved to Alfv́en modes (Beresnyak & Lazarian 2019), 𝛿𝐵𝑠/𝐵0 can be approximately by
MA. Therefore, we have

𝜇𝑐 = √ 𝑀𝐴
1 +𝑀𝐴

At 𝜇𝜇 < 𝜇𝑐, mirroring dominates scattering, and CRs are expected to undergo the mirror
diffusion. At 𝜇 > 𝜇𝑐, scattering becomes dominant, and CRs are expected to undergo the
scattering diffusion.

6.12 Solutions of the Diffusion Equation

6.12.1 Time Dependence

6.12.2 Time-Independent Solutions

6.13 Bohm Diffusion and Neoclassical Diffusion
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7 Waves

Waves are generated by instabilities (Chapter 9). In this chapter, we mainly focus on the wave
propagation.

7.1 Basic Properties

• Electromagnetic Waves and Polarization

In plasma physics, wave polarization is defined with respect to the background magnetic field
B0, not the wave propagation direction k.1

Wave Polarization

• Compressibility: Certain waves can modify plasma densities, while others can’t.

7.2 Dispersion Relation

Waves are a very general phenonmenon of most media. In order for a wave to propagate in the
medium a number of conditions need to be satisfied, however. The first is that the medium
allows for a particular range of frequencies 𝜔 and wave-vectors k to exist in the medium; i.e.,
it allows for eigenmodes. These ranges are specified by the dispersion relation 𝐷(𝜔,k, ...) = 0
which formulates the condition that the dynamical equations of the medium possess small-
amplitude solutions. This dispersion relation is usually derived in the linear infinitesimally
small amplitude approximation. However, nonlinear dispersion relations can sometimes also
be formulated in which case 𝐷(𝜔,k, |a|) depends on the fluctuation amplitude |a| as well.

Dispersion relations describe the effect of dispersion on the properties of waves in a medium.
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given
the dispersion relation, one can calculate the phase velocity and group velocity of waves in the
medium, as a function of frequency. Therefore, obtaining the dispersion relation is the key of
describing the wave propagation.

1This is different from the definition in optics, which makes it easier to analyze the interaction with particles
since the particle gyration handedness around the magnetic field is also defined in the same way.

198

https://svs.gsfc.nasa.gov/4580/
https://farside.ph.utexas.edu/teaching/plasma/lectures/node70.html


7.2.1 Damping/Growth Rate

The solutions of the dispersion relation are in most cases complex, and for real wave vector
k can be written as 𝜔(k) = 𝜔𝑟(k) + 𝑖𝛾(𝜔𝑟,k), where the index 𝑟 indicates the real part, and
𝛾 is the imaginary part of the frequency which itself is a function of the real frequency and
wave number, because each mode of given frequency can behave differently in time, and the
wave under normal conditions will be dispersive, i.e. it will not be a linear function of wave
number. In most cases the amplitude of a given wave will change slowly in time, which means
that the imaginary part of the frequency is small compared to the real frequency. If this is
granted, then 𝛾 can be determined by a simple procedure directly from the dispersion relation
𝐷(𝜔,k) = 𝐷𝑟(𝜔,k) + 𝑖𝐷𝑖(𝜔,k), which can be written as the sum of its real 𝐷𝑟 and imaginary
𝐷𝑖 parts because a small imaginary part 𝛾 in the frequency changes the dispersion relation
only weakly, and it can be expanded with respect to this imaginary part. Up to first order in
𝛾/𝜔 one then obtains2

𝐷𝑟(𝜔𝑟,k) = 0

𝛾(𝜔𝑟,k) = − 𝐷𝑖(𝜔,k)
𝜕𝐷𝑟(𝜔𝑟,k)/𝜕𝜔|𝛾=0

(7.1)

The first of these expressions determines the real frequency as function of wave number 𝜔𝑟(k)
which can be calculated directly from the real part of the dispersion relation. The second
equation is a prescription to determine the imaginary part of the frequency, i.e. the damping
or growth rate of the wave.

7.3 Dielectric Function

Usually when the permittivity of a material is function of space or frequency, it is call di-
electric function. The dielectric constant 𝜖 is a quantity which appears in electrostatic when
people describe how a material screens an external time-independent electric field. When they
begin to study how a material screens an external time-dependent electric field E ∝ 𝑒−𝑖𝜔𝑡 in
electrodynamic sense they found that the number 𝜖 depends on frequency, so one gets 𝜖(𝜔).
It would be stupid to call a quantity, which essentially depends on frequency, just “dielectric
constant”, therefore one calls it “dielectric function”. Further studies showed that 𝜖 depends
not only on the frequency but also on the wave-vector of the field, E ∝ 𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥, so one gets
the dielectric function 𝜖 = 𝜖(𝑘, 𝜔).

7.4 Plasma Oscillations

If the electrons in a plasma are displaced from a uniform background of ions, electric fields
will be built up in such a direction as to restore the neutrality of the plasma by pulling the

2HOW TO DERIVE THIS?
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electrons back to their original positions. Because of their inertia, the electrons will overshoot
and oscillate around their equilibrium positions with a characteristic frequency known as the
plasma frequency. This oscillation is so fast that the massive ions do not have time to respond to
the oscillating field and may be considered as fixed. In Fig. 4.2 (ADD IT!), the open rectangles
represent typical elements of the ion fluid, and the darkened rectangles the alternately displaced
elements of the electron fluid. The resulting charge bunching causes a spatially periodic E field,
which tends to restore the electrons to their neutral positions.

We shall derive an expression for the plasma frequency 𝜔𝑝 in the simplest case, making the
following assumptions:

1. There is no magnetic field;
2. there are no thermal motions (𝑘𝐵𝑇 = 0);
3. the ions are fixed in space in a uniform distribution;
4. the plasma is infinite in extent; and
5. the electron motions occur only in the x direction. As a consequence of the last assump-

tion, we have

∇ = ̂𝑥𝜕𝑥, E = 𝐸 ̂𝑥, ∇ × E = 0, E = −∇𝜙

There is, therefore, no fluctuating magnetic field; this is an electrostatic oscillation.

The electron equations of continuity and motion are

𝜕𝑛𝑒
𝜕𝑡 + ∇ ⋅ (𝑛𝑒u𝑒) = 0

𝑚𝑛𝑒[
𝜕u𝑒
𝜕𝑡 + (u𝑒 ⋅ ∇)u𝑒] = −𝑒𝑛𝑒E

The only Maxwell equation we shall need is the one that does not involve B: Poisson’s equation.
This case is an exception to the general rule of Section 5.9 that Poisson’s equation cannot be
used to find E. This is a high-frequency oscillation; electron inertia is important, and the
deviation from neutrality is the main effect in this particular case. Consequently, we write

𝜖0∇ ⋅ E = 𝜖0𝜕E/𝜕𝑥 = 𝑒(𝑛𝑖 − 𝑛𝑒)

The last three equations together can be easily solved by the procedure of linearization. By
this we mean that the amplitude of oscillation is small, and terms containing higher powers of
amplitude factors can be neglected. We first separate the dependent variables into two parts:
an “equilibrium” part indicated by a subscript 0, and a “perturbation” part indicated by a
subscript 1:

𝑛𝑒 = 𝑛0 + 𝑛1 u𝑒 = u0 + u1 E𝑒 = E0 + E1
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The equilibrium quantities express the state of the plasma in the absence of the oscillation.
Since we have assumed a uniform neutral plasma at rest before the electrons are displaced, we
have

∇𝑛0 = u0 = E0 = 0
𝜕𝑛0
𝜕𝑡 = 𝜕u0

𝜕𝑡 = 𝜕E0
𝜕𝑡 = 0

The momentum equation now becomes

𝑚𝜕u1
𝜕𝑡 = −𝑒E

The term (u1 ⋅ ∇)u1 is seen to be quadratic in an amplitude quantity, and we shall linearize
by neglecting it. The linear theory is valid as long as |𝑢1| is small enough that such quadratic
terms are indeed negligible. Similarly, the continuity equation becomes

𝜕𝑛1
𝜕𝑡 + 𝑛0∇ ⋅ u1 = 0

In Poisson’s equation, we note that 𝑛𝑖0 = 𝑛𝑒0 in equilibrium and that 𝑛𝑖1 = 0 by the assumption
of fixed ions, so we have

𝜖0𝜕E/𝜕𝑥 = −𝑒𝑛1

The oscillating quantities are assumed to behave sinusoidally:

n1 = 𝑛1𝑒𝑖(𝑘𝑥−𝜔𝑡)

u1 = u1𝑒𝑖(𝑘𝑥−𝜔𝑡) ̂𝑥
E1 = E1𝑒𝑖(𝑘𝑥−𝜔𝑡) ̂𝑥

The time derivative 𝜕/𝜕𝑡 can therefore be replaced by −𝑖𝜔, and the gradient ∇ by 𝑖𝑘 ̂𝑥. Now
the linearized equations become

−𝑖𝑚𝜔𝑛1 = −𝑛0𝑖𝑘𝑢1
−𝑖𝜔𝑢1 = −𝑒𝐸1

−𝑖𝑘𝜖0𝐸1 = −𝑒𝑛1

Eliminating 𝑛1 and 𝐸1, we have

−𝑚𝜔𝑢1 = −𝑖𝑛0𝑒2
𝜖0𝜔

𝑢1

If 𝑢1 does not vanish, we must have

𝜔2 = 𝑛0𝑒2
𝜖0𝑚
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The plasma frequency is therefore

𝜔𝑝 = √𝑛0𝑒2
𝜖0𝑚

rad/s (7.2)

Numerically, one can use the approximate formula

𝜔𝑝/2𝜋 = 𝑓𝑝 ≈ 9√𝑛 m−3

This frequency, depending only on the plasma density, is one of the fundamental parameters
of a plasma. Because of the smallness of 𝑚, the plasma frequency is usually very high. For
instance, in a plasma of density 𝑛 = 1018 m−3, we have

𝑓𝑝 ≈ 9(1018)1/2 = 9 × 109 s−1 = 9GHz

Radiation at 𝑓𝑝 normally lies in the microwave range. We can compare this with another
electron frequency: 𝜔𝑐. A useful numerical formula is

𝑓𝑐𝑒 ≃ 28GHz/T

Thus if 𝐵 = 0.32 T and 𝑛 = 1018 m−3, the cyclotron frequency is approximately equal to the
plasma frequency for electrons.

Equation 7.2 tells us that if a plasma oscillation is to occur at all, it must have a frequency
depending only on 𝑛. In particular, 𝜔 does not depend on 𝑘, so the group velocity d𝜔/𝑑𝑘
is zero. The disturbance does not propagate. How this can happen can be made clear with
a mechanical analogy (Fig. 4.3 fig-independent-springs). Imagine a number of heavy balls
suspended by springs equally spaced in a line. If all the springs are identical, each ball will
oscillate vertically with the same frequency. If the balls are started in the proper phases
relative to one another, they can be made to form a wave propagating in either direction.
The frequency will be fixed by the springs, but the wavelength can be chosen arbitrarily.
The two undisturbed balls at the ends will not be affected, and the initial disturbance does
not propagate. Either traveling waves or standing waves can be created, as in the case of a
stretched rope. Waves on a rope, however, must propagate because each segment is connected
to neighboring segments.

FIGURE: Synthesis of a wave from an assembly of independent oscillators.

This analogy is not quite accurate, because plasma oscillations have motions in the direction
of k rather than transverse to k. However, as long as electrons do not collide with ions or with
each other, they can still be pictured as independent oscillators moving horizontally (in fig-
independent-springs). But what about the electric field? Won’t that extend past the region
of initial disturbance and set neighboring layers of plasma into oscillation? In our simple
example, it will not, because the electric field due to equal numbers of positive and negative
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infinite plane charge sheets is zero. In any finite system, however, plasma oscillations will
propagate. In Fig. 4.4 ADD IT!, the positive and negative (shaded) regions of a plane plasma
oscillation are confined in a cylindrical tube. The fringing electric field causes a coupling of
the disturbance to adjacent layers, and the oscillation does not stay localized.

7.5 Classification of EM Waves in Uniform Plasma

{ k ∥ B0 Parallel Propagation,
k ⟂ B0 Perpendicular Propagation

{ k ∥ E1 Longitudinal Waves,
k ⟂ E1 Transverse Waves

{ B1 = 0 Electrostatic Waves,
B1 ≠ 0 Electromagnetic Waves

Note:

1. Wave is longitudinal ⟺ Wave is electrostatic
2. Wave is transverse ⟹ Wave is electromagnetic
3. Wave is electromagnetic ⟹̸ Wave is transverse. You can always add a component of

E1 parallel to k without changing B1.

7.6 ES vs. EM Waves

A practical way to distinguish ES and EM waves is to check ∇× E and ∇ ⋅ E, where E is the
electric field of the wave: * If the curvature is relatively small and the divergence is relatively
large, then it is likely to be ES. * Otherwise it is likely to be EM.

As we will see in Section 7.7, the dielectric function is defined in Equation 7.5. From other
perspectives, the dielectric function shows up in the Ampère’s law as well as the Poisson’s
equation

∇× B = 𝜇0j + 𝜇0𝜖0
𝜕E
𝜕𝑡 ≡ 𝜇0𝜖𝜖𝜖 ⋅

𝜕E
𝜕𝑡

∇ ⋅ (�0E1) + 𝑞𝑗𝑛𝑗 ≡ ∇ ⋅ (𝜖𝜖𝜖 ⋅ E1) = 0

Let us consider waves in an isotropic plasma. For isotropic plasmas, the dielectric tensor 𝜖𝜖𝜖
shrinks to a scalar 𝜖. For cold plasma (static ion background), the dielectric function is

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2
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For electrostatic (ES) waves, let 𝜖 = 0, we have

𝜔 = ±𝜔𝑝𝑒

For electromagnetic (EM) waves, from Maxwell’s equations we have

∇× E = −𝜕B
𝜕𝑡 ,

∇ × B = 𝜇0j + 𝜇0𝜖0
𝜕E
𝜕𝑡 ≡ 𝜇0𝜖

𝜕E
𝜕𝑡 .

With ∇ → 𝑖k, 𝜕/𝜕𝑡 → −𝑖𝜔, we can get the dispersion relation

𝑖k × E = 𝑖𝜔B
𝑖k × B = −𝑖𝜇0𝜖𝜔E

⇒ 𝑘2E −�����(k ⋅ E)k = 𝜔2𝜇0𝜖E.

If k ⟂ E, by substituting the dielectric function inside we have

𝑘2 = 𝜔2𝜖𝜇0 = 𝜔2𝜖0𝜇0[1 − 𝜔𝑝𝑒
2

𝜔2 ]
⇒ 𝜔2 = 𝑘2𝑐2 + 𝜔𝑝𝑒

2.

For both waves, ∇⋅(𝜖E1) = 0 ⇒ 𝑖𝜖(k ⋅E1) = 0 is always valid. However, for electrostatic wave,
E1 = −∇𝜙1 = −𝑖k𝜙1 ⇒ k ∥ E1 ⇒ 𝜖 = 0, while for EM wave, usually k ⟂ E1 (k ⟂ E1 ⇒ EM
wave, but EM waves do not necessarily need to be transverse. You can always add a component
of E1 parallel to k without changing B1), 𝜖 does not need to be zero. Therefore, getting the
dispersion relation by setting 𝜖 to 0 is only valid for isotropic ES waves. For EM waves, there’s
a systematic way to get all the dispersion relations starting from dielectric function, explained
in detail in Section 7.7. Here we just have a simple summary of the steps.

From Maxwell’s equation for the perturbed field,

∇× E1 = −𝜇0
𝜕H1
𝜕𝑡

∇ × H1 = J1 + 𝜖0
𝜕E1
𝜕𝑡

where we have assumed

{E1(x, 𝑡)
H1(x, 𝑡)

} = ℜ{
̃E1𝑒𝑖k⋅x−𝑖𝜔𝑡

̃H1𝑒𝑖k⋅x−𝑖𝜔𝑡}
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It quickly follows that

k × E1 = 𝜇0𝜔H1

𝑖k × H1 = 𝑖k × (k × E1
𝜇0𝜔

) = J1 − 𝜖0𝑖𝜔E1

Then there comes the wave equation

k × (k × E1) = k(k ⋅ E1) − 𝑘2E1 = −𝑖𝜔𝜇0J1 −
𝜔2

𝑐2 E1 ≡ −𝜔2

𝑐2
𝜖
𝜖0

E1

If we can express the total current density as a function of perturbed electric field, J1 = J1(E1),
from MHD, 2-fluid, or Vlasov model combining with the property of the media, we can obtain
the expression for the dielectric function 𝜖. With some effort, we get

A⎛⎜
⎝

𝐸1𝑥
𝐸1𝑦
𝐸1𝑧

⎞⎟
⎠

= 0

from which the condition for non-trivial solutions leads to

det𝐴 = 0 ⇒ {eigenvalue for 𝜔 = 𝜔(k)
eigenvectors ⇒ polarization of E field

7.7 Cold Uniform Plasma

As long as 𝑇𝑒 = 𝑇𝑖 = 0, the linear plasma waves can easily be generalized to an arbitrary
number of charged particle species and an arbitrary angle of propagation 𝜃 relative to the
magnetic field. Waves that depend on finite 𝑇 , such as ion acoustic waves, are not included in
this treatment. The derivations go back to late 1920s when Appleton and Wilhelm Altar first
calculated the cold plasma dispersion relation (CPDR).

First, we define the dielectric tensor of a plasma as follows. The fourth Maxwell equation is

∇× B = 𝜇0(j + 𝜖0Ė)

where j is the plasma current due to the motion of the various charged particle species 𝑠, with
density 𝑛𝑠, charge 𝑞𝑠, and velocity v𝑠:

j = ∑
𝑠

𝑛𝑠𝑞𝑠v𝑠 (7.3)
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Considering the plasma to be a dielectric with internal currents j, we may write Equation 7.3
as

∇× B = 𝜇0Ḋ
where

D = 𝜖0E + 𝑖
𝜔 j (7.4)

is the electric displacement field or electric induction. It accounts for the effects of
bound charge within materials (i.e. plasma). Here we have assumed an exp(−𝑖𝜔𝑡) dependence
for all plasma motions. Let the current j be proportional to E but not necessarily in the same
direction (because of the magnetic field 𝐵0 ̂z); we may then define a conductivity tensor 𝜎𝜎𝜎 by
the relation

j = 𝜎𝜎𝜎 ⋅ E

Equation 7.4 becomes
D = 𝜖(I + 𝑖

𝜖0𝜔
𝜎𝜎𝜎) ⋅ E = 𝜖𝜖𝜖 ⋅ E (7.5)

Thus the effective dielectric constant of the plasma is the tensor

𝜖𝜖𝜖 = 𝜖0(I + 𝑖𝜎𝜎𝜎/𝜖0𝜔)

where I is the unit tensor. In electromagnetism, a dielectric is an electrical insulator that
can be polarised by an applied electric field. When a dielectric material is placed in an electric
field, electric charges do not flow through the material as they do in an electrical conductor,
because they have no loosely bound, or free, electrons that may drift through the material,
but instead they shift, only slightly, from their average equilibrium positions, causing dielectric
polarisation.

To evaluate 𝜎𝜎𝜎, we use the linearized fluid equation of motion for species 𝑠, neglecting the
collision and pressure terms:

𝑚𝑠
𝜕v𝑠
𝜕𝑡 = 𝑞𝑠(E + v𝑠 × B0) (7.6)

Defining the cyclotron and plasma frequencies for each species as

𝜔𝑐𝑠 ≡ ∣𝑞𝑠𝐵0
𝑚𝑠

∣, 𝜔2
𝑝𝑠 ≡ ∣ 𝑛0𝑞2𝑠

𝜖0𝑚𝑠
∣

We can separate Equation 7.6 into x, y, and z components and solve for v𝑠, obtaining

𝑣𝑥𝑠 = 𝑖𝑞𝑠
𝑚𝑠𝜔

𝐸𝑥 ± 𝑖(𝜔𝑐𝑠/𝜔)𝐸𝑦
1 − (𝜔𝑐𝑠/𝜔)2

𝑣𝑦𝑠 = 𝑖𝑞𝑠
𝑚𝑠𝜔

𝐸𝑦 ∓ 𝑖(𝜔𝑐𝑠/𝜔)𝐸𝑥
1 − (𝜔𝑐𝑠/𝜔)2

𝑣𝑧𝑠 = 𝑖𝑞𝑠
𝑚𝑠𝜔

𝐸𝑧

(7.7)
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where ± stands for the sign of 𝑞𝑠. The plasma current is

j = ∑
𝑠

𝑛0𝑠𝑞𝑠v𝑠

so that
𝑖

𝜖0𝜔
𝑗𝑥 = ∑

𝑠

𝑖𝑛0𝑠
𝜖0𝜔

𝑖𝑞2𝑠
𝑚𝑠𝜔

𝐸𝑥 ± 𝑖(𝜔𝑐𝑠/𝜔)𝐸𝑦
1 − (𝜔𝑐𝑠/𝜔)

= ∑
𝑠

−𝜔2
𝑝𝑠
𝜔2

𝐸𝑥 ± 𝑖(𝜔𝑐𝑠/𝜔)𝐸𝑦
1 − (𝜔𝑐𝑠/𝜔)

(7.8)

Using the identities
1

1 − (𝜔𝑐𝑠/𝜔)2
= 1

2[
𝜔

𝜔 ∓ 𝜔𝑐𝑠
+ 𝜔

𝜔 ± 𝜔𝑐𝑠
]

± 𝜔𝑐𝑠/𝜔
1 − (𝜔𝑐𝑠/𝜔)2

= 1
2[

𝜔
𝜔 ∓ 𝜔𝑐𝑠

− 𝜔
𝜔 ± 𝜔𝑐𝑠

],

we can write Equation 7.8 as follows:

1
𝜖0𝜔

𝑗𝑥 = −1
2 ∑

𝑠

𝜔2
𝑝𝑠
𝜔2 [( 𝜔

𝜔 ± 𝜔𝑐𝑠
+ 𝜔

𝜔 ∓ 𝜔𝑐𝑠
)𝐸𝑥

+ ( 𝜔
𝜔 ∓ 𝜔𝑐𝑠

+ 𝜔
𝜔 ± 𝜔𝑐𝑠

)𝑖𝐸𝑦]
(7.9)

Similarly, the 𝑦 and 𝑧 components are

1
𝜖0𝜔

𝑗𝑦 = −1
2 ∑

𝑠

𝜔2
𝑝𝑠
𝜔2 [( 𝜔

𝜔 ± 𝜔𝑐𝑠
+ 𝜔

𝜔 ∓ 𝜔𝑐𝑠
)𝑖𝐸𝑥

+ ( 𝜔
𝜔 ∓ 𝜔𝑐𝑠

+ 𝜔
𝜔 ± 𝜔𝑐𝑠

)𝐸𝑦]
(7.10)

𝑖
𝜖0𝜔

𝑗𝑧 = −∑
𝑠

𝜔2
𝑝𝑠
𝜔2 𝐸𝑧 (7.11)

Use of Equation 7.9 in Equation 7.4 gives

1
𝜖0

𝐷𝑥 = 𝐸𝑥 − 1
2 ∑

𝑠

𝜔2
𝑝𝑠
𝜔2 [( 𝜔

𝜔 ± 𝜔𝑐𝑠
+ 𝜔

𝜔 ∓ 𝜔𝑐𝑠
)𝐸𝑥

+ ( 𝜔
𝜔 ∓ 𝜔𝑐𝑠

+ 𝜔
𝜔 ± 𝜔𝑐𝑠

)𝑖𝐸𝑦]
(7.12)
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We define the convenient abbreviations

𝑅 ≡ 1 −∑
𝑠

𝜔2
𝑝𝑠
𝜔2 ( 𝜔

𝜔 ± 𝜔𝑐𝑠
)

𝐿 ≡ 1 −∑
𝑠

𝜔2
𝑝𝑠
𝜔2 ( 𝜔

𝜔 ∓ 𝜔𝑐𝑠
)

𝑆 ≡ 1
2(𝑅 + 𝐿) 𝐷 ≡ 1

2(𝑅 − 𝐿)∗

𝑃 ≡ 1 −∑
𝑠

𝜔2
𝑝𝑠
𝜔2

(7.13)

where “R” stands for right, “L” stands for left, “S” stands for sum, “D” stands for difference,
and “P” stands for plasma. Do not confuse D with the electric displacement field D. Using
these in Equation 7.12 and proceeding similarly with the 𝑦 and 𝑧 components, we obtain

𝜖−1
0 𝐷𝑥 = 𝑆𝐸𝑥 − 𝑖𝐷𝐸𝑦
𝜖−1
0 𝐷𝑦 = 𝑖𝐷𝐸𝑥 + 𝑆𝐸𝑦
𝜖−1
0 𝐷𝑧 = 𝑃𝐸𝑧

Comparing with Equation 7.5, we see that

𝜖𝜖𝜖 = 𝜖0 ⎛⎜
⎝

𝑆 −𝑖𝐷 0
𝑖𝐷 𝑆 0
0 0 𝑃

⎞⎟
⎠

≡ 𝜖0𝜖𝜖𝜖𝑅 (7.14)

We next derive the wave equation by taking the curl of the equation ∇ × E = −Ḃ and
substituting ∇× B = 𝜇0𝜖𝜖𝜖 ⋅ Ė, obtaining

∇×∇× E = −𝜇0𝜖0(𝜖𝜖𝜖𝑅 ⋅ Ë) = − 1
𝑐2𝜖𝜖𝜖𝑅 ⋅ Ë (7.15)

Assuming an exp(𝑖k ⋅ r) spatial dependence of E and defining a vector index of refraction

n = 𝑐
𝜔k

We can write Equation 7.15 as

n × (n × E) + 𝜖𝜖𝜖𝑅 ⋅ E = 0 (7.16)

The uniform plasma is isotropic in the 𝑥−𝑦 plane, so we may choose the 𝑦 axis so that 𝑘𝑦 = 0,
without loss of generality. If 𝜃 is the angle between k and B0, we then have

𝑛𝑥 = 𝑛 sin 𝜃 𝑛𝑧 = 𝑛 cos 𝜃 𝑛𝑦 = 0
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The next step is to separate Equation 7.16 into components, using the elements of 𝜖𝜖𝜖𝑅 given in
Equation 7.14. This procedure readily yields

R ⋅ E ≡ ⎛⎜
⎝

𝑆 − 𝑛2 cos 𝜃 −𝑖𝐷 𝑛2 sin 𝜃 cos 𝜃
𝑖𝐷 𝑆 − 𝑛2 0

𝑛2 sin 𝜃 cos 𝜃 0 𝑃 − 𝑛2 sin2 𝜃
⎞⎟
⎠

⎛⎜
⎝

𝐸𝑥
𝐸𝑦
𝐸𝑧

⎞⎟
⎠

= 0 (7.17)

From this it is clear that the 𝐸𝑥, 𝐸𝑦 components are coupled to 𝐸𝑧 only if one deviates from
the principal angles 𝜃 = 0, 90∘.
Equation 7.17 is a set of three simultaneous, homogeneous equations; the condition for the
existence of a solution is that the determinant of R vanish: ||R|| = 0. We then obtain

(𝑖𝐷)2(𝑃 − 𝑛2 sin2 𝜃) + (𝑆 − 𝑛2)
× [(𝑆 − 𝑛2 cos2 𝜃)(𝑃 − 𝑛2 sin2 𝜃) − 𝑛4 sin2 𝜃 cos2 𝜃] = 0

(7.18)

By replacing cos2 𝜃 by 1 − sin2 𝜃, we can solve for sin2 𝜃, obtaining

sin2 𝜃 = −𝑃(𝑛4 − 2𝑆𝑛2 +𝑅𝐿)
𝑛4(𝑆 − 𝑃) + 𝑛2(𝑃𝑆 − 𝑅𝐿)

We have used the identity 𝑆2 −𝐷2 = 𝑅𝐿. Similarly,

cos2 𝜃 = 𝑆𝑛4 − (𝑃𝑆 + 𝑅𝐿)𝑛2 + 𝑃𝑅𝐿
𝑛4(𝑆 − 𝑃) + 𝑛2(𝑃𝑆 − 𝑅𝐿)

Dividing the last two equations, we obtain

tan2 𝜃 = −𝑃(𝑛4 − 2𝑆𝑛2 +𝑅𝐿)
𝑆𝑛4 − (𝑃𝑆 + 𝑅𝐿)𝑛2 + 𝑃𝑅𝐿

Since 2𝑆 = 𝑅 + 𝐿, the numerator and denominator can be factored to give the cold-plasma
dispersion relation

tan2 𝜃 = −𝑃(𝑛2 −𝑅)(𝑛2 − 𝐿)
(𝑆𝑛2 −𝑅𝐿)(𝑛2 − 𝑃) (7.19)

7.7.1 Wave Modes

The principal modes of cold plasma waves can be recovered by setting 𝜃 = 00 and 90∘. When
𝜃 = 0∘,

𝑃(𝑛2 −𝑅)(𝑛2 − 𝐿) = 0

There are three roots:
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• 𝑃 = 0 (Langmuir wave)
• 𝑛2 = 𝑅 (R wave)
• 𝑛2 = 𝐿 (L wave)

When 𝜃 = 90∘,
(𝑆𝑛2 −𝑅𝐿)(𝑛2 − 𝑃) = 0

There are two roots:

• 𝑛2 = 𝑅𝐿/𝑆 (extraordinary wave)
• 𝑛2 = 𝑃 (ordinary wave)

By inserting the definitions of Equation 7.13, one can verify that these are identical to the
dispersion relations given in separate derivations, with the addition of corrections due to ion
motions.

7.7.2 Resonances

The resonances can be found by letting 𝑛 go to ∞. We then have

tan2 𝜃𝑟𝑒𝑠 = −𝑃/𝑆

This shows that the resonance frequencies depend on angle 𝜃.

• If 𝜃 = 0∘, the possible solutions are 𝑃 = 0 and 𝑆 = ∞. The former is the plasma
resonance 𝜔 = 𝜔𝑝, while the latter occurs when either 𝑅 = ∞ (i.e. 𝜔 = 𝜔𝑐𝑒, electron
cyclotron resonance) or 𝐿 = ∞ (i.e. 𝜔 = 𝜔𝑐𝑖, ion cyclotron resonance).

• If 𝜃 = 90∘, the possible solutions are 𝑃 = ∞ or 𝑆 = 0. The former cannot occur for
finite 𝜔𝑝 and 𝜔, and the latter yields the upper and lower hybrid frequencies, as well as
the two-ion hybrid frequency when there is more than one ion species.

7.7.3 Cutoffs

The cutoffs can be found by setting 𝑛 = 0 in Equation 7.19. Again using 𝑆2 −𝐷2 = 𝑅𝐿, we
find that the condition for cutoff is independent of 𝜃:

𝑃𝑅𝐿 = 0

• The conditions 𝑅 = 0 and 𝐿 = 0 yield the 𝜔𝑅 and 𝜔𝐿 cutoff frequencies, with the
addition of ion corrections.
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For R-waves, since 𝜔2
𝑝𝑖 ≪ 𝜔2

𝑝𝑒, 𝜔𝑐𝑖 ≪ 𝜔𝑐𝑒, the cutoff frequency can be approximated by

1 − 𝜔2
𝑝𝑒

𝜔(𝜔 − 𝜔𝑐𝑒)
− 𝜔2

𝑝𝑖
𝜔(𝜔 + 𝜔𝑐𝑖)

= 0

1 =
𝜔2
𝑝𝑒[𝜔(1 +

�
��𝜔2
𝑝𝑖

𝜔2𝑝𝑒
) + 𝜔𝑐𝑖 − �

��𝜔2
𝑝𝑖

𝜔2𝑝𝑒
𝜔𝑐𝑒]

𝜔𝑐𝑒𝜔(𝜔 − 𝜔𝑐𝑒)( 𝜔
𝜔𝑐𝑒

+
�
�𝜔𝑐𝑖

𝜔𝑐𝑒
)

1 = 𝜔2
𝑝𝑒(𝜔 + 𝜔𝑐𝑖)

𝜔2(𝜔 − 𝜔𝑐𝑒)
𝜔3 − 𝜔𝑐𝑒𝜔2 − 𝜔2

𝑝𝑒𝜔 − 𝜔2
𝑝𝑒𝜔𝑐𝑖 = 0

Here somehow we can ignore 𝜔2
𝑝𝑒𝜔𝑐𝑖 (I DON’T KNOW WHY???) and obtain the positive

solution
𝜔𝑅=0 ≈ 𝜔𝑐𝑒

2 [1 +√1 + 4𝜔2𝑝𝑒/𝜔2𝑐𝑒] (7.20)

In the low density limit, 𝜔𝑝 ≪ 𝜔𝑐, (1 + 𝑥)1/2 ≈ 1 + 𝑥/2 when 𝑥 → 0,

𝜔𝑅=0 ≈ 𝜔𝑐𝑒(1 + 𝜔2
𝑝𝑒/𝜔2

𝑐𝑒)

In the high density limit, 𝜔𝑝 ≫ 𝜔𝑐,

𝜔𝑅=0 ≈ 𝜔𝑝𝑒 + 𝜔𝑐𝑒/2

Similarly for L-waves, the cutoff frequency can be approximated by

𝜔𝐿=0 ≈ 𝜔𝑐𝑒
2 [ − 1 +√1 + 4𝜔2𝑝𝑒/𝜔2𝑐𝑒] (7.21)

In the low density limit, 𝜔𝑝 ≪ 𝜔𝑐,
𝜔𝐿=0 ≈ 𝜔2

𝑝𝑒/𝜔𝑐𝑒

In the high density limit, 𝜔𝑝 ≫ 𝜔𝑐,

𝜔𝐿=0 ≈ 𝜔𝑝𝑒 − 𝜔𝑐𝑒/2

• The condition 𝑃 = 0 is seen to correspond to cutoff as well as to resonance. This
degeneracy is due to our neglect of thermal motions. Actually, 𝑃 = 0 (or 𝜔 = 𝜔𝑝) is a
resonance for longitudinal waves and a cutoff for transverse waves.
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7.7.4 Polarizations

The information contained in Equation 7.19 is summarized in the Clemmow–Mullaly–Allis
(CMA) diagram. One further result, not in the diagram, can be obtained easily from this
formulation. The middle line of Equation 7.17 reads

𝑖𝐷𝐸𝑥 + (𝑆 − 𝑛2)𝐸𝑦 = 0

Thus the polarization in the plane perpendicular to B0 is given by

𝑖𝐸𝑥
𝐸𝑦

= 𝑛2 − 𝑆
𝐷

From this it is easily seen that waves are linearly polarized at resonance (𝑛2 = ∞) and circularly
polarized at cutoff (𝑛2 = 0, 𝑅 = 0 or 𝐿 = 0; thus 𝑆 = ±𝐷).

7.7.5 Low Frequency Limit

It is very useful to obtain the circularly polarized wave dispersion relation in the low frequency
regime.

The R-wave corresponds to electron. When 𝜔 ≪ 𝜔𝑐𝑒,

𝑛2 = 𝑅 = 1 − 𝜔2
𝑝𝑖

𝜔(𝜔 + 𝜔𝑐𝑖)
− 𝜔2

𝑝𝑒
𝜔(𝜔 − 𝜔𝑐𝑒)

𝑘2
∥𝑐2
𝜔2 = 1 + 𝜔2

𝑝𝑒
𝜔𝜔𝑐𝑒

− 𝜔2
𝑝𝑖

𝜔𝜔𝑐𝑖

𝜔𝑐𝑖
𝜔𝑐𝑖 + 𝜔

𝑘2
∥𝑐2
𝜔2 = 1 + 𝜔2

𝑝𝑖
𝜔𝜔𝑐𝑖

− 𝜔2
𝑝𝑖

𝜔𝜔𝑐𝑖

1
1 + 𝜔/𝜔𝑐𝑖

𝑘2
∥𝑐2
𝜔2 = 1 + 𝜔2

𝑝𝑖
𝜔𝜔𝑐𝑖

(1 − 1
1 + 𝜔/𝜔𝑐𝑖

)

𝑘2
∥𝑐2
𝜔2 = 1 + 𝜔2

𝑝𝑖
𝜔2
𝑐𝑖

1
1 + 𝜔/𝜔𝑐𝑖

𝑘2
∥𝑐2
𝜔2 = 1 + 𝑐2

𝑉 2
𝐴

1
1 + 𝜔/𝜔𝑐𝑖

𝑘2
∥𝑐2
𝜔2 ≃ 𝑐2

𝑉 2
𝐴

1
1 + 𝜔/𝜔𝑐𝑖

𝑘2
∥

𝜔2 = 1
𝑉 2
𝐴

1
1 + 𝜔/𝜔𝑐𝑖

(7.22)
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Equation 7.22 can be arranged into a quasi-quadratic equation for 𝑣ph = 𝜔/𝑘∥

𝜔2

𝑘2
∥
= 𝑣2𝐴 + 𝑣2𝐴

𝜔
𝜔𝑐𝑖

= 𝑣2𝐴 +𝑊 𝜔
𝑘∥

where we denote 𝑊 = 𝑣2
𝐴𝑘∥
𝜔𝑐𝑖

. The solution is then

𝑣𝑤 = 𝑊
2 ±√𝑊 2

4 + 𝑣2𝐴 (7.23)

When 𝑣𝐴 ≪ 𝑊 , i.e. 𝜔𝑐𝑖
𝑘∥

≪ 𝑣𝐴, we have 𝑣𝑤 = 𝑊 .

For 𝜔𝑐𝑖 ≪ 𝜔 ≪ 𝜔𝑐𝑒, we can make further simplification:

𝑘2𝑐2 = 𝜔2(1 + 𝜔2
𝑝𝑒

𝜔𝜔𝑐𝑒
)

This is the whistler wave, with group velocity 𝑣𝑔 = 𝜕𝜔/𝜕𝑘 ∝ √𝜔. It means that high frequency
waves transpose energy faster than low frequency waves. In other words, one will hear high
frequency components earlier than low frequency components, creating a “whistler effect”.
This was discovered during the first world war, and the theoretical explanation came out in
the 1950s. Also note that since whistler wave travels along the field line, in near-Earth space we
have signals traveling from the south hemisphere to the north hemisphere within this frequency
regime. Here is an observation example from Palmer station, Antarctica. For 𝜔 ≪ 𝜔𝑐𝑖, Alfvén
wave is recovered.

See more in Section 7.17.

The L-wave corresponds to ion. When 𝜔 < 𝜔𝑐𝑖, 𝑐 ≫ 𝑉𝐴,

𝑘2𝑐2
𝜔2 = 𝜔2 (1 + 𝑐2

𝑣2𝐴
𝜔𝑐𝑖

𝜔𝑐𝑖 − 𝜔)

𝜔2

𝑘2 = 𝑉 2
𝐴 (1 − 𝜔

𝜔𝑐𝑖
)

For 𝜔 ≲ 𝜔𝑐𝑖, we get the ion cyclotron wave; for 𝜔 ≪ 𝜔𝑐𝑖, Alfvén wave is recovered.

?@fig-dispersion-parallel shows the dispersion relations for L/R waves in a rough scale
(ACTUALLY THE SCALES ARE SO BAD…). Above the cut-off frequencies (𝜔𝑅=0 and 𝜔𝐿=0)
the solution to the wave dispersion equation is called the free-space mode. Below electron
and ion cyclotron frequencies the waves are called the cyclotron modes. At low frequencies
(𝜔 → 0) L- and R-modes merge and the dispersion becomes that of the shear Alfvén wave
𝑛2 → 𝑐2/𝑣2𝐴.
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KeyNotes.plot_dispersion_parallel()

The dispersion curve for a R-wave propagating parallel to the equilibrium magnetic field is
sketched in ?@fig-dispersion-R-wave. The continuation of the Alfvén wave above the ion
cyclotron frequency is called the electron cyclotron wave, or sometimes the whistler wave.
The latter terminology is prevalent in ionospheric and space plasma physics contexts. The
phase speed is mostly super-Alfvénic except near the electron gyrofrequency. The wave which
propagates above the cutoff frequency, 𝜔1, is a standard right-handed circularly polarized
electromagnetic wave, somewhat modified by the presence of the plasma. Note that the low-
frequency branch of the dispersion curve differs fundamentally from the high-frequency branch,
because the former branch corresponds to a wave which can only propagate through the
plasma in the presence of an equilibrium magnetic field, whereas the high-frequency branch
corresponds to a wave which can propagate in the absence of an equilibrium field.

For a L-wave, similar considerations to the above give a dispersion curve of the form sketched
in ?@fig-dispersion-L-wave. In this case, 𝑛2 goes to infinity at the ion cyclotron frequency,
Ω𝑖, corresponding to the so-called ion cyclotron resonance (at 𝐿 → ∞). At this resonance, the
rotating electric field associated with a left-handed wave resonates with the gyromotion of the
ions, allowing wave energy to be converted into perpendicular kinetic energy of the ions. There
is a band of frequencies, lying above the ion cyclotron frequency, in which the left-handed wave
does not propagate. At very high frequencies a propagating mode exists, which is basically
a standard left-handed circularly polarized electromagnetic wave, somewhat modified by the
presence of the plasma.

As before, the lower branch in ?@fig-dispersion-L-wave describes a wave that can only
propagate in the presence of an equilibrium magnetic field, whereas the upper branch describes
a wave that can propagate in the absence an equilibrium field. The continuation of the Alfvén
wave to just below the ion cyclotron frequency is generally called the ion cyclotron wave. Note
that the phase speed is always sub-Alfvénic.

7.7.6 Faraday Rotation

A linearly polarized plane wave can be expressed as a sum of left- and right-hand circularly
polarized waves (R- and L-modes having equal amplitudes, 𝐸0). If we assume that at 𝑧 = 0,
the wave is linearly polarized along the 𝑥-axis, and that the wave vector k and the background
magnetic field B0 are along the 𝑧-axis, we can write

E = 𝐸0[(𝑒𝑖𝑘𝑅𝑧 + 𝑒𝑖𝑘𝐿𝑧) ̂𝑥 + (𝑒𝑖𝑘𝑅𝑧 − 𝑒𝑖𝑘𝐿𝑧) ̂𝑦]𝑒−𝑖𝜔𝑡

The ratio of the 𝐸𝑥 and 𝐸𝑦 components is

𝐸𝑥
𝐸𝑦

= cot(𝑘𝐿 − 𝑘𝑅
2 𝑧)
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Hence, due to different phase speeds of R- and L-modes the linrealy polarized wave that is
travelling along a magnetic field will experience the rotation of its plane of polarization. This
is called Faraday rotation. The magnitude of the rotation depends on the density and magnetic
field of the plasma. Considering frequencies above the plasma frequency one can show that
the rate of change in the rotation angle 𝜙 with the distance travelled (assumed here to be in
the 𝑧-direction) is

d𝜙
d𝑧 = −𝑒3

2𝑚2𝑒𝜖0𝑐𝜔2𝑛𝑒𝐵0

and the total rotation from the source to the observer is

𝜙 = −𝑒3
2𝑚2𝑒𝜖0𝑐𝜔2 ∫

𝑑

0
𝑛𝑒B ⋅ ds

where ds is along the wave propagation path. The total rotation thus depends on both the
dnesity and magnetic field of the medium.

Faraday rotation is an important diagnostic tool both in laboratories and in astronomy. It can
be used to obtain information of the magnetic field of the cosmic plasma. Note that density
has to be known using other methods. On the other hand, if the magnetic field is known,
Faraday rotation can give information of the density.

7.7.7 Perpendicular Wave Propagation

Let us now consider wave propagation, at arbitrary frequencies, perpendicular to the equilib-
rium magnetic field, i.e. 𝜃 = 90∘.
The cutoff frequencies, at which 𝑛2 goes to zero, are the roots of 𝑅 = 0 and 𝐿 = 0 according
to 𝑛2 = 𝐿𝑅/𝑆. In fact, we have already solved these equations in the previous sections (recall
that cutoff frequencies do not depend on 𝜃). There are two cutoff frequencies, 𝜔𝑅=0 and 𝜔𝐿=0,
which are specified by Equation 7.20 and Equation 7.21, respectively.

Let us, next, search for the resonant frequencies, at which 𝑛2 goes to infinity. According to
the previous discussions, the resonant frequencies are solutions of

𝑆 = 1 − 𝜔2
𝑝𝑒

𝜔2 −Ω2𝑒
− 𝜔2

𝑝𝑖
𝜔2 −Ω2

𝑖
= 0 (7.24)

The roots of this equation can be obtained as follows. First, we note that if the first two terms
are equated to zero, we obtain 𝜔 = 𝜔UH, where

𝜔UH ≡ √𝜔2𝑝𝑒 +Ω2𝑒 (7.25)
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If this frequency is substituted into the third term, the result is far less than unity. We conclude
that 𝜔UH is a good approximation to one of the roots of Equation 7.24. To obtain the second
root, we make use of the fact that the product of the square of the roots is

Ω2
𝑒 Ω2

𝑖 + 𝜔2
𝑝𝑒 Ω2

𝑖 + 𝜔2
𝑝𝑖Ω2

𝑒 ≃ Ω2
𝑒Ω2

𝑖 + 𝜔2
𝑝𝑖 Ω2

𝑒

We, thus, obtain 𝜔 = 𝜔LH, where

𝜔LH ≡ √Ω2𝑒Ω2
𝑖 + 𝜔2

𝑝𝑖Ω2𝑒
𝜔2𝑝𝑒 +Ω2𝑒

The first resonant frequency, 𝜔UH, is greater than the electron cyclotron or plasma frequencies,
and is called the upper hybrid frequency. The second resonant frequency, 𝜔LH, lies between the
electron and ion cyclotron frequencies, and is called the lower hybrid frequency. (F. F. Chen
2016) gave some nice explanations of the physical origins of these frequencies by looking at the
electrostatic electron/ion waves perpendicular to B. At low frequencies, the mode in question
reverts to the compressional-Alfvén wave discussed previously. Note that the shear-Alfvén
wave does not propagate perpendicular to the magnetic field.

Using the above information, and the easily demonstrated fact that

𝜔LH < 𝜔𝐿=0 < 𝜔UH < 𝜔𝑅=0

we can deduce that the dispersion curve for the mode in question takes the form sketched
in ?@fig-dispersion-perp-wave. The lowest frequency branch corresponds to the
compressional-Alfvén wave. The other two branches constitute the extraordinary, or 𝑋-, wave.
The upper branch is basically a linearly polarized (in the 𝑦-direction) electromagnetic wave,
somewhat modified by the presence of the plasma. This branch corresponds to a wave which
propagates in the absence of an equilibrium magnetic field. The lowest branch corresponds to
a wave which does not propagate in the absence of an equilibrium field. Finally, the middle
branch corresponds to a wave which converts into an electrostatic plasma wave in the absence
of an equilibrium magnetic field.

Wave propagation at oblique angles is generally more complicated than propagation parallel
or perpendicular to the equilibrium magnetic field, but does not involve any new physical
effects.
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7.8 MHD Waves

7.8.1 Cold MHD

By ignoring pressure, gravity, viscosity and rotation, we have

𝜌𝜕u
𝜕𝑡 = j × B0

E = −u × B0

∇× E = −𝜕B1
𝜕𝑡

∇ ⋅ B1 = 0
∇× B1 = 𝜇0j

(7.26)

As usual in wave analysis, u, j,E are treated as perturbations. The MHD wave equation for
the electric field can then be obtained,

Ė = −u̇ × B0 = −1
𝜌(j × B) × B0 = − 1

𝜇0𝜌
[(∇ × B1) × B0] × B0

Ë = [(∇ × (∇ × E)) × V𝐴] × V𝐴

where V𝐴 = B0/
√𝜇0𝜌 is the Alfvén velocity, or if we mutate the triad cross terms,

Ë = V𝐴 × [V𝐴 ×∇× (∇× E)] (7.27)

Alternatively, we can also get the MHD wave equation for the magnetic field:

{
̇B1 = ∇× (u × B0)

(∇ × B1) × B0 = 𝜇0j × B0 = 𝜇0𝜌u̇

⇒ ̈B1 = ∇× [( 1
𝜇0𝜌

(∇ × B1) × B0) × B0]

or
̈B1 = ∇× [((∇ × B1) × V𝐴) × V𝐴] (7.28)

We will see soon that in cold MHD the slow mode ceases to exist, and the fast mode moves at
Alfvén speed, such that along the magnetic field line, we only have a single wave mode.

217



7.8.2 Hot MHD

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌v) = 0

𝜌dv
d𝑡 = −∇𝑝 + j × B

j = 1
𝜇0

∇× B

d
d𝑡(𝑝𝜌

−𝛾) = 0
𝜕B
𝜕𝑡 = −∇× E

E = −v × B

Ė is ignored because we only consider low frequency waves. We assume no background flow,
u0 = 0, so the current is purely caused by perturbed velocity u1. Performing linearization and
plane wave decomposition:

−𝑖𝜔𝜌1 + 𝑖𝜌0k ⋅ v = 0
−𝑖𝜔𝜌0v = −𝑖k𝑝1 + j × B0

j = 1
𝜇0

𝑖k × B1

𝑝1/𝑝0 − 𝛾𝜌1/𝜌0 = 0
−𝑖𝜔B1 = 𝑖k × (v × B0)

Let B0 = 𝐵0 ̂𝑧. The linearized equations can be further simplified:

−𝑖𝜔𝜌0v = −𝑖k(𝛾𝑝0
k ⋅ v
𝜔 ) + [ 1

𝜇0
𝑖k × ( − k × (v × B0)

𝜔 )] × B0

𝜔2v − 𝑣𝑠2k(k ⋅ v) − 𝑣𝐴2[k × (k × (v × ̂𝑧))] × ̂𝑧 = 0

where 𝑣𝑠 = √𝛾𝑝0
𝜌0

is the sound speed, and 𝑣𝐴 = √ 𝐵0
2

𝜇0𝜌0
is the Alfvén speed. If we write

V𝐴 = B0/
√𝜇0𝜌0, this can also be written as

𝜔2v − 𝑣𝑠2k(k ⋅ v) − k × k × (v × V𝐴) × V𝐴 = 0

Due to the symmetry in the perpendicular x-y plane, for simplicity, we assume the wave vector
k lies in the x-z plane with an angle w.r.t. the 𝑧 axis 𝜃:

k = 𝑘𝑥 ̂𝑥 + 𝑘𝑧 ̂𝑧 = 𝑘𝑥 ̂𝑥 + 𝑘∥ ̂𝑧 = 𝑘 sin 𝜃 ̂𝑥 + 𝑘 cos 𝜃 ̂𝑧

Now it can be written as

⎛⎜
⎝

−𝜔2/𝑘2 + 𝑣2𝐴 + 𝑣2𝑠 sin2 𝜃 0 𝑣2𝑠 sin 𝜃 cos 𝜃
0 −𝜔2/𝑘2 + 𝑣2𝐴 cos2 𝜃 0

𝑣2𝑠 sin 𝜃 cos 𝜃 0 −𝜔2/𝑘2 + 𝑣2𝑠 cos2 𝜃
⎞⎟
⎠

⎛⎜
⎝

𝑣𝑥
𝑣𝑦
𝑣𝑧

⎞⎟
⎠

= 0 (7.29)
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7.8.3 Alfvén Wave

For any nonzero 𝑣𝑦, the 𝑦-component of Equation 7.29 gives

𝜔2 = 𝑘2𝑣2𝐴 cos2 𝜃 = 𝑘2
∥𝑣2𝐴

which is known as the Alfvén wave, in a uniform plasma immersed in a uniform background
magnetic field with phase speed

𝑣𝑝 = 𝑣𝐴 cos 𝜃

The group velocity and hence energy propagation is always parallel to B regardless of the
direction of k, and for this reason this mode is also know as the guided mode. This property,
of course, has the direct bearing on the feature of Alfvén wave resonant absorption.

Given the velocity perturbation v1 = (0, 𝑣𝑦, 0), −𝑖𝜔𝜌1 + 𝜌0k ⋅ v = 0, 𝜔B1 + k × (v × B0) = 0,
the other perturbations are given as

𝜌1 = 0
𝑝1 = 0
E = −𝐵0𝑣𝑦 ̂𝑥

B1 = k
𝜔 × E = −𝑘𝑧𝐵0𝑣𝑦

𝜔 ̂𝑦 = − v
𝜔/𝑘∥

𝐵0

j = 1
𝜇0

∇× B1 = 𝑖k × B1
𝜇0

(7.30)

SAW has a wave vector k in the XZ-plane. E shall oscillate in the X-direction; B shall oscillate
in the Y-direction. The electric current of the wave j lies in the XZ-plane. The timescale of
the variations of the wave fields is much longer than the ion gyroperiod Ω−1

𝑖 . In both the
perpendicular and parallel directions, the spatial scale of the waves 1/𝑘 are much larger than
ion motion scale 𝑟𝑖𝐿. The wave carries a Poynting flux S = E × B1 strictly parallel to B0.
The ratio of the wave electric field to the wave magnetic field |E|/|B1| is exactly one Alfvén
speed 𝑉𝐴.

E (or B1) in Equation 7.30 shows that the Alfvén wave in a uniform plasma is a linearly
polarized wave if v1 = (0, 𝑣𝑦, 0). If instead we set k = (0, 0, 𝑘) (𝜃 = 0∘) and v1 = (𝑣𝑥, 𝑣𝑦, 0),
then k ⋅ v = 0 ⇒ 𝜌1 = 0 but E = −v × B0 = 𝑘𝑣𝑦 ̂𝑥 − 𝑘𝑣𝑥 ̂𝑦 can be a circularly polarized
wave or else. Correlated B1 and v corresponds to waves propagating anti-parallel to the B0
(k ⋅B0 < 0), and anti-correlated B1 and v corresponds to waves propagating parallel to the B0
(k ⋅ B0 > 0). (This is the same as expressed by the Alfvénicity condition Equation 14.2.) The
resultant magnetic field then exhibits shear, thus the Alfvén wave is called the shear Alfvén
wave (SAW). An animation of SAW is shown in ?@fig-alfven-wave.
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To understand what happens physically in an Alfvén wave, recall that this is an electromagnetic
wave with a fluctuating magnetic field B1 given by

∇× E1 = −Ḃ1 𝐸𝑥 = (𝜔/𝑘)𝐵𝑦 (7.31)

The small component 𝐵𝑦, when added to B0, gives the magnetic field lines a sinuisoidal ripple,
shown exaggerated in Figure 7.1. At the point shown, 𝐵𝑦 is in the positive 𝑦 direction, so,
according to Equation 7.31, 𝐸𝑥 is in the positive 𝑥 direction if 𝜔/𝑘 is in the 𝑧 direction. The
electric field 𝐸𝑥 gives the plasma an E1 × B0 drift in the negative 𝑦 direction. Since we have
taken the limit 𝜔2 ≪ Ω𝑐, both ions and electrons will have the same drift 𝑣𝑦, obtained from
Section 7.7 the component 𝑣𝑦 under 𝑇𝑖 = 0:

𝑣𝑖𝑥 = 𝑖𝑞
𝑚𝜔 (1 − Ω2

𝑐
𝜔2)

−1
𝐸1

𝑣𝑖𝑦 = 𝑞
𝑚𝜔

Ω𝑐
𝜔 (1 − Ω2

𝑐
𝜔2)

−1
𝐸1

(7.32)

Thus, the fluid moves up and down in the y direction. The magnitude of this velocity is
|𝐸𝑥/𝐵0|. Since the ripple in the field is moving by at the phase velocity 𝜔/𝑘, the magnetic
field is also moving downward at the point indicated in Figure 7.1. The downward velocity of
the magnetic field lines is (𝜔/𝑘)|𝐵𝑦/𝐵0|, which, according Equation 7.31, is just equal to the
fluid velocity |𝐸𝑥/𝐵0|. Thus, the fluid and the field lines oscillate together as if the particles
were stuck to the lines. The magnetic field lines act as if they were mass-loaded strings under
tension, and an Alfvén wave can be regarded as the propagating disturbance occurring when
the strings are plucked. This concept of plasma frozen to the field lines and moving with them
is a useful one for understanding many low-frequency plasma phenomena. It can be shown
that this notion is an accurate one as long as there is no electric field along B.

It remains for us to see what sustains the electric field 𝐸𝑥 which we presupposed was there.
As E1 fluctuates, the ions’ inertia causes them to lag behind the electrons, and there is a
polarization drift v𝑝 in the direction of E1. This drift 𝑣𝑖𝑥 is given by Equation 7.32 and causes
a current j1 to flow in the 𝑥 direction. The resulting j1 × B0 force on the fluid is in the 𝑦
direction and is 90∘ out of phase with the velocity v1. This force perpetuates the oscillation
in the same way as in any oscillator where the force is out of phase with the velocity. It is, of
course, always the ion inertia that causes an overshoot and a sustained oscillation, but in a
plasma the momentum is transferred in a complicated way via the electromagnetic forces.

In a more realistic geometry for experiments, E1 would be in the radial direction and v1 in
the azimuthal direction. The motion of the plasma is then incompressible. This is the reason
the ∇𝑝 term in the equation of motion could be neglected.

In a non-uniform plasma, SAW attains the interesting property of a continuous spectrum. To
illustrate this feature, let us consider the simplified slab model of a cold plasma with a non-
uniform density, 𝜌 = 𝜌(𝑥), and a uniform B0 = 𝐵0 ̂𝑧. Assuming at 𝑡 = 0 a localized initial
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Figure 7.1: Relation among the oscillating quantities in an Alfvén wave and the (exaggerated)
distortion of the lines of force.

perturbation B1𝑦(𝑥, 𝑡 = 0) = exp(−𝑥2/Δ𝑥2), |𝑘𝑦Δ𝑥| ≪ 1, and 𝜕B1𝑦/𝜕𝑡 = 0, the perturbation
then evolves according to the following wave equation (Equation 7.28, 𝐵1𝑧 = 0 so no coupling
between the fast mode and Alfvén mode):

[𝜕2
𝑡 + 𝜔2

𝐴(𝑥)]𝐵1𝑦(𝑥, 𝑡) = 0

Here 𝜔2
𝐴(𝑥) = 𝑘2

𝑧𝑣2𝐴(𝑥) and the solution is

𝐵1𝑦(𝑥, 𝑡) = �̂�1𝑦(𝑥, 0) cos[𝜔𝐴(𝑥)𝑡] (7.33)

Equation 7.33 shows that every point in 𝑥 oscillates at a different frequency, 𝜔𝐴(𝑥). With
a continuously varying 𝜔𝐴(𝑥); the wave frequency, thus, constitutes a continuous spectrum.
While the above result is based on a model with a 1D non-uniformity in x, this general
feature of SAW continuous spectrum also holds in magnetized plasmas with 2D or 3D non-
uniformities. A good example is geomagnetic pulsations in the Earth’s magnetosphere observed
by Engebretson shown in Figure 1 of (L. Chen, Zonca, and Lin 2021).

Equation 7.33 also indicates an unique and important property of SAW continuous spectrum:
the spatial structure evolves with time. Specifically, the wave number in the non-uniformity
direction is, time asymptotically, given by:

|𝑘𝑥| = ∣𝜕 ln𝐵1𝑦
𝜕𝑥 ∣ ≃ ∣d𝜔𝐴(𝑥)

d𝑥 ∣𝑡 (7.34)

That |𝑘𝑥| increases with 𝑡 is significant, since it implies that any initially long-scale perturba-
tions will evolve into short scales. This point is illustrated in Figure ??? (CAN I PERFORM
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THE SIMULATION?); showing the evolution of a smooth 𝐵1𝑦 at 𝑡 = 0 to a spatially fast
varying 𝐵1𝑦 at a later 𝑡.
Another consequence of |𝑘𝑥| increasing with 𝑡 is the temporal decay of 𝐵1𝑥. From ∇ ⋅ B1 ≃
∇⟂ ⋅ B1⟂ = 0, we can readily derive that, for |𝜔′

𝐴𝑡| ≫ |𝑘𝑦|:

𝐵1𝑥(𝑥, 𝑡) ≃
𝑘𝑦

𝜔′
𝐴(𝑥)𝑡

�̂�1𝑦(𝑥, 0)𝑒−𝑖𝜔𝐴(𝑥)𝑡[1 + 𝒪( 𝑘𝑦
|𝜔′

𝐴𝑡| + ...)]

That is, 𝐵1𝑥 decays temporally due to the phase mixing of increasingly more rapidly varying
neighboring perturbations.

Noting that, as 𝑡 → ∞, |𝑘𝑥| → ∞, it thus suggests that the perturbation will develop singular
structures toward the steady state. As we will see in the field line resonance Chapter 12,
the singularity is reached at the Alfvén resonant point 𝑥𝑟, where 𝜔2 = 𝜔2

𝐴(𝑥𝑟) along with a
finite resonant wave-energy absorption rate. Note that at the isolated extrema of the SAW
continuum, |𝜔′

𝐴| = 0, phase mixing vanishes; consequently, perturbation remains regular and
experiences no damping via resonant absorption. This feature has important implications to
Alfvén instabilities in laboratory plasmas.

Space plasmas support a variety of waves, but for heating the plasma and accelerating the
electrons and ions, Alfvén waves are a predominant source. Near the Sun, Alfvén waves are
excited and propagate outward. They exchange their energy with particles to accelerate them
in the form of solar wind and heat the electrons. When perpendicular wavelength of the wave
becomes comparable to the ion gyro-radius (𝑘⟂𝑟𝐿𝑖 ∼ 1) or inertial length (𝑘⟂𝑑𝑖 ∼ 1) in the case
of kinetic Alfvén waves (KAWs, Section 7.9.4) or inertial Alfvén waves (IAWs, Equation 7.68),
respectively, then the wave in both the limits has a nonzero parallel electric field component
which is responsible for the acceleration of the particles via the Landau mechanism. This is
also consistent with the generalized Ohm’s law Equation 5.27: only when we go beyond Hall
MHD can E∥ be nonzero. (WHAT ABOUT 𝜂j?) KAW relates to ∇𝑃𝑒

𝑛𝑒 term, while IAW relates
to 𝜕j

𝜕𝑡 term. The key interest is in 𝐸∥. KAWs and IAWs have significance not only in space
plasmas but also in laboratory plasma such as in fusion reactors.

Alfvén wave has very high saturation level, meaning that it takes a long time for the wave to
reach the nonlinear phase. (???)

SAW in a Slab

We now look deeper into the properties of Alfvén waves in a nonuniform magnetized plasma
slab that carries a current flowing along an externally imposed magnetic field 𝐵0𝑧 ̂𝑧, where 𝐵0𝑧
is assumed to be a constant. First, we formulate the governing equation for the slab geometry,
under the ideal MHD condition. Then we show that Alfvén waves are always neutrally stable,
with important indication at the end.
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The presence of an equilibrium current density J0 = ̂𝑧𝐽0(𝑥) produces a local magnetic field of
the form

B0 = ̂𝑧𝐵0𝑧 + ̂𝑦𝐵0𝑦(𝑥)

The Ampère’s law gives

∇× B0 = 𝜇0J0 ⇒ 𝜕𝐵0𝑦
𝜕𝑥 − 𝜕𝐵0𝑥

𝜕𝑦 = 𝜕𝐵0𝑦
𝜕𝑥 = 𝜇0𝐽0(𝑥) (7.35)

From the force balance equation,
J0 × B0 = ∇𝑃0 (7.36)

Substituting Equation 7.35 into Equation 7.36, we get

𝐵0𝑦(𝑥)
2

2𝜇0
+ 𝑃0(𝑥) = const.

Designate all perturbation quantities with a subscript 1, and assume 𝑒−𝑖𝜔𝑡+𝑖𝑘𝑦𝑦+𝑖𝑘𝑧𝑧 dependence
for all perturbations (nonuniform in the 𝑥-direction, thus no sinuisoidal wave assumption).
From linearized Faraday’s law and Ohm’s law in ideal MHD,

−∇× E1 = ∇× (v1 × B0) =
𝜕B1
𝜕𝑡

−𝑖𝜔B1 = v1�����(∇ ⋅ B0) − B0����(∇ ⋅ v1) + (B0 ⋅ ∇)v1 − (v1 ⋅ ∇)B0

where we have assumed the plasma is incompressible. Replace ∇ with 𝑖k, v1 = 𝑖𝜔𝜉𝜉𝜉1 and take
the 𝑥-component, we get

𝐵1𝑥 = 𝑖(k ⋅ B0)𝜉1𝑥 (7.37)
where k = ̂𝑦𝑘𝑦 + ̂𝑧𝑘𝑧.
The MHD force law can be linearized to

𝜌0
𝜕v1
𝜕𝑡 = −∇(𝑝1 +

B0 ⋅ B1
𝜇0

) + 1
𝜇0

[(B0 ⋅ ∇)B1 + (B1 ⋅ ∇)B0] (7.38)

Since the plasma is incompressible, ∇ ⋅ 𝑣𝑣𝑣1 = 0, ̇𝜉𝜉𝜉 = v1 ⇒ ∇ ⋅ 𝜉𝜉𝜉 = 0. In addition, ∇ ⋅ B1 = 0.
We then have

k ⋅ 𝜉𝜉𝜉1𝑦𝑧 = 𝑖𝜕𝜉1𝑥𝜕𝑥
k ⋅ 𝐵𝐵𝐵1𝑦𝑧 = 𝑖𝜕𝐵1𝑥

𝜕𝑥
where 𝜉𝜉𝜉1𝑦𝑧 = (0, 𝜉1𝑦, 𝜉1𝑧), B1𝑦𝑧 = (0,𝐵1𝑦, 𝐵1𝑧). The 𝑥-component of Equation 7.38 gives

−𝜌0𝜔2𝜉1𝑥 = − 𝜕
𝜕𝑥(𝑝1 +

B0 ⋅ B1
𝜇0

) + 1
𝜇0

[(B0 ⋅ ∇)𝐵1𝑥] (7.39)
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The dot product of Equation 7.38 with k gives

−𝜌0𝜔2k ⋅ 𝜉𝜉𝜉1𝑦𝑧 = 𝑖𝑘2(𝑝1 +
B0 ⋅ B1

𝜇0
) + 1

𝜇0
[𝑖(k ⋅ B0)(k ⋅ B1𝑦𝑧) + 𝐵1𝑥

𝜕
𝜕𝑥(k ⋅ B0)]

−𝜌0𝜔2𝑖𝜕𝜉1𝑥𝜕𝑥 = 𝑖𝑘2(𝑝1 +
B0 ⋅ B1

𝜇0
) + 1

𝜇0
[𝑖(k ⋅ B0)(𝑖

𝜕𝐵1𝑥
𝜕𝑥 ) + 𝐵1𝑥

𝜕
𝜕𝑥(k ⋅ B0)]

(7.40)

Finally, canceling 𝑝1+ B0⋅B1
𝜇0

from Equation 7.39 and Equation 7.40 and substituting 𝐵1𝑥 from
Equation 7.37, we obtain the governing equation

𝜕
𝜕𝑥{𝜌0[𝜔

2 − (k ⋅ v𝐴)2]
𝜕𝜉1𝑥
𝜕𝑥 } − 𝑘2𝜌0[𝜔2 − (k ⋅ v𝐴)2]𝜉1𝑥 = 0 (7.41)

where 𝑘2 = 𝑘𝑦2 + 𝑘𝑧2, v𝐴 = 𝑣𝐴B0/𝐵0, and 𝑣𝐴 = 𝐵0/
√𝜇0𝜌0 is the local Alfvén speed. This

is the governing equation of shear Alfvén waves in a slab geometry derived by Hasegawa and
Liu Chen in the 1970s, which is readily compared with Eq.(10.33) in (Bellan 2008).

It is easy to show that this governing equation always yields neutrally stable solutions of SAWs,
i.e. 𝜔𝑖 = ℑ(𝜔) = 0. Multiply it by 𝜉∗1𝑥, and integrate the resultant equation to get

∫
∞

−∞
d𝑥𝜌0[𝜔2 − (k ⋅ v𝐴)2][∣

d𝜉1𝑥
d𝑥 ∣

2
+ 𝑘2|𝜉1𝑥|2] = 0

where we have assumed that 𝜉1𝑥 vanishes on the boundary. This gives

𝜔2 =
∫∞
−∞ d𝑥𝜌0(k ⋅ v𝐴)2[∣d𝜉1𝑥

d𝑥 ∣
2
+ 𝑘2|𝜉1𝑥|2]

∫∞
−∞ 𝜌0[|d𝜉1𝑥

d𝑥 |2 + 𝑘2|𝜉1𝑥|2]d𝑥
≥ 0

SAWs are the dominant low frequency waves in a current carrying plasma. The neutrally stable
modes studies above can be destabilized by unfavorable curvature, and such modes are called
ballooning modes (Section 9.7.4). They may also be destabilized by a finite electrical resistivity,
and these are tearing modes (Section 9.7.5). Their interaction with fusion-generated alpha
particles are a major issue in all magnetic fusion schemes. Finally, since the governing equation
exhibits a singularity when 𝜔 = k ⋅v𝐴, this singularity represents resonance absorption, which
forms the basis of Alfvén wave heating (i.e. field line resonance, Chapter 12). This singularity
also give rise to the so called “Alfvén continuum spectrum” mentioned above.

Note that the governing equation is valid even if 𝐵0𝑧 is an arbitrary function of 𝑥. If in addition,
an external gravity g = ̂𝑥𝑔 in the x-direction is present, the governing equation is modified
simply by inserting the term −(𝑔/𝜌0)d𝜌0/d𝑥 in the second square bracket, and the equation
is identical to Eq.(10.33) of Bellan. This is the most general equation which describes the
magneto-Rayleigh-Taylor instability (MRT) in Cartesian geometry using the incompressible,
ideal MHD model.
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7.8.4 Fast and Slow Wave

The 𝑥-𝑧 components of Equation 7.29 give

(𝜔2 − 𝑘2𝑣𝐴2 − 𝑘𝑥2𝑣𝑠2)𝑣𝑥 − 𝑘𝑥𝑘𝑧𝑣𝑥2𝑣𝑧 = 0
(𝜔2 − 𝑘𝑧2𝑣𝑠2)𝑣𝑧 − 𝑘𝑥𝑘𝑧𝑣𝑠2𝑣𝑥 = 0

The dispersion relation is given by the determinant being 0,

𝜔4 − 𝑘2(𝑣𝐴2 + 𝑣𝑠2)𝜔2 + 𝑘𝑧2𝑣𝑠2𝑘2𝑣𝐴2 = 0
𝜔2

𝑘2 = 1
2(𝑣𝐴

2 + 𝑣𝑠2) ±
1
2√(𝑣𝐴2 + 𝑣𝑠2)2 − 4𝑣𝑠2𝑣𝐴2 cos2 𝜃

(7.42)

“+” corresponds to the fast mode, or magnetosonic mode, and “-” corresponds to the slow
mode. The Friedrich graph ?@fig-mhd-phase-speed-low-beta is very useful in interpreting
Equation 7.42. Here we only show the case for 𝑣𝐴 > 𝑣𝑠; if 𝑣𝐴 < 𝑣𝑆, then along the background
magnetic field direction ̂𝑧 the fast wave will have a phase speed 𝑣ph = 𝑣𝑠, and the slow wave
will a phase speed 𝑣ph = 𝑣𝐴 that overlaps with the Alfvén wave. Thus in the high-𝛽 case slow
wave may have a faster phase speed than the Alfvén wave at a proper angle!

Another thing to be careful about is that when you observe a wave propagating at the Alfvén
speed along the field line, you need more information to determine the characteristics of the
wave:

• Check the 𝛽-regime as well as the compressionality to determine if it has fast/slow wave
component.

• Check the polarization to see if it is an cyclotron wave.
• Check the parallel electric field to see if has kinetic features.

Given the velocity perturbation v1 = (𝑣𝑥, 0, 𝑣𝑧), the other perturbations are given as

𝜌1 = 𝜌0
𝜔 k ⋅ v

𝑝1 = 𝛾𝑝0
𝜌1
𝜌0

= 𝛾𝑝0
𝜔 k ⋅ v

E = 𝐵0𝑣𝑥 ̂𝑦

B1 = k
𝜔 × E = (k ⋅ v)B0 − (k ⋅ B0)v

𝜔 = −𝐵0𝑣𝑥𝑘𝑧
𝜔 ̂𝑥 + 𝐵0𝑣𝑥𝑘𝑥

𝜔 ̂𝑧

j = 1
𝜇0

∇× B1 = 𝑖k × B1
𝜇0

(7.43)

E shows that the fast/slow modes in a uniform plasma are also linearly polarized. When we
have 𝜃 = 90∘ (?@fig-fast-wave), the magnetic perturbation can be simplified to

B1 = 𝑣
𝜔/𝑘⟂

B0
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which means that the perturbed magnetic field is always aligned with the background magnetic
field.

The distinction between the fast and slow waves can be further understood by comparing the
signs of the wave induced fluctuations in the plasma and magnetic pressures: 𝑝 and B0 ⋅B/𝜇0,
respectively. It follows from Equation 7.43 that

B0 ⋅ B
𝜇0

= k ⋅ v𝐵2
0 − (k ⋅ B0)(B0 ⋅ v)

𝜇0 𝜔

The 𝑧-component of the perturbed momentum equation yields

𝜔𝜌0𝑣𝑧 = 𝑘 cos 𝜃𝑝

Combining the above, we have

B0 ⋅ B
𝜇0

= 𝑣2𝐴
𝑣2𝑠

(1 − 𝑘2𝑣2𝑠 cos2 𝜃
𝜔2 )𝑝 (7.44)

Hence, 𝑝 and B0 ⋅ B/𝜇0 have the same sign if 𝑉ph = 𝜔/𝑘 > 𝑣𝑠 cos 𝜃, and the opposite sign if
𝑉ph < 𝑣𝑠 cos 𝜃. It is straightforward to show that 𝑣+ > 𝑣𝑠 cos 𝜃, and 𝑣− < 𝑣𝑠 cos 𝜃. Thus, we
conclude that in the fast magnetosonic wave the pressure and magnetic energy fluctuations
reinforce one another, whereas the fluctuations oppose one another in the slow magnetosonic
wave.

The temperature perturbation, based on the equation of state, can be derived as follows:

𝑇1 = 𝑇 − 𝑇0 = 𝑝0 + 𝑝1
(𝑛0 + 𝑛1)𝑘𝐵

− 𝑝0
𝑛0𝑘𝐵

= 𝑝0 (1 + 𝛾𝑛1
𝑛0

) 1
(𝑛0 + 𝑛1)𝑘𝐵

− 𝑝0
𝑛0𝑘𝐵

= 𝑝0
1
𝑘𝐵

[(1 + 𝛾𝑛1
𝑛0

) 1
𝑛0 + 𝑛1

− 1
𝑛0

]

= 𝑝0
1
𝑘𝐵

[ (𝛾 − 1)𝑛1
𝑛0(𝑛0 + 𝑛1)

]

= 𝑇0 (𝛾 − 1) k ⋅ v
𝜔 + k ⋅ v

(7.45)

Equation 7.45 shows that temperature does not follow the same sinusoidal shape as the per-
turbed velocity.

Special attention is required for the extreme cases. When 𝜃 = 90∘, the fast wave phase speed
𝑣ph = √𝑣2𝐴 + 𝑣2𝑠 while the slow wave phase speed 𝑣ph = 0. Slow waves cannot propagate
perpendicular to the magnetic field. However, this is still a valid solution with all the slow
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mode perturbation properties, and you will see in Section 9.11.2 and Section 10.2 that this is
named mirror mode. When 𝜃 = 0∘, the fast wave phase speed 𝑣ph = max(𝑣𝐴, 𝑣𝑠) while the
slow wave phase speed 𝑣ph = min(𝑣𝐴, 𝑣𝑠).
It is important to understand the nature of fast and slow waves under the cold plasma limit,
i.e. in the low-𝛽 regime where 𝑣𝐴 ≫ 𝑣𝑠 (cold, strong B). If 𝑣𝑠 → 0, the slow mode ceases to
exit (𝑉ph → 0) and the phase speed of the fast mode becomes 𝑣𝑝 ≈ 𝑣𝐴. This is often called
the compressional Alfvén wave, which is actually a fast wave in the low-𝛽 limit. If 𝛽 is low but
we still have a finite sound speed, the dispersion relation for the slow wave reduces to

𝜔 ≃ 𝑘 𝑣𝑠 cos 𝜃

Thus, in low-𝛽 plasmas the slow wave is a sound wave modified by the presence of the magnetic
field.

Sometimes the fast wave dispersion relation is written in alternative ways. Let 𝑎 = 𝜔/(𝑘∥𝑣𝐴) =
𝜔/(𝑘 cos 𝜃 𝑣𝐴). From Equation 7.42, we have

cos2 𝜃 = 𝑎2 (𝑣2𝑠/𝑣2𝐴 + 1) − 𝑣2𝑠/𝑣2𝐴
𝑎4 (7.46)

This expression is useful when considering the wave resonance and mode conversions. For
example, Alfvén resonance occurs when

𝜔2 = 𝑘2
∥𝑣2𝐴 (7.47)

i.e. 𝑎 = 1 under the low frequency approximation. In higher frequency cases, the Alfvén
resonance condition is modified as

𝑎 = 1
(1 − 𝜔2/Ω2

𝑖 )
2 (7.48)

because of the finite ion Larmor radius effects. (The Alfvén resonance singularity can be
removed by including non‐MHD effects such as electron inertia or ion Larmor radius correc-
tions.)

7.8.5 Limitations of the MHD model

The MHD model ignores parallel electron dynamics and so has a shear mode dispersion 𝜔2 =
𝑘2
𝑧𝑣2𝐴 that has no dependence on 𝑘⟂. Some researchers interpret this as a license to allow

arbitrarily large 𝑘⟂ in which case a shear mode could be localized to a single field line. However,
the two-fluid model of the shear mode does have a dependence on 𝑘⟂ which becomes important
when either 𝑘⟂𝑐/𝜔𝑝𝑒 or 𝑘⟂𝑟𝐿𝑠 become of order unity (whether to use 𝑐𝜔𝑝𝑒 or 𝑟𝐿𝑠 depends
on whether 𝛽𝑚𝑖/𝑚𝑒 is small or large compared to unity). Since 𝑐𝜔𝑝𝑒 and 𝑟𝐿𝑠 are typically
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small lengths, the MHD point of view is acceptable provided the characteristic length of
perpendicular localization is much larger than 𝑐𝜔𝑝𝑒 or 𝑟𝐿𝑠.

MHD also predicts a sound wave which is identical to the ordinary hydrodynamic sound wave
of an unmagnetized gas. The perpendicular behavior of this sound wave is consistent with the
two-fluid model because both two-fluid and MHD perpendicular motions involve compressional
behavior associated with having finite 𝐵𝑧1. However, the parallel behavior of the MHD sound
wave is problematical because 𝐸𝑧1 is assumed to be identically zero in MHD. According to
the two-fluid model, any parallel acceleration requires a parallel electric field. The two-fluid
𝐵𝑧1 mode is decoupled from the two-fluid 𝐸𝑧1 mode so that the two-fluid 𝐵𝑧1 mode is both
compressional and has no parallel motion associated with it.

The MHD analysis makes no restriction on the electron to ion temperature ratio and predicts
that a sound wave would exist for 𝑇𝑒 = 𝑇𝑖. In contrast, the two-fluid model shows that
sound waves can only exist when 𝑇𝑒 ≫ 𝑇𝑖 because only in this regime is it possible to have
𝑘𝐵𝑇𝑖/𝑚𝑖 ≪ 𝜔2/𝑘2

𝑧 ≪ 𝑘𝐵𝑇𝑒/𝑚𝑒 and so have inertial behavior for ions and kinetic behavior for
electrons.

Various paradoxes develop in the MHD treatment of the shear mode but not in the two-fluid
description. These paradoxes illustrate the limitations of the MHD description of a plasma
and shows that MHD results must be treated with caution for the shear (slow) mode. MHD
provides an adequate description of the fast (compressional) mode.

7.9 Two-fluid model of Alfvén modes

We now examine the MHD modes from a two-fluid point of view. The two-fluid point of view
shows that the shear mode occurs as one of two distinct modes, only one of which can exist
for given plasma parameters. Which of these shear modes occurs depends upon the ratio of
hydrodynamic pressure to magnetic pressure. This ratio is defined for each species s as

𝛽𝑠 = 𝑛𝑘𝐵𝑇𝑠
𝐵2/𝜇0

The subscript s is not used if electrons and ions have the same temperature. 𝛽𝑖 measures the
ratio of ion thermal velocity to the Alfvén velocity since

𝑣2𝑇𝑖
𝑣2𝐴

= 𝑘𝐵𝑇𝑖/𝑚𝑖
𝐵2/𝑛𝑚𝑖𝜇0

= 𝛽𝑖

Thus, 𝑣𝑇𝑖 ≪ 𝑣𝐴 corresponds to 𝛽𝑖 ≪ 1. Magnetic forces dominate hydrodynamic forces in a
low 𝛽 plasma, whereas in a high 𝛽 plasma the opposite is true.

The ratio of electron thermal velocity to Alfvén velocity is also of interest and is

𝑣2𝑇𝑒
𝑣2𝐴

= 𝑘𝐵𝑇𝑒/𝑚𝑒
𝐵2/𝑛𝑚𝑖𝜇0

= 𝑚𝑖
𝑚𝑒

𝛽𝑒
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Thus, 𝑣2𝑇𝑒 ≫ 𝑣2𝐴 when 𝛽𝑒 ≫ 𝑚𝑒/𝑚𝑖 and 𝑣2𝑇𝑒 ≪ 𝑣2𝐴 when 𝛽𝑒 ≪ 𝑚𝑒/𝑚𝑖. Shear Alfvén wave
physics is different in the 𝛽𝑒 ≫ 𝑚𝑒/𝑚𝑖 and 𝛽𝑒 ≪ 𝑚𝑒/𝑚𝑖 regimes which therefore must be
investigated separately. MHD ignores this 𝛽𝑒 dependence, an oversimplification which leads
to the paradoxes.

Both Faraday’s law and the pre-Maxwell Ampère’s law (no displacement current) are funda-
mental to Alfvén wave dynamics. The system of linearized equations thus is

∇× E1 = −𝜕B1
𝜕𝑡

∇ × B1 = 𝜇0j1
(7.49)

If the dependence of j1 on E1 can be determined, then the combination of Ampère’s law and
Faraday’s law provides a complete self-consistent description of the coupled fields E1,B1 and
hence describes the normal modes. From a mathematical point of view, specifying j1(E1)
means that there are as many equations as dependent variables in the pair of Equation 7.49.
The relationship between j1 and E1 is determined by the Lorentz equation or some general-
ization thereof (e.g., drift equations, Vlasov equation, fluid equation of motion). The MHD
derivation used the polarization drift to give a relationship between 𝑗1⟂ and 𝐸1⟂ but leaves
ambiguous the relationship between 𝑗1∥ and 𝐸1∥.

The two-fluid equations provide a definite description of the relationship between 𝑗1∥ and
𝐸1∥. At frequencies well below the cyclotron frequency, decoupling of modes also occurs in
the two-fluid description, and this decoupling is more clearly defined and more symmetric
than in MHD. The decoupling in a uniform plasma results because the dependence of j1 on
E1 has the property that 𝑗1𝑧 ∼ 𝐸1𝑧 and j1⟂ ∼ E1⟂. Thus, for 𝜔 ≪ 𝜔𝑐𝑖 there is a simple
linear relation between parallel electric field and parallel current and another distinct simple
linear relation between perpendicular electric field and perpendicular current; these two linear
relations mean that the tensor relating j1 to E1 is diagonal (at higher frequencies this is not
the case). The decoupling can be seen by supposing that all first order quantities have the
dependence exp(𝑖k⟂ ⋅ x + 𝑖𝑘𝑧𝑧) where k⟂ = 𝑘𝑥 ̂𝑥 + 𝑘𝑦 ̂𝑦. Mode decoupling can be seen by
examining Table 7.1 which lists the electric and magnetic field components:

Table 7.1: Parallel and perpendicular mode decoupling

E components B components

* �̂�⟂ ⋅ E1 �̂�⟂ ⋅ B1
̂𝑧 × �̂�⟂ ⋅ E1 * ̂𝑧 × �̂�⟂ ⋅ B1
* ̂𝑧 ⋅ E1 ̂𝑧 ⋅ B1

Because of the property that 𝑗1𝑧 ∼ 𝐸1𝑧 and j1⟂ ∼ E1⟂ the terms starting with an asterisk
are decoupled from the rest. Hence, one mode consists of solely interrelationships between the
starred terms (this mode is called 𝐸𝑧 mode since it has finite 𝐸𝑧) and the other distinct mode
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consists solely of interrelationships between the non-starred terms (this mode is called the 𝐵𝑧
mode since it has finite 𝐵𝑧). Since the modes are decoupled, it is possible to “turn off” the
𝐸𝑧 mode when considering the 𝐵𝑧 mode and vice versa. If the plasma is non-uniform, the 𝐸𝑧
and 𝐵𝑧 modes can become coupled.

The ideal MHD formalism sidesteps discussion of the 𝐸𝑧 mode. Instead, two disconnected
assumptions are invoked in ideal MHD, namely

1. it is assumed that 𝐸𝑧1 = 0 and
2. the parallel current 𝑗𝑧1 is assumed to arrange itself spontaneously in such a way as to

always satisfy ∇ ⋅ j1 = 0.

This pair of assumptions completes the system of equations, but omits the parallel dynamics
associated with the 𝐸𝑧 mode and instead replaces this dynamics with an assumption that 𝑗𝑧1
is determined by some unspecified automatic feedback mechanism. In contrast, the two-fluid
equations describe how particle dynamics determines the relationship between 𝑗𝑧1 and 𝐸𝑧1.
Thus, while MHD is both simpler and self-consistent, it omits some vital physics.

The two-fluid model is based on the linearized equations of motion

𝑚𝑠𝑛
𝜕u𝑠1
𝜕𝑡 = 𝑛𝑞𝑠 (E1 + u𝜎1 × B) − ∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑠1 (7.50)

Charge neutrality is assumed so that 𝑛𝑖 = 𝑛𝑒 = 𝑛. Also, the pressure terms is

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑠1 = ∇ ⋅ ⎡⎢
⎣

𝑝𝑠⟂1 0 0
0 𝑝𝑠⟂1 0
0 0 𝑝𝑠𝑧1

⎤⎥
⎦

= ∇⟂𝑝𝑠⟂1 + ̂𝑧𝜕𝑝𝑠𝑧1𝜕𝑧 (7.51)

Assuming 𝜔 ≪ 𝜔𝑐𝑖 implies 𝜔 ≪ 𝜔𝑐𝑒 also and so perpendicular motion can be described by
drift theory for both ions and electrons. However, here the drift approximation is used for the
fluid equations, rather than for a single particle. Following the drift method of analysis, the
left hand side of Equation 7.50 is neglected to first approximation, resulting in

u𝑠1 × B ≃ −E1⟂ +∇⟂𝑝𝑠⟂1/𝑛𝑞𝑠 (7.52)

which may be solved for u𝑠1 to give

u𝑠⟂1 = E1 × B
𝐵2 − ∇𝑝𝑠⟂1 × B

𝑛𝑞𝑠𝐵2 (7.53)

The first term is the single-particle E × B drift and the second term is called the diamagnetic
drift, a fluid effect that does not exist for single-particle motion (Section 5.7). Because u𝑠⟂1 is
time-dependent there is also a polarization drift. Recalling that the form of the single-particle
polarization drift for electric field only is v𝑝 = 𝑚Ė1⟂/𝑞𝐵2 and using E1⟂ − ∇⟂𝑝𝑠⟂1/𝑛𝑞𝑠 for

230



the fluid model instead of just E1⟂ for single particles (Equation 7.52) the fluid polarization
drift is obtained. Withe the inclusion of this higher order correction, the perpendicular fluid
motion becomes

u𝑠⟂1 = E1 × B
𝐵2 − ∇𝑝𝑠⟂1 × B

𝑛𝑞𝑠𝐵2 + 𝑚𝑠
𝑞𝑠𝐵2 Ė1⟂ − 𝑚𝑠

𝑛𝑞2𝑠𝐵2∇⟂ ̇𝑝𝑠𝜎1 (7.54)

The last two terms are smaller than the first two terms by the ratio 𝜔/𝜔𝑐𝑠 and so may be
ignored when the electron and ion fluid velocities are considered separately. However, when
the perpendicular current, i.e. j1⟂ = ∑𝑛𝑞𝑠u𝑠⟂1 is considered, the electron and ion E×B drift
terms cancel so that the polarization terms becomes the leading terms involving the electric
field. Because of the mass in the numerator, the ion polarization drift is much larger than the
electron polarization drift. Thus, the perpendicular current comes form ion polarization drift
and diamagnetic current

𝜇0j⟂1 = 𝜇0𝑛𝑚𝑖Ė1⟂
𝐵2 −∑

𝑠

∇𝑝𝑠⟂1 × B
𝐵2 = 1

𝑣2𝐴
Ė⟂1 −

𝜇0∇𝑝⟂1 × B
𝐵2 (7.55)

where 𝑝⟂1 = ∑𝑝𝑠⟂1. The terms involving ̇𝑝⟂1 has been dropped because it is small by 𝜔/𝜔𝑐
compared to the 𝑝⟂1 term.

The center of mass perpendicular motions is

U⟂1 = ∑𝑚𝑠𝑛u𝑠⟂1
∑𝑚𝑠𝑛

≈ u𝑖⟂1

An important issue for the perpendicular motion is whether u𝑠⟂1 is compressible or incom-
pressible. Let us temporarily ignore parallel motion and consider the continuity equation

𝜕𝑛1
𝜕𝑡 + 𝑛∇ ⋅ u𝑠⟂1 = 0 (7.56)

If ∇ ⋅u𝑠⟂1 = 0, the mode does not involve any density perturbation, i.e. 𝑛1 = 0, and is said to
be an incompressible mode. On the other hand, if ∇ ⋅ u𝑠⟂1 ≠ 0 then there are fluctuations in
density and the mode is said to be compressible.

To proceed further, consider the vector identity

∇ ⋅ (F × G) = G ⋅ ∇ × F − F ⋅ ∇ × G

If G is spatially uniform, this identity reduces to ∇ ⋅ (F × G) = G ⋅ ∇ × F which in turn
vanishes if F is the gradient of a scalar. Taking the divergence of Equation 7.54 and ignoring
the polarization terms (they are of order 𝜔/𝜔𝑐𝑖 and are only important when calculating the
current which we are not interested in right now) gives

∇ ⋅ u𝑠⟂1 = 1
𝐵2 B ⋅ ∇ × E1 = 1

𝐵 ̂𝑧 ⋅ ∇ × E1 (7.57)
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to lowest order. Setting E1 = −∇𝜙 (i.e. assuming that the electric field is electrostatic)
would cause the right hand side of Equation 7.57 to vanish, but such an assumption is overly
restrictive because all that matters here is the 𝑧-component of ∇ × E1. The 𝑧-component of
∇ × E1 involves only the perpendicular component of the electric field (i.e. only the 𝑥 and
𝑦 components of the electric field) and so the least restrictive assumption for the right hand
side of Equation 7.57 to vanish is to have E1⟂ = −∇⟂𝜙. Thus, one possibility is to have
E1⟂ = −∇⟂𝜙 in which case the perpendicular electric field is electrostatic in nature and the
mode is incompressible.

The other possibility is to have ̂𝑧 ⋅ ∇ × E1 ≠ 0. In this case, invoking Faraday’s law reduces
Equation 7.57 to

∇ ⋅ u𝑠⟂1 = − 1
𝐵 ̂𝑧 ⋅ 𝜕B1

𝜕𝑡 = − 1
𝐵

𝜕𝐵𝑧1
𝜕𝑡 (7.58)

Combining Equation 7.56 and Equation 7.58 and then integrating in time gives

𝑛1
𝑛 = 𝐵𝑧1

𝐵
which shows that compression/rarefaction is associated with having finite 𝐵𝑧1 (similar to the
argument in Equation 10.17).

In summary, there are two general kinds of behavior:

Table 7.2: Incompressible and compressible modes from two-fluid theory.

Quantity Shear modes Compressible modes
𝑛1 0 ≠ 0

∇ ⋅ u𝑠⟂1 0 ≠ 0
∇× E1⟂ −∇⟂𝜙 ≠ 0

𝐵𝑧1 0 ≠ 0

Equation 7.55 provides a relationship between the perpendicular electric field and the perpen-
dicular current. A relationship between the parallel electric field and the parallel current is
now required. To obtain this, all vectors are decomposed into components parallel and per-
pendicular to the equilibrium magnetic field, i.e. E1 = E⟂1 + 𝐸𝑧1 ̂𝑧, ∇ = ∇⟂ + ̂𝑧𝜕𝑧 etc. All
quantities are assumed to be proportional to 𝑓(𝑥, 𝑦) exp(𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡). Thus, Faraday’s law can
be written as

∇⟂ × E⟂1 +∇⟂ ×𝐸𝑧1 ̂𝑧 + ̂𝑧 𝜕
𝜕𝑧 × E⟂1 = − 𝜕

𝜕𝑡 (B⟂1 +𝐵𝑧1 ̂𝑧)

which has a parallel component

̂𝑧 ⋅ ∇⟂ × E⟂1 = 𝑖𝜔𝐵𝑧1
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and a perpendicular component

(∇⟂𝐸𝑧1 − 𝑖𝑘𝑧E⟂1) × ̂𝑧 = 𝑖𝜔B⟂1 (7.59)

Similarly Ampère’s law can be decomposed into

̂𝑧 ⋅ ∇⟂ × B⟂1 = 𝜇0j𝑧1

and
(∇⟂𝐵𝑧1 − 𝑖𝑘𝑧B⟂1) × ̂𝑧 = 𝜇0j⟂1 (7.60)

Substituting Equation 7.55 into Equation 7.60 gives

(∇⟂𝐵𝑧1 − 𝑖𝑘𝑧B⟂1) × ̂𝑧 = 𝑖𝜔
𝑣2𝐴

E⟂1 −
𝜇0∇𝑝1 × ̂𝑧

𝐵
or, after re-arrangement,

∇⟂ (𝐵𝑧1 +
𝜇0𝑝⟂1
𝐵 ) × ̂𝑧 − 𝑖𝑘𝑧B⟂1 × ̂𝑧 = − 𝑖𝜔

𝑣2𝐴
E⟂1 (7.61)

The shear and compressional modes are now considered separately.

7.9.1 Two-fluid shear modes

As discussed above these modes have 𝐵𝑧1 = 0,E⟂1 = −∇⟂𝜙1, and ∇ ⋅ u𝑠⟂1 = 0. We first
consider the parallel component of the linearized equation of motion, namely

𝑛𝑚𝑠
𝜕𝑢𝑠𝑧1
𝜕𝑡 = 𝑛𝑞𝑠𝐸𝑧1 −

𝜕𝑝𝑠1
𝜕𝑧 (7.62)

where 𝑝𝑠1 = 𝛾𝑠𝑛𝑠1𝑘𝐵𝑇𝑠 and 𝛾 = 1 if the motion is isothermal and 𝛾𝑠 = 3 if the motion
is adiabatic and the compression is one-dimensional. The isothermal case corresponds to
𝜔2/𝑘2

𝑧 ≪ 𝑘𝐵𝑇𝑠/𝑚𝑠 and vice versa for the adiabatic case.

The continuity equation is
𝜕𝑛1
𝜕𝑡 + ∇ ⋅ (𝑛u𝑠1) = 0

Because the shear mode is incompressible in the perpendicular direction, the continuity equa-
tion reduces to

𝜕𝑛1
𝜕𝑡 + 𝜕

𝜕𝑧 (𝑛0𝑢𝑠𝑧1) = 0

Taking the time derivative of Equation 7.62 gives (isothermal?)

𝜕2𝑢𝑠𝑧1
𝜕𝑡2 − 𝛾𝑠

𝑘𝐵𝑇𝑠
𝑚𝑠

𝜕2𝑢𝑠𝑧1
𝜕𝑧2 = 𝑞𝑠

𝑚𝑠

𝜕𝐸𝑧1
𝜕𝑡 (7.63)
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which is similar to electron plasma wave and ion acoustic wave dynamics except it has not
been assumed that 𝐸𝑧1 is electrostatic.

Invoking the assumption that all quantities are of the form 𝑓(𝑥, 𝑦) exp(𝑖𝑘𝑧𝑧−𝑖𝜔𝑡) Equation 7.63
can be solved to give

𝑢𝑠𝑧1 = 𝑖𝜔𝑞𝑠
𝑚𝑠

𝐸𝑧1
𝜔2 − 𝛾𝑠𝑘2𝑧𝑘𝐵𝑇𝑠/𝑚𝑠

and so the relation between parallel current and parallel electric field is

𝜇0𝑗𝑧1 = 𝑖𝜔
𝑐2𝐸𝑧1 ∑

𝑠

𝜔2
𝑝𝑠

𝜔2 − 𝛾𝑠𝑘2𝑧𝑘𝐵𝑇𝑠/𝑚𝑠

Using ̂𝑧 ⋅ ∇ × B1 = ∇ ⋅ (B1 × ̂𝑧) = ∇ ⋅ (B⟂1 × ̂𝑧) the parallel component of Ampère’s law
becomes for the shear wave

∇⟂ ⋅ (B⟂1 × ̂𝑧) = 𝑖𝜔
𝑐2𝐸𝑧1 ∑

𝑠

𝜔2
𝑝𝑠

𝜔2 − 𝛾𝑠𝑘2𝑧𝑘𝐵𝑇𝑠/𝑚𝑠
(7.64)

Ion acoustic wave physics is embedded in Equation 7.64 as well as shear Alfvén physics. The ion
acoustic mode can be retrieved by assuming that the electric field is electrostatic in which case
B⟂1 vanishes (???Why???). For the special case where the electric field is just in the 𝑧 direction,
and assuming that 𝑘𝐵𝑇𝑖/𝑚𝑖 ≪ 𝜔2/𝑘2

𝑧 ≪ 𝑘𝐵𝑇𝑒/𝑚𝑒 the right hand side of Equation 7.64
becomes

(𝜔2
𝑝𝑖

𝜔2 − 1
𝑘2𝑧𝜆2

𝐷𝑒
)𝐸𝑧1 = 0

which gives the ion acoustic wave 𝜔2 = 𝑘2
𝑧𝑘𝐵𝑇𝑒/𝑚𝑖 (see (F. F. Chen 2016) and (Bellan 2008)

Sec.4.2.1). This shows that the acoustic wave is associated with having finite 𝐸𝑧1 and also
requires 𝑇𝑒 ≫ 𝑇𝑖 in order to exist.

Returning to shear waves, we now assume that the electric field is not electrostatic so B⟂1
does not vanish and Equation 7.64 has to be considered in its entirety. For shear waves the
character of the parallel current changes depending on whether the wave parallel phase velocity
is faster or slower than the electron thermal velocity:

1. The 𝜔2/𝑘2
𝑧 ≫ 𝑘𝐵𝑇𝑒/𝑚𝑒 case is called the inertial limit while

2. The 𝜔2/𝑘2
𝑧 ≪ 𝑘𝐵𝑇𝑒/𝑚𝑒 case is called the kinetic limit.

The perpendicular component of Faraday’s law is (Equation 7.59)

∇⟂𝐸𝑧1 × ̂𝑧 − 𝑖𝑘𝑧E⟂1 × ̂𝑧 = 𝑖𝜔B⟂1 (7.65)

Substitution of E⟂1 as determined from Equation 7.61 into Equation 7.65 gives

− 𝑖𝜔
𝑣2𝐴

∇⟂𝐸𝑧1 × ̂𝑧 − 𝑖𝑘𝑧 (
𝜇0∇𝑝⟂1

𝐵 × ̂𝑧 − 𝑖𝑘𝑧B⟂1 × ̂𝑧) × ̂𝑧 = 𝜔2

𝑣2𝐴
B⟂1
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which may be solved for B⟂1 to give

B⟂1 = 1
𝜔2 − 𝑘2𝑧𝑣2𝐴

(−𝑖𝜔∇⟂𝐸𝑧1 × ̂𝑧 + 𝑖𝑘𝑧𝑣2𝐴
𝜇0∇⟂𝑝⟂1

𝐵 )

and
B⟂1 × ̂𝑧 = 1

𝜔2 − 𝑘2𝑧𝑣2𝐴
(𝑖𝜔∇⟂𝐸𝑧1 + 𝑖𝑘𝑧𝑣2𝐴

𝜇0∇⟂𝑝⟂1
𝐵 × ̂𝑧)

Substitution of B⟂1 × ̂𝑧 into Equation 7.64 gives

∇⟂ ⋅ ( 1
𝜔2 − 𝑘2𝑧𝑣2𝐴

(∇⟂𝐸𝑧1 + 𝑘𝑧𝑣2𝐴
𝜇0∇⟂𝑝⟂1

𝜔𝐵 × ̂𝑧)) = 𝐸𝑧1 ∑
𝑠

𝜔2
𝑝𝑠/𝑐2

𝜔2 − 𝛾𝑠𝑘2𝑧𝑘𝐵𝑇𝑠/𝑚𝑠

However, because ∇⟂ ⋅ (∇⟂𝑝⟂1 × ̂𝑧) = ∇ ⋅ (∇𝑝⟂1 × ̂𝑧) = 0 (divergence of a curl) the term
involving pressure vanishes, leaving an equation involving 𝐸𝑧1 only, namely

∇⟂ ⋅ ( 1
𝜔2 − 𝑘2𝑧𝑣2𝐴

∇⟂𝐸𝑧1)−𝐸𝑧1 ∑
𝑠

𝜔2
𝑝𝑠/𝑐2

𝜔2 − 𝛾𝑠𝑘2𝑧𝑘𝐵𝑇𝑠/𝑚𝑠
= 0 (7.66)

This is the fundamental equation for shear waves. On replacing ∇⟂ → 𝑖k⟂, Equation 7.66
becomes

𝑘2
⟂

𝜔2 − 𝑘2𝑧𝑣2𝐴
+ 𝜔2

𝑝𝑒
𝑐2

1
𝜔2 − 𝛾𝑒𝑘2𝑧𝑘𝐵𝑇𝑒/𝑚𝑒

+ 𝜔2
𝑝𝑖
𝑐2

1
𝜔2 − 𝛾𝑖𝑘2𝑧𝑘𝐵𝑇𝑖/𝑚𝑖

= 0 (7.67)

In the situation where 𝜔2/𝑘2
𝑧 ≫ 𝑘𝐵𝑇𝑒/𝑚𝑒, the second term dominates the third term since

𝜔2
𝑝𝑒 ≫ 𝜔2

𝑝𝑖 and so Equation 7.67 can be recast as

𝜔2 = 𝑘2
𝑧𝑣2𝐴

1 + 𝑘2
⟂𝑐2/𝜔2𝑝𝑒

(7.68)

which is called the inertial Alfvén wave (IAW). If 𝑘2
⟂𝑐2/𝜔2

𝑝𝑒 is not too large, then 𝜔/𝑘𝑧 is of the
order of the Alfvén velocity and the condition 𝜔2 ≫ 𝑘2

𝑧𝑘𝐵𝑇𝑒/𝑚𝑒 corresponds to 𝑣2𝐴 ≫ 𝑘𝐵𝑇𝑒/𝑚𝑒
or

𝛽𝑒 = 𝑛𝑘𝐵𝑇𝑒
𝐵2/2𝜇0

≪ 𝑚𝑒
𝑚𝑖

Thus, inertial Alfvén wave shear modes exist only in the ultra-low 𝛽 regime where 𝛽𝑒 ≪
𝑚𝑒/𝑚𝑖.

In the situation where 𝑘𝐵𝑇𝑖/𝑚𝑖 ≪ 𝜔2/𝑘2
𝑧 ≪ 𝑘𝐵𝑇𝑒/𝑚𝑒, Equation 7.66 can be recast as

𝑘2
⟂

𝜔2 − 𝑘2𝑧𝑣2𝐴
− 𝜔2

𝑝𝑒
𝑐2

1
𝑘2𝑧𝑘𝐵𝑇𝑒/𝑚𝑒

+ 𝜔2
𝑝𝑖
𝑐2

1
𝜔2 = 0 (7.69)
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Because 𝜔2 appears in the respective denominators of two distinct terms, Equation 7.69 is
fourth order in 𝜔2 and so describes in two distinct modes. Let us suppose that the mode in
question is much faster than the acoustic velocity, i.e. 𝜔2/𝑘2

𝑧 ≫ 𝑘𝐵𝑇𝑒/𝑚𝑖. In this case the ion
term can be dropped and the remaining terms can be re-arranged to give

𝜔2 = 𝑘2
𝑧𝑣2𝐴 (1 + 𝑘2

⟂
𝑣2𝐴

𝑘𝐵𝑇𝑒
𝑚𝑒

𝑐2
𝜔2𝑝𝑒

)

This is called the kinetic Alfvén wave (KAW). Using

𝑟2𝑓𝐿 = 1
𝑣2𝐴

𝑘𝐵𝑇𝑒
𝑚𝑒

𝑐2
𝜔2𝑝𝑒

= 1
𝜔2
𝑐𝑖

𝑘𝐵𝑇𝑒
𝑚𝑖

(7.70)

as a fictitious ion Larmor radius calculated using the electron temperature instead of the ion
temperature, the KAW dispersion relation can be expressed more succinctly as

𝜔2 = 𝑘2
𝑧𝑣2𝐴 (1 + 𝑘2

⟂𝑟2𝑓𝐿) (7.71)

If 𝑘2
⟂𝑟2𝐿𝑠 is not too large, then 𝜔/𝑘𝑧 is again of the order of 𝑣𝐴 and so the condition 𝜔2 ≪

𝑘2
𝑧𝑘𝐵𝑇𝑒/𝑚𝑒 corresponds to having 𝛽𝑒 ≫ 𝑚𝑒/𝑚𝑖. The condition 𝜔2/𝑘2

𝑧 ≫ 𝑘𝐵𝑇𝑒/𝑚𝑖 which
was also assumed corresponds to assuming that 𝛽𝑒 ≪ 1. Thus, the KAW dispersion relation
Equation 7.71 is valid in the regime 𝑚𝑒/𝑚𝑖 ≪ 𝛽𝑒 ≪ 1.
Let us now consider the situation where 𝜔2/𝑘2

𝑧 ≪ 𝑘𝐵𝑇𝑖/𝑚𝑖, 𝑘𝐵𝑇𝑒/𝑚𝑒. In this case Equa-
tion 7.69 again reduces to

𝜔2 = 𝑘2
𝑧𝑣2𝐴 (1 + 𝑘2

⟂𝑟2𝑓𝐿) (7.72)

but this time
𝑟2𝑓𝐿 = 1

𝜔2
𝑐𝑖

𝑘𝐵(𝑇𝑒 + 𝑇𝑖)
𝑚𝑖

(7.73)

This situation would describe shear modes in a high 𝛽 plasma (ion thermal velocity faster than
Alfvén velocity).

To summarize: the shear mode has 𝐵𝑧1 = 0,𝐸𝑧1 ≠ 0, 𝑗𝑧1 ≠ 0,𝐸⟂1 = −∇𝜙1 and exists in
the form of the inertial Alfvén wave for 𝛽𝑒 ≪ 𝑚𝑒/𝑚𝑖 and in the form of the kinetic Alfvén
wave for 𝛽𝑒 ≫ 𝑚𝑒/𝑚𝑖. The shear mode involves incompressible perpendicular motion, i.e.,
∇ ⋅ u𝑠⟂1 = 𝑖k⟂ ⋅ u𝑠⟂1 = 0, which means that k⟂ is orthogonal to u𝑠⟂1. For example, in
Cartesian geometry, this means that if u𝑠⟂1 is in the 𝑥 direction, then k⟂ must be in the 𝑦
direction while in cylindrical geometry, this means that if u𝑠⟂1 is in the 𝜃 direction, then k⟂
must be in the 𝑟 direction. The inertial Alfvén wave is known as a cold plasma wave because its
dispersion relation does not depend on temperature (such a mode would exist even in the limit
of a cold plasma). The kinetic Alfvén wave depends on the plasma having finite temperature
and is therefore called a warm plasma wave. The shear mode can be coupled to ion acoustic
modes since both shear and ion acoustic modes involve finite 𝐸∥1.
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7.9.2 Two-fluid compressional modes

The compressional mode involves assuming that 𝐵𝑧1 is finite and 𝐸𝑧1 = 0. Having 𝐸𝑧1 = 0
means that there is no parallel motion and, in particular, implies that 𝑗𝑧1 = 0. Thus, for the
compressional mode Faraday’s law has the form

∇⟂ ⋅ (E⟂1 × ̂𝑧) = 𝑖𝜔𝐵𝑧1
−𝑖𝑘𝑧E⟂1 × ̂𝑧 = 𝑖𝜔B⟂1

(7.74)

Using Equation 7.74 to substitute for B⟂1 in Equation 7.61 and then solving for E⟂1 gives

E⟂1 = 𝑖𝜔𝑣2𝐴
𝜔2 − 𝑘2𝑧𝑣2𝐴

∇⟂ (𝐵𝑧1 +
𝜇0𝑝⟂1
𝐵 ) × ̂𝑧

Since
E⟂1 × ̂𝑧 = − 𝑖𝜔𝑣2𝐴

𝜔2 − 𝑘2𝑧𝑣2𝐴
∇⟂ (𝐵𝑧1 +

𝜇0𝑝⟂1
𝐵 )

Equation 7.74 becomes

∇⟂ ⋅ ( 𝑣2𝐴
𝜔2 − 𝑘2𝑧𝑣2𝐴

∇⟂ (𝐵𝑧1 +
𝜇0𝑝⟂1
𝐵 ))+𝐵𝑧1 = 0 (7.75)

If we assume that the perpendicular motion is adiabatic, then

𝑝⟂1
𝑝 = 𝛾𝑛1

𝑛 = 𝛾𝐵𝑧1
𝐵

Substitute for 𝑝⟂1 in Equation 7.75 gives (???)

∇⟂ ⋅ ( 𝑣2𝐴 + 𝑐2𝑠
𝜔2 − 𝑘2𝑧𝑣2𝐴

∇⟂𝐵𝑧1)+𝐵𝑧1 = 0 (7.76)

where
𝑐2𝑠 = 𝛾𝑘𝐵

𝑇𝑒 + 𝑇𝑖
𝑚𝑖

On replacing ∇⟂ → 𝑖k⟂, Equation 7.76 becomes the dispersion relation

−𝑘2
⟂(𝑣2𝐴 + 𝑐2𝑠)

𝜔2 − 𝑘2𝑧𝑣2𝐴
+ 1 = 0

or
𝜔2 = 𝑘2𝑣2𝐴 + 𝑘2

⟂𝑐2𝑠
where 𝑘2 = 𝑘2

𝑧 + 𝑘+ ⟂2. Since ∇ ⋅ u𝑠⟂1 = 𝑖k⟂ ⋅ u𝑠⟂1 ≠ 0, the perpendicular wave vector k⟂ is
at least partially co-aligned with the perpendicular velocity.
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7.9.3 Differences betwen the two-fluid and MHD descriptions

The two-fluid description shows that the Alfvén mode (finite 𝐸𝑧) appears as either an inertial
or a kinetic Alfvén wave depending on the plasma 𝛽; the MHD description assumes that
𝐸𝑧 = 0 for this mode and does not distinguish between inertial and kinetic modes. The two-
fluid description also shows that finite 𝐸𝑧 will give ion acoustic modes in the parallel direction
which are decoupled. The MHD description predicts a so-called sound wave which differs
from the ion acoustic wave because the MHD sound wave does not have the requirement that
𝑇𝑒 ≫ 𝑇𝑖; the MHD sound wave is an artifact for parallel propagation in a plasma with low
collisionality (if the collisions are sufficiently large, then the plasma would behave like a neutral
gas). Then MHD description predicts a coupling between oblique sound waves via a square
root relation (Equation 7.42) which does not exist in the two-fluid model.

7.9.4 KAW properties

The solution of Equation 7.34 exhibits singularities as 𝑡 → ∞ naturally suggests that the mi-
croscopic length-scale physics neglected in the ideal MHD fluid description should be included
in the long-time-scale dynamics of SAWs. For low-frequency SAWs, one can readily recog-
nize the relevant perpendicular (to B0) microscopic scales are either the ion Larmor radius,
𝑟𝑖𝐿 = 𝑣𝑡𝑖/𝜔𝑐𝑖 with 𝑣𝑡𝑖 and 𝜔𝑐𝑖 being, respectively, the ion thermal speed and ion cyclotron fre-
quency, and/or 𝑟𝑒𝐿 = 𝑣𝑡𝑒/𝜔𝑐𝑒 with 𝑣𝑡𝑒 being the electron thermal speed. Including the effects
of finite 𝑟𝑖𝐿, 𝑟𝑒𝐿 and/or 𝑇𝑒 in the SAW dynamics then led to the discovery of the so-called
kinetic Alfvén wave (KAW) [Hasegawa and Chen].

In KAWs, parallel electric field 𝐸∥ can be developed and facilitate particle heating, acceleration,
and transport, especially for electrons. However, the inverse mechanism is also possible that
electrons moving along the magnetic field in the opposite direction, become retarded by this
field component and feed their energy into the KAW. For example, Hasegawa [1979] showed
that an electron beam moving along an inhomogeneous magnetic field can excite KAWs.

Excitation of KAWs requires 𝛽 < 1. It has been found in the plasma sheet, at the plasma
sheet boundary layer (PSBL), and in the inner magnetosphere.

KAW differ from SAW because the short wavelength requires a significant 𝐸∥ to maintain
charge neutrality due to ion density perturbations caused by the ion polarization drift. When
𝑣𝑡𝑒 > 𝑣𝐴, the parallel electric field counteracts electron pressure that would push the electrons
away from the ion density perturbations. When 𝑣𝑡𝑒 < 𝑣𝐴, the electric field must overcome
the electron inertia that prevents the electrons from responding rapidly to the ion density
perturbations. 𝐸∥ associated with small-scale KAWs may efficiently accelerate particles on
the magnetic field lines. (Chaston+ 2009) presented observations in the magnetotail from the
Cluster spacecraft showing that KAWs radiate outward from the X-line with outward energy
fluxes equivalent to that contained in the outstreaming ions. Wave-particle energy exchange
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between KAWs and plasmas near the dayside magnetopause has been confirmed by MMS
observations (Gershman+ 2017).

We consider a KAW with a wave vector k in the XZ-plane, same as in the SAW case. In many
aspects, KAW is similar to SAW: E shall oscillate in the X-direction; B shall oscillate in the
Y-direction. The electric current of the wave 𝑖k×B1/𝜇0 is still in the XZ-plane. The timescale
of the variations of the wave field of KAW is much longer than the ion gyroperiod. However,
unlike SAW, KAW has

• a perpendicular scale 𝑘−1
⟂ that is comparable to the particle kinetic scale 𝑟𝑖𝐿.

• a very oblique wave vector 𝑘⟂ ≫ 𝑘∥ so that the wave is not strongly affected by the
Landau damping.

• 𝑘−1
⟂ ≪ 𝑘−1

∥ . The finite-Larmor-radius effect starts to become important as the perpendic-
ular wavelength is comparable to the ion gyromotion: Ions can not follow the E×B drift
in the electric fields of KAW, because they encounter significantly different electric field
in the different phases of the gyromotion. Electrons are still frozen-in in the presence
of the wave field. The difference in the ion and electron motion in the perpendicular
direction introduces charge separation and coupling to the electrostatic mode. Because
the wave electric field 𝐸𝑥 is mainly parallel to the k, ∇ × E = 𝑖k × E is small and
∇ ⋅ E = 𝑖k ⋅ E is relatively large for KAW. Accordingly, the perpendicular wave electric
field 𝐸𝑥 is mostly electrostatic in KAW.

• Because of charge separation in KAW, electrons need to move along the magnetic field
to preserve the charge neutrality. Associated with the parallel motion of electron, a
small wave electric field 𝐸∥ is established, the existence of which is a distinct feature of
KAW. The parallel motion of electrons creates a field-aligned current 𝑗∥ of KAW. From
Ampère’s law 𝑖k × B1 = 𝜇0j, the field-aligned current j𝑧 produces a wave magnetic field
B1𝑦. As a result, KAW is in fact an EM wave. The ratio of the wave electric field to
the wave magnetic field is 𝑉𝐴√1+ 𝑘2𝑥𝑟2𝑖𝐿 (Stasiewicz et al. 2000). The kinetic correction
𝑘2
𝑥𝑟2𝑖𝐿 introduces a deviation of the ratio 𝐸𝑥/𝐵𝑦 from one 𝑉𝐴 as in the SAWs.

While SAW satisfy 𝜔 = 𝑘∥𝑣𝐴, the dispersion relation of KAW can be written as (Johnson &
Cheng, 1997)

𝜔2 = 𝑘2
∥𝑣2𝐴[

1
1 − 𝐼0(𝑘2

⟂𝑟2𝑖𝐿)𝑒−𝑘2
⟂𝑟2

𝑖𝐿
+ 𝑇𝑒

𝑇𝑖
]𝑘2

⟂𝑟2𝑖𝐿 (7.77)

where 𝐼0 is the modified Bessel function. Using a Padé approximation 𝐼0(𝑥)𝑒−𝑥 ≈ 1/(1 + 𝑥)
when 𝑥 = 𝑘2

⟂𝑟2𝑖𝐿 ∼ 𝒪(1), the relation can be simplified to

𝜔2 = 𝑘2
∥𝑣2𝐴[1 + (1 + 𝑇𝑒

𝑇𝑖
𝑘2
⟂𝑟2𝑖𝐿)] = 𝑘2

∥𝑣2𝐴[1 + 𝑘2
⟂(𝑟2𝑖𝐿 + 𝑟2𝑓𝐿)] (7.78)

where 𝑟𝑓𝐿 = √𝑘𝐵𝑇𝑒/𝑚𝑖/𝜔𝑐𝑖. So we recover the two-fluid dispersion relation of KAW Equa-
tion 7.71. We can see from Equation 7.78 that the phase speed for KAW is always larger than
𝑣𝐴.

239



While SAWs do not have ion density perturbations, KAWs do. In compressibility is only
required in the perpendicular direction, but not in the parallel direction w.r.t. the magnetic
field.

The polarizations of KAW can be expressed as

∣ 𝛿E⟂
𝛿B⟂

∣ = 𝑣𝐴(1 + 𝑘2
⟂𝑟2𝑖𝐿)[1 + 𝑘2

⟂(𝑟2𝑖𝐿 + 𝑟2𝑓𝐿)]−1/2

where 𝛿E⟂ ⟂ 𝛿B⟂. KAWs are right-hand polarized. The parallel electric field is

∣
𝛿𝐸∥
𝛿𝐸⟂

∣ = 𝑘∥𝑘⟂
𝑟2𝑓𝐿

1 + 𝑘2
⟂𝑟2𝑖𝐿

It has been shown that KAWs can be generated via magnetic reconnection, mode conversion,
and phase mixing.

(Gurram, Egedal, and Daughton 2021) used a 2D VPIC simulation to show a transition from
KAWs to SAWs from the immediate vicinity of the reconnection region to the exhaust. They
checked two important quantities we have seen above:

• the transition in wave speeds from super Alfvénic near the X-point to order of the Alfvén
speed deeper into the exhaust (∼ 60𝑑𝑖 from the X-point);

• the transition of 𝑘⟂𝑑𝑖 from larger than unity to smaller than unity.

It would be very intuitive to compare animations between MHD Alfvén waves and kinetic
Alfvén waves. In a typical MHD Alfvén wave, the particles (yellow) move freely along the
magnetic field lines (blue). In a kinetic Alfvén wave, some particles become trapped in the
weak spots of the wave’s magnetic field and ride along with the wave as it moves through
space.

Almost half a century after the discovery of KAW, (L. Chen, Zonca, and Lin 2021) demon-
strated that the proper treatment of this wave requires gyrokinetics (Chapter 11). However,
under some circumstances (𝛽 ≫ 1?) the two-fluid theory can recover most if not all of the
KAW physics. I need to go over the derivations!

I am not the only person who is confused by so many different names assigned to Alfvén waves.
The Alfvén Wave Zoo is a nice review of all the existence names related to Alfvén waves. Many
wave modes degenerate into the classical Alfvén mode in the small k limitation, but they may
show different polarizations.
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7.10 Kinetic Slow Modes

The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a
nonpropagating (NP) mode, both of which exhibit an anticorrelation between 𝛿𝑛 and 𝛿𝐵. A
comparison of the damping rates of the IA mode and the NP mode suggests that the IA mode
is the dominating kinetic slow mode at low 𝛽∥, while the NP mode is the dominating kinetic
slow mode at high 𝛽∥ (Verscharen, Chen, and Wicks 2017). Temperature anisotropies alter
the dispersion relations and the damping behavior of slow modes in kinetic plasmas, and can
drive the NP mode (i.e., the mirror mode) to be unstable.

7.11 Particle Motions

In Fourier transform space, integrating the velocity equations to obtain the coordinates is
done by simply dividing by −𝑖𝜔. For a simple case where 𝐸𝑦 = 𝐸𝑧 = 0 so that E has only an
x-component, we find from Equation 7.7

𝑥𝑠 = − 𝑞𝑠𝐸𝑥
𝑚𝑠(𝜔2 − 𝜔2

𝑗 )

𝑦𝑠 = ±𝜔𝑐𝑠
𝑖𝜔 𝑥𝑠

so that in general, the trajectory is elliptical. For 𝜔 ≪ 𝜔𝑐𝑠, we find 𝑥𝑠 ≪ 𝑦𝑠, so the motion is
principally across both the E and B0 directions. However, for 𝜔 ≫ 𝜔𝑐𝑗, 𝑥𝑗 ≫ 𝑦𝑗 the motion
is principally parallel to the electric field. In this latter case, we would call the particles
unmagnetized, since the magnetic influence is small. Since it is possible for the wave frequency
to be well above the ion cyclotron frequency at the same time it is well below the electron
cyclotron frequency, it is possible for ions to be effectively unmagnetized while electrons are
magnetized. From the discussion here, it is also clear that in the MHD low frequency regime
the E × B drift is important, whereas for high frequency regimes (i.e. unmagnetized), the
electric field influence is more important.

When 𝜔 ≃ 𝜔𝑐𝑠, then the linear solutions exhibit resonance effects with large amplitudes, and
at resonance, the radius increases uniformly in time and no steady-state solution exists. In this
vicinity, we expect the cold plasma approximation to fail and either thermal, inhomogeneous,
or nonlinear effects to dominate the dynamics.

7.12 Cold Nonuniform Plasma

Waves and dispersion relations in a uniform plasma is generally nice and easy. However, more
interesting and realistic waves shall be found in nonuniform plasmas.
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7.12.1 Simple EM Wave

Let us start off by examining a very simple case. Consider a plane electromagnetic wave, of
frequency 𝜔, propagating along the 𝑧-axis in an unmagnetized plasma whose refractive index,
𝑛, is a function of 𝑧. We assume that the wave normal is initially aligned along the 𝑧-axis, and,
furthermore, that the wave starts off polarized in the 𝑦-direction. It is easily demonstrated that
the wave normal subsequently remains aligned along the 𝑧-axis, and also that the polarization
state of the wave does not change. Thus, the wave is fully described by

𝐸𝑦(𝑧, 𝑡) ≡ 𝐸𝑦(𝑧) exp(−𝑖𝜔𝑡)

and
𝐵𝑥(𝑧, 𝑡) ≡ 𝐵𝑥(𝑧) exp(−𝑖𝜔𝑡)

It can easily be shown (???) that 𝐸𝑦(𝑧) and 𝐵𝑥(𝑧) satisfy the differential equations

d2𝐸𝑦
d𝑧2 + 𝑘 2

0 𝑛2 𝐸𝑦 = 0 (7.79)

and
d 𝑐𝐵𝑥

d𝑧 = −𝑖 𝑘0 𝑛2 𝐸𝑦 (7.80)

respectively. Here, 𝑘0 = 𝜔/𝑐 is the wave-number in free space. Of course, the actual wave-
number is 𝑘 = 𝑘0 𝑛.

The solution to Equation 7.79 for the case of a homogeneous plasma, for which 𝑛 is constant,
is straightforward:

𝐸𝑦 = 𝐴𝑒 𝑖 𝜙(𝑧) (7.81)

where 𝐴 is a constant, and
𝜙 = ±𝑘0 𝑛 𝑧 (7.82)

The solution Equation 7.81 represents a wave of constant amplitude, 𝐴, and phase, 𝜙(𝑧).
According to Equation 7.82, there are, in fact, two independent waves which can propagate
through the plasma. The upper sign corresponds to a wave which propagates in the +𝑧-
direction, whereas the lower sign corresponds to a wave which propagates in the −𝑧-direction.
Both waves propagate with the constant phase velocity 𝑐/𝑛.

In general, if 𝑛 = 𝑛(𝑧) then the solution of Equation 7.79 does not remotely resemble the
wave-like solution Equation 7.81. However, in the limit in which 𝑛(𝑧) is a “slowly varying”
function of 𝑧 (exactly how slowly varying is something which will be established later on), we
expect to recover wave-like solutions. Let us suppose that 𝑛(𝑧) is indeed a “slowly varying”
function, and let us try substituting the wave solution Equation 7.81 into Equation 7.79. We
obtain

(d𝜙
d𝑧 )

2
= 𝑘 2

0 𝑛2 + 𝑖 d2𝜙
d𝑧2 (7.83)
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This is a non-linear differential equation which, in general, is very difficult to solve. However,
we note that if 𝑛 is a constant then d2𝜙/d𝑧2 = 0. It is, therefore, reasonable to suppose that
if 𝑛(𝑧) is a “slowly varying” function then the last term on the right-hand side of the above
equation can be regarded as being small. Thus, to a first approximation Equation 7.83 yields

d𝜙
d𝑧 ≃ ±𝑘0 𝑛

and
d2𝜙
d𝑧2 ≃ ±𝑘0

𝑑𝑛
d𝑧 (7.84)

It is clear from a comparison of Equation 7.83 and Equation 7.84 that 𝑛(𝑧) can be regarded
as a “slowly varying” function of 𝑧 as long as its variation length-scale is far longer than the
wavelength of the wave. In other words, provided that (𝑑𝑛/d𝑧)/(𝑘0 𝑛2) ≪ 1.
The second approximation to the solution is obtained by substituting Equation 7.84 into the
right-hand side of Equation 7.83:

d𝜙
d𝑧 ≃ ±(𝑘 2

0 𝑛2 ± 𝑖 𝑘0
𝑑𝑛
d𝑧 )

1/2

This gives
d𝜙
d𝑧 ≃ ±𝑘0 𝑛(1 ± 𝑖

𝑘0𝑛
)
1/2

≃ ±𝑘0 𝑛 + 𝑖
2𝑛

𝑑𝑛
d𝑧

where a binomial expansion has been used. The above expression can be integrated to give

𝜙 ∼ ±𝑘0∫
𝑧
𝑛d𝑧 + 𝑖 log(𝑛1/2) (7.85)

Substitution of Equation 7.85 into Equation 7.81 yields the final result

𝐸𝑦 ≃ 𝐴𝑛−1/2 exp(±𝑖 𝑘0∫
𝑧
𝑛d𝑧) (7.86)

It follows from Equation 7.80 that

𝑐𝐵𝑥 ≃ ∓𝐴𝑛1/2 exp( ± 𝑖 𝑘0 ∫
𝑧
𝑛d𝑧) − 𝑖𝐴

2𝑘0𝑛3/2
𝑑𝑛
d𝑧 exp( ± 𝑖 𝑘0 ∫

𝑧
𝑛d𝑧) (7.87)

Note that the second term is small compared to the first, and can usually be neglected.

Let us test to what extent Equation 7.86 is a good solution of Equation 7.79 by substituting
this expression into the left-hand side of the equation. The result is

𝐴
𝑛1/2 [

3
4(

1
𝑛
𝑑𝑛
d𝑧 )

2
− 1

2𝑛
d2𝑛
d𝑧2 ] exp( ± 𝑖 𝑘0 ∫

𝑧
𝑛d𝑧)
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This must be small compared with either term on the left-hand side of Equation 7.79. Hence,
the condition for Equation 7.86 to be a good solution of Equation 7.79 becomes

1
𝑘2
0
∣34(

1
𝑛2

𝑑𝑛
d𝑧 )

2
− 1

2𝑛3
d2𝑛
d𝑧2 ∣ ≪ 1 (7.88)

The solutions Equation 7.86 and Equation 7.87 (without the second term) are most commonly
referred to as the WKB solutions, in honour of G. Wentzel, H.A. Kramers, and L. Brillouin, who
are credited with independently discovering these solutions (in a quantum mechanical context)
in 1926. Actually, H. Jeffries wrote a paper on the WKB solutions (in a wave propagation
context) in 1923. Hence, some people call them the WKBJ solutions (or even the JWKB
solutions). To be strictly accurate, the WKB solutions were first discussed by Liouville and
Green in 1837, and again by Rayleigh in 1912. The advance in science discovery is always a
collective achievement.

Recall, that when a propagating wave is normally incident on an interface, where the refractive
index suddenly changes (for instance, when a light wave propagating through air is normally
incident on a glass slab), there is generally significant reflection of the wave. However, according
to the WKB solutions, when a propagating wave is normally incident on a medium in which
the refractive index changes slowly along the direction of propagation of the wave then the
wave is not reflected at all. This is true even if the refractive index varies very substantially
along the path of propagation of the wave, as long as it varies slowly. The WKB solutions
imply that as the wave propagates through the medium its wave-length gradually changes. In
fact, the wave-length at position 𝑧 is approximately 𝜆(𝑧) = 2𝜋/𝑘0 𝑛(𝑧). The WKB solutions
also imply that the amplitude of the wave gradually changes as it propagates. The amplitude
of the electric field component is inversely proportional to 𝑛1/2, whereas the amplitude of the
magnetic field component is directly proportional to 𝑛1/2. Note, however, that the energy flux
in the 𝑧-direction, given by the the Poynting vector −(𝐸𝑦𝐵∗

𝑥+𝐸∗
𝑦𝐵𝑥)/(4𝜇0), remains constant

(assuming that 𝑛 is predominately real).

Of course, the WKB solutions are only approximations. In reality, a wave propagating into a
medium in which the refractive index is a slowly varying function of position is subject to a
small amount of reflection. However, it is easily demonstrated that the ratio of the reflected
amplitude to the incident amplitude is of order (𝑑𝑛/d𝑧)/(𝑘0 𝑛2). Thus, as long as the refractive
index varies on a much longer length-scale than the wavelength of the radiation, the reflected
wave is negligibly small. This conclusion remains valid as long as the inequality Equation 7.88
is satisfied. This inequality obviously breaks down in the vicinity of a point where 𝑛2 = 0. We
would, therefore, expect strong reflection of the incident wave from such a point. Furthermore,
the WKB solutions also break down at a point where 𝑛2 → ∞, since the amplitude of 𝐵𝑥
becomes infinite.
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7.12.2 Electron Cyclotron Resonance Heating

Let us look at the problem of electron cyclotron resonance heating. The resonance condition
is 𝑅 = ∞; the governing equation has the form

d2𝐸
d𝑧2 + 𝜔2

𝑐2 [1 − 𝜔𝑝𝑒(𝑧)
2

𝜔(𝜔 − 𝜔𝑐𝑒(𝑧))
]𝐸 = 0

Figure 7.2: Plasma frequency and wave number as functions of 𝑧 in a non-uniform plasma for
the electron cyclotron resonance mode.

We use 𝑧 here to remind ourselves of the fact that the wave property changes along the field
line. Imagine a wave ∼ 𝑒𝑖(𝑘𝑧−𝜔𝑡) incident into a plasma with fixed density 𝑛0 and varying
magnetic field 𝐵0(𝑧) as shown in Figure 7.2(a). At 𝑧 = 𝑧𝑅, 𝜔𝑐𝑒(𝑧) = 𝜔𝑐𝑒(𝑧𝑅) = 𝜔. Then
we can draw 𝑘2(𝑧) as a function of 𝑧 as in Figure 7.2(b). There is a pole at 𝑧 = 𝑧𝑅, which
indicates resonance since 𝑘2 → ∞. There is also a zero on the right of 𝑧𝑅.

Close to 𝑧 = 𝑧𝑅, we have 𝑘2(𝑧) ∼ const.
𝑧−𝑧𝑅

. If we write

Ω𝑒(𝑧) = −𝐴′(𝑧 − 𝑧𝑅) + 𝜔, 𝜁 = 𝑧 − 𝑧𝑅

then (ignore the constants)

d2𝐸
d𝑧2 − const.

𝑧 − 𝑧𝑅
𝐸 = 0 ⇒ d2𝐸

𝑑𝜁2 − 1
𝜁𝐸 = 0

Now let’s stare at Figure 7.2(b) for a few seconds. If there is a wave from left to right, there
will be a resonance at 𝑧 = 𝑧𝑅; but if there is a wave from right to left, then the wave will be
attenuated before it reaches 𝑧 = 𝑧𝑅 because there is a zero ahead. This means that waves
from different origin will have different behaviors!
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7.12.3 O-mode

Next consider EM waves in non-magnetized plasma of ordinary O-mode:

𝑘2(𝑥) = 𝜔2

𝑐2 𝑛
2 = 𝜔2

𝑐2 [1 − 𝜔𝑝𝑒(𝑥)
2

𝜔2 ] if 𝑛 is non-uniform

Figure 7.3: Plasma frequency and wave number as functions of 𝑥 in a non-uniform plasma for
O mode.

Note that there is no energy dissipation, because it is collisionless. Imagine a wave ∼ 𝑒𝑖(𝑘𝑥−𝜔𝑡)

incident into a plasma with density 𝑛0(𝑥) shown in Figure 7.3. We encounter a cutoff at
𝑥 = 𝑥𝑡, 𝜔𝑝𝑒(𝑥𝑡) = 𝜔. Therefore we can draw 𝑘2(𝑥) as a function of x as in Figure 7.3. Then
the properties of the wave can be categorized into two regimes:

𝑘2 < 0 ⇒ 𝐸 ∼ 𝑒±𝑖𝑘𝑥 propagating
𝑘2 > 0 ⇒ 𝐸 ∼ 𝑒±|𝑘|𝑥 attenuating

A natural question comes up from this picture: how does the propagating wave transform into
attentuating wave? Stokes solved this during his honey moon, which is now known as the
Stokes phenomenon (Section 3.11.3).

7.13 Warm Uniform Plasma

The analysis of cold plasma waves, although very complicated already, leaves out all of the
physics that relates to finite temperature effects. These effects may be included in varying
degrees of approximation, and it is intructive to include at this stage only the simplest thermal
correction terms through the inclusion of a finite pressure term. For the sake of simplicity, we
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only consider the 1D case. The approach is very similar to cold plasma situation, except that
we have pressure included in the equation, and we also need to specify the relation of pressure
and temperature through the equation of state.

7.13.1 Two-fluid approach

Equilibrium:

𝑚𝑖 = ∞, 𝑇𝑖 = 0, 𝑣𝑖,0 = 0, 𝑛𝑒0 = 𝑛𝑖0 = 𝑛0, 𝐸0 = 0, 𝐵0 = 0
𝑃0 = 𝑐𝑜𝑛𝑠𝑡., 𝑣𝑒0 = 0

The equation of motion for electron is

𝜕v
𝜕𝑡 + v ⋅ ∇v = − 𝑒

𝑚𝑒
E − ∇𝑃

𝜌

Assume
𝑃 = 𝑃0(

𝑛
𝑛0

)
𝛾

adiabatic

𝑃 = 𝑛𝑘𝐵𝑇𝑒 isothermal(𝛾 = 1)

Define 𝑃1 = (𝜕𝑃/𝜕𝜌)𝜌1 ≡ 𝑣𝑡ℎ2𝜌1 = 𝑣𝑡ℎ2𝑛1𝑚 = 𝑘𝐵𝑇𝑛1. Decompose the primitive variables
into equilibrium and perturbation components:

𝑛 = 𝑛0 + 𝑛1 = 𝑛0 + �̃�1𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥

𝑣 =��𝑣0 + 𝑣1 = ̃𝑣1𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥

𝑃 = 𝑃0 + 𝑃1 = 𝑃0 + ̃𝑃1𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥

Substituting into the equation of motion and keeping only first order terms, we get

𝜕𝑣1
𝜕𝑡 = − 𝑒

𝑚𝑒
(𝐸1) −

∇(𝑃1)
𝑛0𝑚𝑒

−𝑖𝜔𝑣1 = − 𝑒
𝑚𝑒

𝐸1 −
𝑖𝑘𝑣𝑡ℎ2𝑛1

𝑛0

The continuity equation gives
𝜕𝑛
𝜕𝑡 + 𝜕

𝜕𝑥(𝑛𝑣) = 0

⇒ 𝑣1 = 𝜔𝑛1
𝑘𝑛0
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Substituting this into the linearized equation of motion, we get

𝑛1 = 𝑘𝑛0𝑒𝐸1
𝑖𝑚𝑒(𝜔2 − 𝑘2𝑣𝑡ℎ2)

which is the density perturbation in response to 𝐸1. Following the same approach as before,
we can easily get the dielectric function:

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2 − 𝑘2𝑣𝑡ℎ2

Let 𝜖 = 0, we get the dispersion relation for warm plasma

𝜔2 = 𝑘2𝑣𝑡ℎ2 + 𝜔𝑝𝑒
2

This is called the Bohm-Gross dispersion relation (BGDR). (Swanson 2012) has shown that
by keeping higher order terms,

𝜔2 = 𝜔2
𝑝𝑒 [1 + 3

2 (𝑘𝑣𝑡ℎ
𝜔𝑝𝑒

)
2
+ 15

4 (𝑘𝑣𝑡ℎ
𝜔𝑝𝑒

)
4
]

so it is apparent that the moment expansion is an expansion in the ratio of the thermal
velocity to the phase velocity. The BGDR now resolves the ambiguity in cold plasma theory
and supports the notion that 𝑃 = 0 in cold plasma is a cutoff rather than a resonance, since
this dispersion relation describes a wave with a cutoff at 𝜔𝑝𝑒 that propagates near the electron
thermal speed for high frequencies.

We see from this example that the fluid equations which are based on moment expansions are
valid as long as the phase velocity is large compared to the thermal speed, 𝑣𝑝 ≫ 𝑣𝑡ℎ.

7.13.2 Vlasov approach

Assume Maxwellian distribution for electrons:

𝑔𝑒(𝑣) =
1√
2𝜋

1
𝑣𝑡ℎ,𝑒

𝑒−𝑣2/2𝑣𝑡ℎ,𝑒
2

Assuming 𝜔
𝑘 ≫ 𝑣𝑡ℎ,𝑒, i.e. the phase speed is much larger than the characteristic thermal speed,

we can do Taylor series expansion

1
(𝑣 − 𝜔/𝑘)2 = 1

(𝜔/𝑘)2
1

(1 − 𝑘𝑣/𝜔)2 ≈ 𝑘2

𝜔2 [1 + 2𝑘𝑣
𝜔 + 3𝑘2𝑣2

𝜔2 + ...]
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Then the dielectric function is

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞
𝑑𝑣𝑔(𝑣) 𝑘

2

𝜔2 [1 + 2𝑘𝑣
𝜔 + 3𝑘2𝑣2

𝜔2 + ...]

≐ 1 − 𝜔𝑝𝑒
2

𝜔2 [1 + 3𝑘2𝑣𝑡ℎ2

𝜔2 ].

Let 𝜖 = 0, we can get the dispersion relation for warm plasma,

lowest order: 𝜔 = ±𝜔𝑝𝑒

first order:1 − 𝜔𝑝𝑒
2

𝜔2 (1 + 3𝑘2𝑣𝑡ℎ2

𝜔𝑝𝑒2
) = 0 ⇒ 𝜔2 = 𝜔𝑝𝑒

2 + 3𝑘2𝑣𝑡ℎ,𝑒2

Note here we insert 0𝑡ℎ order solution to 1𝑠𝑡 order equation to get the next level approximation.
Comparing with the results from 2-fluid theory, we see that the expression is very similar
except a discrepancy in the coefficient. This is owing to the fact that we do not specify 𝛾
in the equation of state. Actually, there are still ambiguities and debates about the exact
equation of state. I wonder if I can get the exact coefficient under some assumption.

The opposite limit case: 𝜔
𝑘 ≪ 𝑣𝑡ℎ. From 2-fluid theory,

𝜖
𝜖0

≊ 1 + 𝜔𝑝𝑒
2

𝑘2𝑣𝑡ℎ,𝑒2

From Vlasov theory,

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞
𝑑𝑣 𝜕𝑔/𝜕𝑣

𝑣 − 𝜔/𝑘 = 1 − 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞

1
𝑣 −���𝜔/𝑘

1√
2𝜋

1
𝑣𝑡ℎ,𝑒

( −𝑣
𝑣𝑡ℎ,𝑒2

)𝑒−𝑣2/2𝑣𝑡ℎ,𝑒
2𝑑𝑣

= 1 + 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞

1
𝑣2𝑡ℎ,𝑒

1√
2𝜋𝑒

−𝑣2/2𝑣𝑡ℎ,𝑒
2𝑑𝑣

= 1 + 𝜔𝑝𝑒
2

𝑘2𝑣𝑡ℎ,𝑒2

So we can see in the two limit cases that they “almost” give the same results!

If we include ion motion in the 2-fluid theory (𝑛1𝑖 ≠ 0, 𝑇𝑖 ≠ 0,𝑚𝑖 ≠ ∞), applying the linear
superposition property, we have

𝜖
𝜖0

= 1⏟
∇⋅(𝜖0E1)

− 𝜔𝑝𝑒2

𝜔2 − 𝑘2𝑣𝑡ℎ,𝑒2⏟⏟⏟⏟⏟
𝑒𝑛1𝑒

− 𝜔𝑝𝑖2

𝜔2 − 𝑘2𝑣𝑡ℎ,𝑖2⏟⏟⏟⏟⏟
𝑒𝑛1𝑖
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7.13.3 Ion-acoustic wave

Assume 𝑣𝑡ℎ,𝑒 ≫ 𝜔
𝑘 ≫ 𝑣𝑡ℎ,𝑖, we have the simplified dielectric function

𝜖
𝜖0

= 1 + 𝜔𝑝𝑒
2

𝑘2𝑣𝑡ℎ,𝑒2
− 𝜔𝑝𝑖

2

𝜔2

Assume quasi-neutrality condition: 𝑛1𝑒 ≈ 𝑛1𝑖, s.t.

∇ ⋅ (𝜖0E1) = 𝑒(𝑛1𝑒 − 𝑛1𝑖) ≈ 0
so we can ignore the “1” in the dielectric function. Let 𝜖 = 0, we get

𝜔𝑝𝑒
2

𝑘2𝑣𝑡ℎ,𝑒2
− 𝜔𝑝𝑖

2

𝜔2 = 0

⇒ 𝜔2 = 𝑘2𝑣𝑡ℎ,𝑒2
𝑚𝑒
𝑚𝑖

, 𝜔
𝑘 = √𝑘𝐵𝑇𝑒

𝑚𝑖
≡ 𝑐𝑠

Physically, electron sees the electric field created by ions due to ion plasma oscillation. Since
electrons move much faster than ions, this electric field is nearly electrostatic for electrons. As
a result, electron just follows the ion motion.

There are some other ways to get the ion-acoustic wave. If 𝜔 ≪ 𝜔𝑝𝑒, we can treat this wave
as electrostatic wave for electron. The distribution for electron number density is

𝑛𝑒 = 𝑛0𝑒𝑒𝜙/𝑘𝐵𝑇𝑒 ≊ 𝑛0𝑒 + 𝑛1𝑒 ≊ 𝑛0[1 + 𝑒𝜙
𝑘𝐵𝑇𝑒

+ ...]

⇒𝑛1𝑒 = 𝑛0
𝑒𝜙

𝑘𝐵𝑇𝑒
= 𝑛0𝑒𝐸1

−𝑖𝑘𝑚𝑒𝑣𝑡ℎ,𝑒2

Note that here the tilde signs ∼ of the variables are neglected for convenience without ambi-
guity.

Do we need to calculate 𝑛1𝑖??? Yes. MORE to do here!

Also, from the linearized equation of motion for electron,
𝜕𝑣𝑒1
𝜕𝑡 = − 𝑒

𝑚𝑒
𝐸1 −

∇𝑃1
𝑛0𝑚𝑒

−𝑖𝜔𝑣𝑒1 = − 𝑒
𝑚𝑒

𝐸1 −
𝑖𝑘𝑃1
𝑛0𝑚𝑒

= − 𝑒
𝑚𝑒

𝐸1 −
𝑖𝑘𝑛1𝑒𝑘𝐵𝑇𝑒

𝑛0𝑚𝑒

In the 𝜔 → 0 limit, 𝐿𝐻𝑆 ≐ 0, we get

𝑛1𝑒 = 𝑛0𝑒𝐸1
−𝑖𝑘𝑚𝑒𝑣𝑡ℎ,𝑒2

Then again we get the dielectric function through Poisson’s equation.

250



7.14 Electrostatic Wave in a Magnetized Plasma

Now we continue to discuss the property of electrostatic waves with background magnetic
field.

First let us introduce a useful result for continuity equation. Assuming 𝑛0 = 𝑛0(x), v0 = v0(x)
in equilibrium, x1 = x1(x, 𝑡) is the perturbation in displacement. We can show that the
linearized continuity equation has an equivalent form:

𝜕𝑛1(x, 𝑡)
𝜕𝑡 + ∇ ⋅ [𝑛0(x)v1(x, 𝑡) + 𝑛1(x, 𝑡)v0(x, 𝑡)] = 0 ⇔ 𝑛1(x, 𝑡) = −∇ ⋅ [𝑛0(x)x1(x, 𝑡)]

The proof is related to mass conservation shown as follows. Intuitively, you can think of this as
the degree of condensation only depends on displacement, not on how you get there (speed).

In 1D,
𝑛0 = 𝑛0(𝑥0) = unperturbed density

𝑥 = 𝑥0 + 𝑥1(𝑥0, 𝑡) = instantanenous position
𝑛(𝑥0, 𝑡) = 𝑛0(𝑥0) + 𝑛1(𝑥0, 𝑡) = total density

At time 𝑡, [𝑥0, 𝑥0 + d𝑥] → [𝑥0 +𝑥1(𝑥0, 𝑡), 𝑥0 + d𝑥+ 𝑥1(𝑥0 + d𝑥, 𝑡)]. Due to mass conservation,
we have (This looks like the derivation of deformation in fluid dynamics.)

𝑛0(𝑥0)d𝑥 = [𝑛0(𝑥0 + 𝑥1) + 𝑛1(𝑥0 + 𝑥1, 𝑡)] ⋅ [𝑥0 + d𝑥 + 𝑥1(𝑥0 + d𝑥, 𝑡) − (𝑥0 + 𝑥1(𝑥0, 𝑡))]

≈ [𝑛0(𝑥0) + 𝑥1
𝜕𝑛0(𝑥0)
𝜕𝑥0

+ 𝑛1(𝑥0, 𝑡)]d𝑥[1 + 𝜕𝑥1(𝑥0, 𝑡)
𝜕𝑥0

]

⇒ 𝑛0(𝑥0) = 𝑛0(𝑥0) + 𝑛0(𝑥0)
𝜕𝑥1(𝑥0, 𝑡)

𝜕𝑥0
+ 𝑥1

𝜕𝑛0(𝑥0)
𝜕𝑥0

+ 𝑛1(𝑥0, 𝑡)

⇒ 𝑛1(𝑥0, 𝑡) = −𝑛0(𝑥0)
𝜕𝑥1(𝑥0, 𝑡)

𝜕𝑥0
− 𝑥1

𝜕𝑛0
𝜕𝑥0

= − 𝜕
𝜕𝑥0

[𝑛0(𝑥0)𝑥1(𝑥0, 𝑡)]

⇒ 𝑛1(𝑥, 𝑡) = − 𝜕
𝜕𝑥[𝑛0(𝑥)𝑥1(𝑥, 𝑡)]

The simplest equilibrium state in a constant magnetized plasma is

𝑛𝑖0 = 𝑛𝑒0 = 𝑛0, E0 = 0, B0 = 𝐵0 ̂𝑧
v𝑒0 = v𝑖0 = 0, 𝑇𝑒 = 0, 𝑇𝑖 = 0, 𝑚𝑖 = ∞

Now introduce an electrostatic perturbation (E1 = −∇𝜙1)

E1 = ̃E1𝑒−𝑖𝜔𝑡+𝑖k⋅x = −𝑖k ̃𝜙1𝑒−𝑖𝜔𝑡+𝑖k⋅x
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we can confirm that this is indeed an electrostatic perturbation since E1 ∥ k and B1 = 0.
Case 1: k = 𝑘𝑧 ̂𝑧 ∥ B0, i.e. parallel propagation. Then E1 = ̂𝑧𝐸1𝑧𝑒−𝑖𝜔𝑡+𝑖𝑘𝑧𝑧. This is the same
as if there is no magnetic field, so the dielectric function is

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2

Case 2: k ⟂ B0, i.e. perpendicular propagation. Without loss of generality, let k = 𝑘𝑥 ̂𝑥.
Then

E1 = ̂𝑥 ̃𝐸1𝑥𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥𝑥

The equations of motion (cold plasma) in the 𝑥 and 𝑦 direction are

̈𝑥1 = − 𝑒
𝑚𝑒

[𝐸1𝑥 + ̇𝑦1𝐵0]

̈𝑦1 = − 𝑒
𝑚𝑒

[− ̇𝑥1𝐵0]

⇒ ̇𝑦1 = 𝑒𝐵0
𝑚𝑒

𝑥1 = |Ω𝑒|𝑥1

̈𝑥1 = − 𝑒
𝑚𝑒

[𝐸1𝑥 + |Ω𝑒| ⋅ 𝑦1𝐵0] = − 𝑒
𝑚𝑒

𝐸1𝑥 −Ω𝑒
2𝑥1,

⇒ 𝑥1 =
− 𝑒

𝑚𝑒
𝐸1𝑥

−𝜔2 +Ω𝑒
2

Then we have the perturbed density in response to the perturbed electric field 𝐸1𝑥:

𝑛1 = −𝑛0∇ ⋅ x1 = −𝑛0𝑖𝑘𝑥𝑥1 = −𝑛0𝑖𝑘𝑥
− 𝑒

𝑚𝑒
𝐸1𝑥

−𝜔2 +Ω𝑒
2

From Poisson’s equation, we get the dielectric function (the same method as before):

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2 −Ω𝑒
2

Let 𝜖 = 0, we have
𝜔 = √𝜔𝑝𝑒2 +Ω𝑒

2 ≡ 𝜔𝑈𝐻

which is called the upper hybrid frequency. This is the highest characteristic frequency in
plasma. This upper hybrid wave is a havoc to some beam generator devices as it appears near
the electron collector.
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What if ions are included? Similar to previous derivations and notice that we are still within
the range of linear theory, we have

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2 −Ω𝑒
2 − 𝜔𝑝𝑖

2

𝜔2 −Ω𝑖
2

For Ω𝑖 ≪ 𝜔 ≪ Ω𝑒 with quasi-neutrality condition 𝑛1𝑒 ≈ 𝑛1𝑖, we can have a simplified dispersion
relation by letting 𝜖 = 0:

𝜔𝑝𝑒
2

Ω𝑒
2 = 𝜔𝑝𝑖

2

𝜔2

⇒𝜔 = √𝜔𝑝𝑖2
Ω𝑒

2

𝜔𝑝𝑒2
= √|Ω𝑒Ω𝑖| ≡ 𝜔𝐿𝐻

which gives us the low hybrid wave frequency. It equals to the geometric mean of the two
cyclotron frequencies. Actually, this can be obtained from pure plasma motion argument.
Recall that Ω𝑖 ≪ 𝜔 ≪ Ω𝑒 means that for electrons the plasma seems to be nonmagnetized, so
they moves only under the electric field,

𝑣1𝑒𝑥 = −𝑒𝐸1𝑥
𝑚𝑒(−𝑖𝜔)

On the other hand, for ions the magnetic field is strong while electric field still exists, so it
experiences polarization drift along the direction of perturbed electric field,

𝑣1𝑖𝑥 = 1
Ω𝑖

𝜕
𝜕𝑡(

𝐸1𝑥
𝐵0

)

Under quasi-neutrality condition, 𝑣1𝑖𝑥 = 𝑣1𝑒𝑥, so we have

−𝑒𝐸1𝑥
𝑚𝑒(−𝑖𝜔) = 1

Ω𝑖

𝜕
𝜕𝑡(

𝐸1𝑥
𝐵0

) ⇒ 𝜔 = √|Ω𝑒Ω𝑖|

If we consider warm plasma for 1D, there is an additional pressure term in the momentum equa-
tion. The continuity equation together with Poisson’s equation give the relation of perturbed
displacement and electric field:

𝑛1 = −∇ ⋅ (𝑛0x1) = −𝑖𝑘𝑥𝑛0𝑥1
∇ ⋅ (𝜖0E1) = 𝑖𝑘𝑥𝜖0𝐸1 = −𝑒𝑛1𝑒 = 𝑒𝑖𝑘𝑥𝑛0𝑥1

⇒𝐸1 = 𝑒𝑛0𝑥1
𝜖0
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Substituting into the momentum equation, we get

̈𝑥1 +Ω𝑒
2𝑥1 = − 𝑒

𝑚𝑒
𝐸1 −

∇𝑃1
𝑛0𝑚𝑒

= −𝜔𝑝𝑒
2𝑥1 − 𝑘𝑥2𝑣𝑡ℎ,𝑒2𝑥1

where 𝑣𝑡ℎ,𝑒 = √𝑘𝐵𝑇𝑒/𝑚𝑒. This gives us (You can gain a sense of the equivalent force law from
the dispersion relation.)

𝜔2 = 𝜔𝑝𝑒
2 +Ω𝑒

2 + 𝑘𝑥2𝑣𝑡ℎ,𝑒2

This is also equivalent to the dielectric function

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝜔2 −Ω𝑒
2 − 𝑘𝑥2𝑣𝑡ℎ,𝑒2

7.15 CMA Diagram

The Clemmow-Mullaly-Allis (CMA) diagram classifies all EM + ES waves (including ions) in
a cold magnetized plasma. However it is no longer useful in hot plasma waves.

• Resonances and cutoffs
• Mode conversions

7.16 Wave-Particle Interactions

Different wavemodes exchange energy with particles by different mechanisms including

1. Landau resonance which heats in the direction parallel to the magnetic field and can give
a parallel beam in the velocity distribution function (VDF) (Figure 7.4 left). Charged
particles exchange energy with 𝐸∥.

2. Cyclotron resonance which heats in the direction perpendicular to the magnetic field and
broadens the velocity distribution function in the perpendicular direction (Figure 7.4
middle). Charged particles exchange energy with 𝐸⟂. Left-hand polarized ion cyclotron
waves can lead to ion heating in the perpendicular direction.

3. Pitch angle scattering which can lead to the formation of a plateau in the VDF (Figure 7.4
right).
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The resonance parameters for the Landau and cyclotron resonances are

𝜉L = 𝜔
𝑘∥𝑣th,𝑠

(7.89)

𝜉C = 𝜔 − Ω𝑠
𝑘∥𝑣th,𝑠

(7.90)

Here the frequency 𝜔 is measured in the plasma rest frame. Ω𝑠 denotes the cyclotron frequency
of particle species 𝑠 (ion species and electrons), 𝑘∥ the parallel component of the wavevector,
and 𝑣th,𝑠 the particle thermal speed of species 𝑠. In general, the resonance parameter can be
defined for arbitrary harmonics of the cyclotron frequency 𝑚 = 0,±1,±2, ...:

𝜉(𝑚) = 𝜔 −𝑚Ω𝑠
𝑘∥𝑣th,𝑠

(7.91)

Figure 7.4: Wave-particle interactions and the associated part of the velocity distribution func-
tions. Courtesy of Yasuhito Narita.

Note that the resonance parameters above are defined for a Maxwellian plasma. A correction
is needed when treating a non-Maxwellian plasma to find the suitable velocity-space gradient
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for the resonance. The resonance is efficient when the parameter 𝜉L or 𝜉C is on the order of
unity. Strictly speaking, the wave damping (or particle acceleration) is most efficient, typically
for 1 < 𝜉 < 5. The upper limit is not exact, but the resonance becomes gradually inefficient
at larger values of 𝜉. For 𝜉 < 1 the particle motion is slower than the wave propagation and
the particles do not have a sufficient time for exchanging energy with the wave electric field.
For 𝜉 > 5 there are increasingly fewer particles with higher velocities for the resonance (higher
than the thermal speed).

7.16.1 Pitch Angle Scattering

Charged particles can be scattered by the wave electric and magnetic fields incoherently, and
the scattering deforms the velocity distribution function along the co-centric contours centered
at the wave phase speed (Figure 7.4, right panel). The reason for the deformation is that the
particle kinetic energy 𝐾𝑤𝑣 (per unit mass) does not change in the co-moving frame with the
apparent wave phase speed in the parallel direction to the mean magnetic field:

𝐾𝑤𝑣 = 1
2
⎡⎢
⎣
𝑣2⟂ +(𝑣∥ −

𝜔
𝑘∥

)
2
⎤⎥
⎦

= const.

The co-centric deformation of the distribution function achieves a quasi-linear equilibrium in
that the velocity–space gradient becomes zero (plateau formation) in the pitch angle directions.
For example, in the solar wind ions are found to be resonating with obliquely propagating
Alfvén/ion cyclotron waves. Note that the relevant phase speed is 𝜔/𝑘∥, and is different from
the true phase speed 𝜔/𝑘. The perpendicular component of the wavevector 𝑘⟂ does not play
a role in pitch angle scattering.

This process is well explained by Plasma Zoo: Gyroresonant Scattering.

7.17 Whistler Wave

Whistler waves, also known as electron cyclotron waves, are a type of electron-scale plasma
waves that contribute to electron scattering, acceleration, and energy transport.3 They are
driven by the electron temperature anisotropy (𝑇𝑒⟂/𝑇𝑒∥ > 1, and the parallel energy of the
resonant electrons exceeds the magnetic energy per electron, ℰ∥ = 1

2𝑚𝑒𝑣2∥ > 𝐵2/2𝜇0𝑛𝑒 (Kennel
and Petschek 1966)) or by electron beams or heat fluxes (Gary 1993), and shape the electron
velocity distribution function through wave-particle interactions.4 (Ren+ 2020) Therefore,
properties of whistler waves relate closely to electron-scale physics in magnetic reconnection
(e.g. (J. Wang et al. 2023) at Mars). According to (Zhao 2017), the whistler wave can

3From Equation 7.22 we see the contribution of electron physics in the dispersion relation.
4The derivation for the instability criterion involves kinetic theory, similar to the discussion in Chapter 10.
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be described by electron magnetohydrodynamics (EMHD?) on timescales of 2𝜋/Ω𝑐𝑒 < 𝑡 <
2𝜋/Ω𝐿𝐻 and spatial scales of 𝐿 < 𝜆𝑖, where the ions are assumed as a motionless neutralizing
background. When magnetic field lines are fully frozen into the electron fluid, the whistler
wave follows the dispersion relation 𝜔 = Ω𝑐𝑒𝜆2

𝑒𝑘2 cos 𝜃. The dispersion relation becomes 𝜔 =
Ω𝑐𝑒𝜆2

𝑒𝑘2 cos 𝜃/(1+𝜆2
𝑒𝑘2) as the electron inertia is contained in Ohm’s law. Jinsong Zhao further

extended the model by taking the electron thermal pressure and the displacement current into
the EMHD model.

We first see the derivations of whistler wave dispersion relation in Section 7.7 at the low
frequency MHD limit. Another way to derive the whistler mode dispersion relation, which is
probably easier, is to include the Hall term from the generalized Ohm’s law:

E = −U × B + 1
𝑛𝑒J × B

Using Ampère’s law and retaining only the Hall term leads to the equation

Ḃ = − 1
𝜇0𝑛𝑒

∇ × [(∇ × B) × B]

Performing linearization and assuming that the magnetic field is parallel to the z-axis and its
perturbation is only in x and y, the last equation becomes

𝜔𝐵1𝑥 = −𝑖𝑘
2
𝑧𝐵0

𝜇0𝑛𝑒
𝐵1𝑦

𝜔𝐵1𝑦 = 𝑖𝑘
2
𝑧𝐵0

𝜇0𝑛𝑒
𝐵1𝑥

which easily yields
𝜔 = 𝐵0

𝜇0𝑛𝑒
𝑘2
𝑧

This is the 𝑣𝐴 ≪ 𝑊 case in Equation 7.23 where 𝑣𝑤 = 𝑊 . For a more complete derivation,
see Chen Shi’s note. The dispersion relations of whistler and ion cyclotron wave make a pair,
similar to the relation between fast and slow magnetosonic waves.

The dispersion property of whistler waves makes it a problem for hybrid simulations (Sec-
tion 24.3).

7.18 Wave Identification

Measured wave spectra are complex and opaque, i.e. it is very difficult from an inspection of
their shape to identify the wave modes that are present in the plasma volume under investiga-
tion. In some rare clean cases one can conclude from the observation of a particular maximum
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peak in the wave power or the observation of only one single field component which wave has
been detected. In the general case of broad spectra or mixed spectral peaks and various field
components lacking clear dominance of one field component it becomes nearly impossible to
decide about the waves. Clearly, when the spectrum is a shapeless power-law one, in most
cases, we are dealing with developed turbulence or localised structures in which case it makes
no sense to distinguish and search for single modes. Then one must seek shelter among the
well developed methods of analysing turbulence.

On the other hand, if the spectra indicate the presence of single waves, one would like to have
some quantities at hand which help identifying which modes one is dealing with. It would be
helpful if one could measure simultaneously both, the wave frequency and the wave number
spectra. This is possible, however, only with sophisticated multi-spacecraft constellations. And
even then only in the rarest cases the determination of the dispersion relation from experiment
will be possible.

In application of these theoretical arguments to real observations one therefore has defined
some quantities, called “transport ratios”, which have turned out to be quite valuable in helping
identifying some of the wave modes. Such transport ratios for electromagnetic waves have been
given by (Gary 1993).

• Polarization

The polarization of a wave magnetic field with respect to wave number k is given by

𝑃 = 𝑖𝑏𝑠/𝑏𝐴
where 𝑏𝑠, 𝑏𝐴 are the components of the magnetic fluctuation field b in the direction S,A of
magnetosonic and Alfvén waves, respectively, i.e. the vector A = k×B0 is perpendicular to the
wave vector and the ambient magnetic field, while the vector S is perpendicular to k (because
of the vanishing divergence ∇ ⋅ b = k ⋅ b = 0) in the plane (k,B0). The waves are more
magnetosonic or more Alfvénic whether |𝑃 | > 1 |𝑃 | < 1, respectively. For ℜ(𝑃) > 0(< 0) the
waves are right-hand (left-hand) polarized.

• Compression

The magnetic compression of the wave measures the relative variation in the parallel magnetic
fluctuation field

𝐶𝐵 = ⟨𝑏2∥⟩/⟨|b|2⟩
where the fluctuations are taken at a given pair (𝜔,k). The angular brackets ⟨𝑎𝑏⟩ mean taking
the real part of the correlation function of the two bracketed quantities.

• Parallel compressibility
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This ratio together with the compression ratio provides a tool for estimating how compressive
a wave is. It is defined for species 𝑠 as

𝐶∥𝑠 = 𝐵2
0

⟨𝑏2∥⟩
⟨𝑏∥Δ𝑛𝑠⟩
𝑛𝑠𝐵0

• Non-coplanarity ratio

This ratio measures the fluctuating field component out of the plane (k,B0), and is given by

𝐶𝑐 = ⟨𝑏2𝐴⟩/⟨|b|2⟩

• Alfvén ratio: the ratio of velocity to magnetic fluctuations

Defining 𝛿v𝐴 = b/√𝜇0𝑚𝑖𝑛 (unit V/B), where 𝑛 is the total plasma density, the Alfvén ratio
is defined as

𝑅𝐴𝑠 = ⟨|𝛿v𝑠|2⟩/⟨|𝛿v𝐴|2⟩
where 𝛿v𝑠 is the flow velocity of species 𝑠. An Alfvén wave has 𝛿v𝑖 = ±v𝐴b/B0, and its own
Alfvén ratio is 𝑅𝐴𝑖 = 1. The Alfvén ratio thus measures the fraction of Alfvén waves contained
in the near-zero frequency fluctuations.

In another form, it can be written as

𝑅𝐴 = 𝜇0𝑛𝑚𝑖
|𝛿𝑣𝑖|2
|𝛿B|2

One property that differs significantly is the Alfvén ratio where velocity fluctuations dominate
for the kinetic slow wave and magnetic fluctuations dominate for the KAW.

• Cross helicity

Helicity of a wave is another identifier of the wave mode, it is in particular useful for deter-
mining the direction of propagation of the wave by considering its sign. See Section 14.1.5

7.19 Animation of Waves

Visualization is the best way of understanding physics.
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8 Kinetic Theory

8.1 Phase Space

Consider a particle moving in a one-dimensional space and let the position of the particle be
𝑥 = 𝑥(𝑡) and the velocity of the particle be 𝑣 = 𝑣(𝑡). A way to visualize the 𝑥 and 𝑣 trajectories
simultaneously is to plot these trajectories parametrically on a two-dimensional graph, where
the horizontal coordinate is given by 𝑥(𝑡) and the vertical coordinate is given by 𝑣(𝑡). This x-v
plane is called phase-space. The trajectory (or orbit) of several particles can be represented as
a set of curves in phase-space as shown in Figure 8.1. Examples of a few qualitatively different
phase-space orbits are shown in Figure 8.1.

Figure 8.1: Phase-space showing different types of possible particle orbits.

Particles in the upper half-plane always move to the right, since they have a positive velocity,
while those in the lower half-plane always move to the left. Particles having exact periodic
motion (e.g., 𝑥 = 𝐴 cos 𝑡, 𝑣 = −𝐴 sin 𝑡) alternate between moving to the right and the left and
so describe an ellipse in phase-space. Particles with nearly periodic (quasi-periodic) motions
will have near-ellipses or spiral orbits. A particle that does not reverse direction is called a
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passing particle, while a particle confined to a certain region of phase-space (e.g., a particle
with periodic motion) is called a trapped particle.

8.2 Distribution Function

The fluid theory we have been using so far is the simplest description of a plasma; it is indeed
fortunate that this approximation is sufficiently accurate to describe the majority of observed
phenomena. There are some phenomena, however, for which a fluid treatment is inadequate.
At any given time, each particle has a specific position and velocity. We can therefore charac-
terize the instantaneous configuration of a large number of particles by specifying the density
of particles at each point 𝑥, 𝑣 in phase-space. The function prescribing the instantaneous den-
sity of particles in phase-space is called the distribution function and is denoted by 𝑓(𝑥, 𝑣, 𝑡).
Thus, 𝑓(𝑥, 𝑣, 𝑡)d𝑥d𝑣 is the number of particles at time 𝑡 having positions in the range between
𝑥 and 𝑥+𝑑𝑥 and velocities in the range between 𝑣 and 𝑣+𝑑𝑣. As time progresses, the particle
motion and acceleration causes the number of particles in these 𝑥 and 𝑣 ranges to change and
so 𝑓 will change. This temporal evolution of 𝑓 gives a description of the system more detailed
than a fluid description, but less detailed than following the trajectory of each individual parti-
cle. Using the evolution of 𝑓 to characterize the system does not keep track of the trajectories
of individual particles, but rather characterizes classes of particles having the same 𝑥, 𝑣.
In fluid theory, the dependent variables are functions of only four independent variables: 𝑥, 𝑦, 𝑧,
and 𝑡. This is possible because the velocity distribution of each species is assumed to be
Maxwellian everywhere and can therefore be uniquely specified by only one number, the tem-
perature 𝑇 . Since collisions can be rare in high-temperature plasmas, deviations from thermal
equilibrium can be maintained for relatively long times. As an example, consider two velocity
distributions 𝑓1(𝑣𝑥) and 𝑓2(𝑣𝑥) in a one-dimensional system (Figure 8.2). These two distribu-
tions will have entirely different behaviors, but as long as the areas under the curves are the
same, fluid theory does not distinguish between them.

When we consider velocity distributions in 3D, we have seven independent variables: 𝑓 =
𝑓(r,v, 𝑡). By 𝑓(r,v, 𝑡), we mean that the number of particles per meter cubed at position r
and time 𝑡 with velocity components between 𝑣𝑥 and 𝑣𝑥 + 𝑑𝑣𝑥, 𝑣𝑦 and 𝑣𝑦 + 𝑑𝑣𝑦, and 𝑣𝑧 and
𝑣𝑧 + 𝑑𝑣𝑧 is

𝑓(𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑡)d𝑣𝑥d𝑣𝑦d𝑣𝑧

8.2.1 Moments of the distribution function

Let us count the particles in the shaded vertical strip in Figure 8.3. The number of particles
in this strip is the number of particles lying between 𝑥 and 𝑥 + d𝑥, where 𝑥 is the location of
the left-hand side of the strip and 𝑥+d𝑥 is the location of the right-hand side. The number of
particles in the strip is equivalently defined as 𝑛(𝑥, 𝑡)d𝑥, where 𝑛(𝑥) is the density of particles
at 𝑥. Thus we see that ∫𝑓(𝑥, 𝑣)d𝑣 = 𝑛(𝑥) the transition from a phase-space description (i.e.,
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Figure 8.2: Examples of non-Maxwellian distribution functions

Figure 8.3: Moments give weighted averages of the particles in the shaded vertical strip.
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𝑥, 𝑣 are independent variables) to a conventional description (i.e., only 𝑥 is an independent
variable) involves “integrating out” the velocity dependence to obtain a quantity (e.g., density)
depending only on position. Since the number of particles is finite, and since 𝑓 is a positive
quantity, 𝑓 must vanish as 𝑣 → ±∞.

In three-dimension, the density is now a function of four scalar variables, 𝑛 = 𝑛(r, 𝑡), which is
the integral of the distribution function over the velocity space:

𝑛(r, 𝑡) = ∫
∞

−∞
d𝑣𝑥 ∫

∞

−∞
d𝑣𝑦 ∫

∞

−∞
d𝑣𝑧𝑓(r,v, 𝑡)

= ∫
∞

−∞
𝑓(r,v, 𝑡)d3𝑣

= ∫
∞

−∞
𝑓(r,v, 𝑡)dv

(8.1)

Note that dv is not a vector; it stands for a three-dimensional volume element in velocity
space. If 𝑓 is normalized so that

∫
∞

−∞
̂𝑓(r,v, 𝑡)dv = 1 (8.2)

Thus
̂𝑓(r,v, 𝑡) = 𝑓(r,v, 𝑡)/𝑛(r, 𝑡) (8.3)

is the probability that a randomly selected particle at position r has the velocity v at time 𝑡.
Using this point of view, we see that averaging over the velocities of all particles at 𝑥 gives the
mean velocity

𝑢(x, 𝑡) = ∫v𝑓(x,v, 𝑡)dv
𝑛(x, 𝑡) (8.4)

Similarly, multiplying ̂𝑓 by 𝑚𝑣2/2 and integrating over velocity will give an expression for the
mean kinetic energy of all the particles. This procedure of multiplying 𝑓 by various powers of
v and then integrating over velocity is called taking moments of the distribution function.

Note that ̂𝑓 is still a function of seven variables, since the shape of the distribution, as well
as the density, can change with space and time. From Equation 8.2, it is clear that ̂𝑓 has the
dimensions (m/s)−3; and consequently, from Equation 8.3, 𝑓 has the dimensions s3m−6.

8.2.2 Maxwellian Distribution

A particularly important distribution function is the Maxwellian:

̂𝑓𝑚 = ( 𝑚
2𝜋𝑘𝐵𝑇

)
3/2

exp(− 𝑣2
𝑣2𝑡ℎ

) (8.5)
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where
𝑣 ≡ (𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧)1/2 and 𝑣𝑡ℎ ≡ (2𝑘𝐵𝑇/𝑚)1/2

This is the normalized form where ̂𝑓𝑚 is equivalent to probability: by using the definite
integral

∫
∞

−∞
exp(−𝑥2)𝑑𝑥 = √𝜋

one easily verifies that the integral of ̂𝑓𝑚 over d𝑣𝑥d𝑣𝑦d𝑣𝑧 is unity.

A common question to ask is: why do we see Maxwellian/Gaussian/normal distribution ubiq-
uitously in nature? Well, this is related to the central limit theorem in statistics: in many
situations, when independent random variables are summed up, their properly normalized sum
tends toward a normal distribution even if the original variables themselves are not normally
distributed (e.g. a biased coin which give 95% head and 5% tail). In statistical physics, this
is related to the fact that a Maxwellian distribution represents the state of a system with the
highest entropy under the constraint of energy conservation.

There are several average velocities of a Maxwellian distribution that are commonly used. The
root-mean-square velocity is given by

(𝑣2)1/2 = (3𝑘𝐵𝑇/𝑚)1/2

The average magnitude of the velocity |𝑣|, or simply ̄𝑣, is found as follows:

̄𝑣 = ∫
∞

−∞
𝑣 ̂𝑓(v)𝑑3𝑣

Since ̂𝑓𝑚 is isotropic, the integral is most easily done in spherical coordinates in v space. Since
the volume element of each spherical shell is 4𝜋𝑣2d𝑣, we have

̄𝑣 = (𝑚/2𝜋𝑘𝐵𝑇 )3/2 ∫
∞

0
𝑣[exp(−𝑣2/𝑣2𝑡ℎ)]4𝜋𝑣2d𝑣

= (𝜋𝑣2𝑡ℎ)−3/24𝜋𝑣4𝑡ℎ ∫
∞

0
[exp(−𝑦2)]𝑦3𝑑𝑦

The definite integral has a value 1/2, found by integration by parts. Thus

̄𝑣 = 2√𝜋𝑣𝑡ℎ = 2(2𝑘𝐵𝑇/𝜋𝑚)1/2

The velocity component in a single direction, say 𝑣𝑥, has a different average. Of course, ̄𝑣𝑥
vanishes for an isotropic distribution; but | ̄𝑣𝑥| does not:

| ̄𝑣𝑥| = ∫ |𝑣𝑥| ̂𝑓𝑚(v)d3𝑣 = 𝜋−1/2𝑣𝑡ℎ = (2𝑘𝐵𝑇/𝜋𝑚)1/2

264

https://en.wikipedia.org/wiki/Central_limit_theorem


To summarize: for a Maxwellian,

𝑣𝑟𝑚𝑠 = (3𝑘𝐵𝑇/𝑚)1/2
| ̄𝑣| = 2(2𝑘𝐵𝑇/𝜋𝑚)1/2

| ̄𝑣𝑥| = (2𝑘𝐵𝑇/𝜋𝑚)1/2
̄𝑣𝑥 = 0

For an isotropic distribution like a Maxwellian, we can define another function 𝑔(𝑣) which is a
function of the scalar magnitude of v such that

∫
∞

0
𝑔(𝑣)d𝑣 = ∫

∞

−∞
𝑓(v)d𝑣

For a Maxwellian, we see that

𝑔(𝑣) = 4𝜋𝑛(𝑚/2𝜋𝑘𝐵𝑇 )3/2𝑣2 exp(−𝑣2/𝑣2𝑡ℎ) (8.6)

?@fig-f-g shows the difference between 𝑔(𝑣) and a one-dimensional Maxwellian distribution
𝑓(𝑣𝑥). Although 𝑓(𝑣𝑥) is maximum for 𝑣𝑥 = 0, 𝑔(𝑣) is zero for 𝑣 = 0.
This is just a consequence of the vanishing of the volume in phase space for 𝑣 = 0. Sometimes
𝑔(𝑣) is carelessly denoted by 𝑓(𝑣), as distinct from 𝑓(v); but 𝑔(𝑣) is a different function of its
argument than 𝑓(v) is of its argument. From eq-g_dist, it is clear that 𝑔(𝑣) has dimensions
s/m4.

ADD EXAMPLE DISTRIBUTIONS!

• isotropic
• anisotropic (pancake)

𝑓(𝑣⟂, 𝑣∥) =
𝑛

𝑇⟂𝑇 1/2
∥

( 𝑚
2𝜋𝑘𝐵

)
3/2

exp( − 𝑚𝑣2⟂
2𝑘𝐵𝑇⟂

−
𝑚(𝑣∥ − 𝑣0∥)2

2𝑘𝐵𝑇∥
)

• beam
• crescent shape

It is often convenient to present the distribution function as a function of energy instead of
velocity. If all energy is kinetic, the energy is simply obtained from 𝑊 = 𝑚𝑣2/2. In the case
the particles are in the external electric potential field 𝑈 = −𝑞𝜑 the total energy of particles
is 𝑊 = 𝑚𝑣2/2 + 𝑈 and the Maxwellian distribution is

𝑓(𝑣) = 𝑛( 𝑚
2𝜋𝑘𝐵𝑇

)
3/2

exp( − 𝑊
𝑘𝐵𝑇

)
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This can be written as the energy distribution (???):

𝑔(𝑊) = 4𝜋[2(𝑊 − 𝑈)
𝑚3 ]

1/2
𝑓(𝑣)

The normalization factor is determined by requiring that the integration of the energy distri-
bution over all energies gives the density.

Velocity and energy distribution functions cannot be measured directly. Instead, the observed
quantity is the particle flux to the detector. Particle flux is defined as the number density of
particles multiplied by the velocity component normal to the surface. We define the differential
flux of particles traversing a unit area per unit time, unit solid angle (in spherical coordinates
the differential solid angle is 𝑑Ω = sin 𝜃𝑑𝜃𝑑𝜙) and unit energy as 𝐽(𝑊,Ω, 𝛼, r, 𝑡). (𝛼 is species?)
The units of 𝐽 are normally given as (m2srseV)−1. Note that in literature cm is often used
instead of m and, depending on the actual energy range considered, electron volts are often
replaced by keV, MeV, or GeV.

Let us next define how differential particle flux and distribution function are related to each
other. We can write the number density in a differential velocity element (in spherical coordi-
nates 𝑑3𝑣 = 𝑣2𝑑𝑣𝑑Ω) as (𝑑𝑛 = 𝑓(𝛼, r, 𝑡)𝑣2𝑑𝑣𝑑Ω). By multiplying this with 𝑣 we obtain another
expression for the differential flux 𝑓(𝛼, r, 𝑡)𝑣3𝑑𝑣𝑑Ω. Comparing with our eailier definition of
the differential flux we obtain

𝐽(𝑊,Ω, 𝛼, r, 𝑡)𝑑𝑊𝑑Ω = 𝑓(𝛼, r, 𝑡)𝑣3𝑑𝑣𝑑Ω

Since d𝑊 = 𝑚𝑣𝑑𝑣 we can write the relationship between the differential flux and the distribu-
tion function as

𝐽(𝑊,Ω, 𝛼, r, 𝑡) = 𝑣2
𝑚𝑓 (8.7)

One application of the differential flux is the particle precipitation flux. With the idea of loss
lone, we have a cone of particles that moves along the field lines and can propagate down to
the ionosphere, and each shell from 𝑣 to 𝑣+ d𝑣 corresponds to a specific energy range. This is
something we can measure close to the ground and use to infer the plasma properties in the
magnetosphere.

8.2.3 Kappa Distribution

The Maxwellian distribution is probably the most studied one theoretically, but may not be
the most commonly observed distribution in a collisionless space plasma system. In recent
years, another distribution named Kappa distribution has gained more attention.

Distribution functions are often nearly Maxwellian at low energies, but they decrease more
slowly at high energies. At higher energies the distribution is described better by a power law
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than by an exponential decay of the Maxwell distribution. Such a behavior is not surprising
if we remember that the Coulomb collision frequency decreases with increasing temperature
as 𝑇−3/2 (Equation 6.23). Hence, it takes longer time for fast particles to reach Maxwellian
distirbution than for slow particles. The kappa distribution has the form

𝑓𝜅(𝑊) = 𝑛( 𝑚
2𝜋𝜅𝑊0

)
3/2 Γ(𝜅 + 1)

Γ(𝜅 − 1/2)(1 + 𝑊
𝜅𝑊0

)
−(𝜅+1)

Here 𝑊0 is the energy at the peak of the particle flux and Γ is the gamma function. When
𝜅 ≫ 1 the kappa distribution approaches the Maxwellian distribution. When 𝜅 is smaller but
> 1 the distribution has a high-energy tail. A thorough review is given by (Livadiotis and
McComas 2013).

8.2.4 Entropy of a distribution

Collisions cause the distribution function to tend towards a simple final state characterized by
having the maximum entropy for the given constraints (e.g. fixed total energy). To see this,
we provide a brief discussion of entropy and show how it relates to a distribution function.

Suppose we throw two dice, labeled 𝐴 and 𝐵, and let 𝑅 denote the result of a throw. Thus
𝑅 ranges from 2 through 12. The complete set of (A,B) combinations that gives these 𝑅’s is
listed in Table 8.1:

Table 8.1: All possible combinations of rolling two dices.

𝑅 (𝐴,𝐵)
2 (1,1)
3 (1,2),(2,1)
4 (1,3),(2,2),(3,1)
5 (1,4),(2,3),(3,2),(4,1)
6 (1,5),(2,4),(3,3),(4,2),(5,1)
7 (1,6),(2,5),(3,4),(4,3),(5,2),(6,1)
8 (2,6),(3,5),(4,4),(5,3),(6,2)
9 (3,6),(4,5),(5,4),(6,3)
10 (4,6),(5,5),(6,4)
11 (5,6),(6,5)
12 (6,6)

There are six (𝐴,𝐵) pairs that give 𝑅 = 7, but only one pair for 𝑅 = 2 and only one pair for
𝑅 = 12. Thus, there are six microscopic states (distinct (𝐴,𝐵) pairs) corresponding to 𝑅 = 7
but only one microscopic state corresponding to each of 𝑅 = 2 or 𝑅 = 12. Thus, we know
more about the microscopic state of the system if 𝑅 = 2 or 𝑅 = 12 than if 𝑅 = 7. We define
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the entropy 𝑆 to be the natural logarithm of the number of microscopic states corresponding
to a given macroscopic state. Thus, for the dice, the entropy would be the natural logarithm
of the number of (𝐴,𝐵) pairs that correspond to a given 𝑅. The entropy for 𝑅 = 2 or 𝑅 = 12
would be zero since 𝑆 = ln(1) = 0, while the entropy for 𝑅 = 7 would be 𝑆 = ln(6) since there
were six different ways of obtaining 𝑅 = 7.
If the dice were to be thrown a statistically large number of times the most likely result for
any throw is 𝑅 = 7 this is the macroscopic state with the largest number of microscopic
states. Since any of the possible microscopic states is an equally likely outcome, the most
likely macroscopic state after a large number of dice throws is the macroscopic state with the
highest entropy.

Now consider a situation more closely related to the concept of a distribution function. In
order to do this we first pose the following simple problem: suppose we have a pegboard with
𝒩 holes, labeled ℎ1, ℎ2, …, ℎ𝒩 and we also have 𝒩 pegs labeled by 𝑝1, 𝑝2, …, 𝑝𝒩. What is the
number of ways of putting all the pegs in all the holes? Starting with hole ℎ1, we have a choice
of 𝒩 different pegs, but when we get to hole ℎ2 there are now only 𝒩− 1 pegs remaining so
that there are now only 𝒩−1 choices. Using this argument for subsequent holes, we see there
are 𝒩! ways of putting all the pegs in all the holes.

Let us complicate things further. Suppose that we arrange the holes in ℳ groups. Say group
𝐺1 has the first 10 holes, group 𝐺2 has the next 19 holes, group 𝐺3 has the next 4 holes and
so on, up to group ℳ. We will use 𝑓 to denote the number holes in a group, thus 𝑓(1) = 10,
𝑓(2) = 19, 𝑓(3) = 4, etc. The number of ways arranging pegs within a group is just the
factorial of the number of pegs in the group, e.g., the number of ways of arranging the pegs
within group 1 is just 10! and so in general the number of ways of arranging the pegs in the
jth group is [𝑓(𝑗)]!.
Let us denote 𝐶 as the number of ways of putting all the pegs in all the groups without caring
about the internal arrangement within groups. The number of ways of putting the pegs in
all the groups caring about the internal arrangements in all the groups is 𝐶 × 𝑓(1)! × 𝑓(2) ×
𝑓(3)! × ...𝑓(4)!, but this is just the number of ways of putting all the pegs in all the holes,
i.e.,

𝐶 × 𝑓(1)! × 𝑓(2) × 𝑓(3)! × ...𝑓(4)! = 𝒩!
or

𝐶 = 𝒩!
𝐶 × 𝑓(1)! × 𝑓(2) × 𝑓(3)! × ...𝑓(4)!

Now 𝐶 is just the number of microscopic states corresponding to the macroscopic state of the
prescribed grouping 𝑓(1) = 10, 𝑓(2) = 19, 𝑓(3) = 4, etc. so the entropy is just 𝑆 = ln𝐶 or

𝑆 = ln( 𝒩!
𝐶 × 𝑓(1)! × 𝑓(2) × 𝑓(3)! × ...𝑓(4)!)

= ln𝒩! − ln 𝑓(1)! − ln 𝑓(2)! − ... − ln 𝑓(ℳ)!
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Stirling’s formula shows that the large-argument asymptotic limit of the factorial function is

lim
𝑘→∞

ln 𝑘! = 𝑘 ln 𝑘 − 𝑘

Noting that 𝑓(1) + 𝑓(2) + ... + 𝑓(ℳ) = 𝒩, the entropy becomes

𝑆 = 𝒩 ln𝒩− 𝑓(1) ln 𝑓(1) − 𝑓(2) ln 𝑓(2) − ... − 𝑓(ℳ) ln 𝑓(ℳ)

= 𝒩 ln𝒩−
ℳ
∑
𝑗=1

ln 𝑓(𝑗)

The constant 𝒩 ln𝒩 is often dropped, giving

𝑆 = −
ℳ
∑
𝑗=1

𝑓(𝑗) ln 𝑓(𝑗)

If 𝑗 is made into a continuous variable, say 𝑗 → 𝑣 so that 𝑓(𝑣)d𝑣 is the number of items in the
group labeled by 𝑣 then the entropy can be written as

𝑆 = −∫ d𝑣𝑓(𝑣) ln 𝑓(𝑣)

By now, it is obvious that 𝑓 could be the velocity distribution function, in which case 𝑓(𝑣)d𝑣
is just the number of particles in the group having velocity between 𝑣 and 𝑣 + d𝑣. Since the
peg groups correspond to different velocity range coordinates, having more dimensions just
means having more groups and so for three dimensions the entropy generalizes to

𝑆 = −∫ dv𝑓(v) ln 𝑓(v)

If the distribution function depends on position as well, this corresponds to still more peg
groups, and so a distribution function that depends on both velocity and position will have
the entropy

𝑆 = −∫ dx∫dv𝑓(x,v) ln 𝑓(x,v) (8.8)

8.2.5 Effect of collisions on entropy

The highest entropy state is the most likely state of the system because the highest entropy
state has the highest number of microscopic states corresponding to the macroscopic state.
Collisions (or other forms of randomization) will take some initial prescribed microscopic state
and scramble the phase-space positions of the particles, thereby transforming the system to a
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different microscopic state. This new state could in principle be any microscopic state, but is
most likely to be a member of the class of microscopic states belonging to the highest entropy
macroscopic state. Thus, any randomization process such as collisions will cause the system
to evolve towards the macroscopic state having the maximum entropy.

An important shortcoming of this argument is that it neglects any conservation relations that
have to be satisfied. To see this, note that the expression for entropy could be maximized if
all the particles are put in one group, in which case 𝐶 = 𝒩! which is the largest possible value
for 𝐶. Thus, the maximum entropy configuration of 𝒩 plasma particles corresponds to all the
particles having the same velocity. However, this would assign a specific energy to the system,
which would in general differ from the energy of the initial microstate. This maximum entropy
state is therefore not accessible in isolated systems, because energy would not be conserved if
the system changed from its initial microstate to the maximum entropy state.

Thus, a qualification must be added to the argument. Randomizing processes will scramble
the system to attain the state of maximum entropy consistent with any constraints placed on
the system. Examples of such constraints would be the requirements that the total system
energy and the total number of particles must be conserved. We therefore reformulate the
problem as: given an isolated system with 𝒩 particles in a fixed volume 𝑉 and initial average
energy per particle ⟨𝐸⟩, what is the maximum entropy state consistent with conservation of
energy and conservation of number of particles? This is a variational problem because the
goal is to maximize 𝑆 subject to the constraint that both 𝒩 and 𝒩⟨𝐸⟩ are fixed. The method
of Lagrange multipliers can then be used to take into account these constraints. Using this
method the variational problem becomes

𝛿𝑆 − 𝜆1𝛿𝒩− 𝜆2𝛿(𝒩 ⟨𝐸⟩) = 0
where 𝜆1 and 𝜆2 are as-yet undetermined Lagrange multipliers. The number of particles is

𝒩 = 𝑉 ∫𝑓d𝑣

The energy of an individual particle is 𝐸 = 𝑚𝑣2/2, where 𝑣 is the velocity measured in the
rest frame of the center of mass of the entire collection of 𝒩 particles. Thus, the total kinetic
energy of all the particles in this rest frame is

𝒩⟨𝐸⟩ = 𝑉 ∫ 𝑚𝑣2
2 𝑓(𝑣)d𝑣

and so the variational problem becomes

𝛿∫ d𝑣(𝑓 ln 𝑓 − 𝜆1𝑉 𝑓 − 𝜆2𝑉
𝑚𝑣2
2 𝑓) = 0

Incorporating the volume 𝑉 into the Lagrange multipliers, and factoring out the coefficient 𝛿𝑓 ,
this becomes

∫d𝑣𝛿𝑓 (1 + ln 𝑓 − 𝜆1 − 𝜆2
𝑚𝑣2
2 ) = 0
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Since 𝛿𝑓 is arbitrary, the integrand must vanish, giving

ln 𝑓 = 𝜆2
𝑚𝑣2
2 − 𝜆1

where the “1” has been incorporated into 𝜆1.

The maximum entropy distribution function of an isolated, energy and particle conserving
system is therefore

𝑓 = 𝜆1 exp (−𝜆2𝑚𝑣2/2)
which is the Maxwellian distribution function. We will often assume that the plasma is locally
Maxwellian so that 𝜆1 = 𝜆1(x, 𝑡), 𝜆2 = 𝜆2(x, 𝑡). We define the temperature to be

𝑘𝐵𝑇𝑠(x, 𝑡) =
1

𝜆2(x, 𝑡)

The normalization factor is set to be

𝜆1(x, 𝑡) = 𝑛𝑠(x, 𝑡) (
𝑚𝑠

2𝜋𝑘𝐵𝑇𝑠(x, 𝑡)
)

𝑁/2

where 𝑁 is the dimensionality (1, 2 or 3) so that ∫𝑓𝑠(x,v, 𝑡)d𝑁v = 𝑛𝑠(x, 𝑡). Because the
kinetic energy of individual particles was defined in terms of velocities measured in the rest
frame of the center of mass of the complete system of particles, if this center of mass is moving
in the lab frame with a velocity u𝑠, then in the lab frame the Maxwellian will have the form

𝑓𝑠(x,v, 𝑡) = 𝑛𝑠 (
𝑚𝑠

2𝜋𝑘𝐵𝑇𝑠
)

𝑁/2
exp(−𝑚𝑠(v − u𝑠)2

2𝑘𝐵𝑇𝑠
) (8.9)

Equation 8.9 is equivalent to Equation 8.5 times number density in 3D.

8.3 Equations of Kinetic Theory

8.3.1 Vlasov equation

Now consider the rate of change of the number of particles inside a small box in phase-space,
such as is shown in Figure 8.4. Defining 𝑎(𝑥, 𝑣, 𝑡) to be the acceleration of a particle, it is
seen that the particle flux in the horizontal direction is 𝑓𝑣 and the particle flux in the vertical
direction is 𝑓𝑎. Thus, the particle fluxes into the four sides of the box are:

1. flux into left side of box is 𝑓(𝑥, 𝑣, 𝑡)𝑣d𝑣
2. flux into right side of box is −𝑓(𝑥 + d𝑥, 𝑣, 𝑡)𝑣d𝑣
3. flux into bottom of box is 𝑓(𝑥, 𝑣, 𝑡)𝑎(𝑥, 𝑣, 𝑡)d𝑥
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Figure 8.4: A box within phase-space having width d𝑥 and height d𝑣.
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4. flux into top of box is −𝑓(𝑥, 𝑣 + 𝑑𝑣, 𝑡)𝑎(𝑥, 𝑣 + 𝑑𝑣, 𝑡)𝑑𝑥

The number of particles in the box is 𝑓(𝑥, 𝑣, 𝑡)d𝑥d𝑣 so that the rate of change of the number
of particles in the box is

𝜕𝑓(𝑥, 𝑣, 𝑡)
𝜕𝑡 d𝑥d𝑣 = −𝑓(𝑥 + d𝑥, 𝑣, 𝑡)𝑣d𝑣 + 𝑓(𝑥, 𝑣, 𝑡)𝑣d𝑣

− 𝑓(𝑥, 𝑣 + d𝑣, 𝑡)𝑎(𝑥, 𝑣 + d𝑣, 𝑡)d𝑥
+ 𝑓(𝑥, 𝑣, 𝑡)𝑎(𝑥, 𝑣, 𝑡)d𝑥

or, on Taylor expanding the quantities on the right-hand side, we obtain the one-dimensional
Vlasov equation,

𝜕𝑓
𝜕𝑡 + 𝑣𝜕𝑓𝜕𝑥 + 𝜕

𝜕𝑣(𝑎𝑓) = 0 (8.10)

It is straightforward to generalize Equation 8.10 to three dimensions and so obtain the three-
dimensional Vlasov equation,

𝜕𝑓
𝜕𝑡 + v ⋅ ∇𝑓 + 𝜕

𝜕v ⋅ (a𝑓) = 0 (8.11)

The symbol ∇ stands, as usual, for the gradient in (𝑥, 𝑦, 𝑧) space. The symbol 𝜕/𝜕v or ∇v
stands for the gradient in velocity space:

∇v = 𝜕
𝜕v = ̂𝑥 𝜕

𝜕𝑣𝑥
+ ̂𝑦 𝜕

𝜕𝑣𝑦
+ ̂𝑧 𝜕

𝜕𝑣𝑧

Because x,v are independent quantities in phase-space, the spatial derivative term has the
commutation property,

v ⋅ 𝜕𝑓𝜕x = 𝜕
𝜕x ⋅ (v𝑓)

The particle acceleration is given by the Lorentz force

a = 𝑞
𝑚(E + v × B)

Because (v×B)𝑖 = 𝑣𝑗𝐵𝑘 −𝑣𝑘𝐵𝑗 is independent of 𝑣𝑖, the term 𝜕(v×B)𝑖/𝜕𝑣𝑖 vanishes so that
even though the Lorentz acceleration a is velocity-dependent, it nevertheless commutes with
the vector velocity derivative as

a ⋅ 𝜕𝑓𝜕v = 𝜕
𝜕v ⋅ (a𝑓)

Because of this commutation property the Vlasov equation can also be written as

𝜕𝑓
𝜕𝑡 + v ⋅ 𝜕𝑓𝜕x + a ⋅ 𝜕𝑓𝜕v = 0 (8.12)
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If we “sit on top of” a particle that has a phase-space trajectory x = x(𝑡), v = v(𝑡) and
measure the distribution function as we move along with the particle, the observed rate of
change of the distribution function will be d𝑓(x(𝑡),v(𝑡), 𝑡)/d𝑡, where the d/d𝑡 means that the
derivative is measured in the moving frame. Because dx/d𝑡 = v and dv/d𝑡 = a, this observed
rate of change is

(d𝑓(x(𝑡),v(𝑡), 𝑡)
d𝑡 )

orbit
= 𝜕𝑓

𝜕𝑡 + v ⋅ 𝜕𝑓𝜕x + a ⋅ 𝜕𝑓𝜕v = 0

Thus, the distribution function 𝑓 as measured when moving along a particle trajectory (orbit)
is constant. This gives a powerful method for finding solutions to the Vlasov equation. Since
𝑓 is a constant when measured in a frame following an orbit, we can choose 𝑓 to depend on
any quantity that is constant along the orbit (Jeans 1915, Watson 1956).

For example, if the energy 𝐸 of particles is constant along their orbits then 𝑓 = 𝑓(𝐸) is a
solution to the Vlasov equation. On the other hand, if both the energy and the momentum
p are constant along particle orbits, then any distribution function with the functional depen-
dence 𝑓 = 𝑓(𝐸,p) is a solution to the Vlasov equation. Depending on the situation at hand,
the energy and/or momentum may or may not be constant along an orbit and so whether or
not 𝑓 = 𝑓(𝐸,p) is a solution to the Vlasov equation depends on the specific problem under
consideration. However, there always exists at least one constant of the motion for any tra-
jectory because, just like every human being has an invariant birthday, the initial conditions
of a particle trajectory are invariant along this trajectory. As a simple example, consider a
situation where there is no electromagnetic field so that a = 0, in which case the particle
trajectories are simply x(𝑡) = x0 + v0(𝑡), v(𝑡) = v0, where x0,v0 are the initial position and
velocity. Let us check to see whether 𝑓(x0) is a solution to the Vlasov equation. By writing
x0 = x(𝑡) − v0𝑡 so 𝑓(x0) = 𝑓(x(𝑡) − v0𝑡) we observe that indeed 𝑓 = 𝑓(x0) is a solution,
since

𝜕𝑓
𝜕𝑡 + v ⋅ 𝜕𝑓𝜕x + a ⋅ 𝜕𝑓𝜕v = v0 ⋅

𝜕𝑓
𝜕(x − x0)

+ v ⋅ 𝜕𝑓𝜕x = v0 ⋅
𝜕𝑓
𝜕x + v ⋅ 𝜕𝑓𝜕x = 0

8.3.2 Boltzmann equation

It was shown in ??? that the cumulative effect of grazing collisions dominates the cumulative
effect of the more infrequently occurring large-angle collisions. In order to see how collisions
affect the Vlasov equation, let us now temporarily imagine that the grazing collisions are
replaced by an equivalent sequence of abrupt large scattering angle encounters as shown in
Figure 8.5. Two particles involved in a collision do not significantly change their positions
during the course of a collision, but they do substantially change their velocities. For example,
a particle making a head-on collision with an equal mass stationary particle will stop after
the collision, while the target particle will assume the velocity of the incident particle. If we
draw the detailed phase-space trajectories characterized by a collision between two particles
we see that each particle has a sudden change in its vertical coordinate (i.e., velocity) but no
change in its horizontal coordinate (i.e., position). The collision-induced velocity jump occurs
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very fast so that if the phase-space trajectories were recorded with a “movie camera” having
insufficient framing rate to catch the details of the jump, the resulting movie would show
particles being spontaneously created or annihilated within given volumes of phase-space (e.g.,
within the boxes shown in Figure 8.5).

Figure 8.5: Detailed view of collisions causing “jumps” in phase-space.

The details of these individual jumps in phase-space are complicated and yet of little interest
since all we really want to know is the cumulative effect of many collisions. It is therefore both
efficient and sufficient to follow the trajectories on the slow time scale while accounting for the
apparent “creation” or “annihilation” of particles by inserting a collision operator on the right-
hand side of the Vlasov equation. In the example shown here it is seen that when a particle
is apparently “created” in one box, another particle must be simultaneously “annihilated” in
another box at the same 𝑥 coordinate but a different 𝑣 coordinate (of course, what is actually
happening is that a single particle is suddenly moving from one box to the other). This
coupling of the annihilation and creation rates in different boxes constrains the form of the
collision operator. We will not attempt to derive collision operators in this chapter but will
simply discuss the constraints on these operators. From a more formal point of view, collisions
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are characterized by constrained sources and sinks for particles in phase-space and inclusion
of collisions in the Vlasov equation causes the Vlasov equation to assume the form

𝜕𝑓𝑠
𝜕𝑡 + 𝜕

𝜕x ⋅ (v𝑓𝑠) +
𝜕
𝜕v ⋅ (a𝑓𝑠) = ∑

𝛼
𝐶𝑠𝛼(𝑓𝑠) (8.13)

where 𝐶𝑠𝛼(𝑓𝑠) is the rate of change of 𝑓𝑠 due to collisions of species 𝑠 with species 𝛼1. This is
called the Boltzmann equation.

The constraints that must be satisfied by the collision operator 𝐶𝑠𝛼(𝑓𝑠) are as follows:

• Conservation of particles - Collisions cannot change the total number of particles at a
particular location so

∫dv𝐶𝑠𝛼(𝑓𝑠) = 0 (8.14)

• Conservation of momentum - Collisions between particles of the same species cannot
change the total momentum of that species so

∫dv𝑚𝑠v𝐶𝑠𝑠(𝑓𝑠) = 0 (8.15)

while collisions between different species must conserve the total momentum of both
species together so

∫dv𝑚𝑖v𝐶𝑖𝑒(𝑓𝑖) +∫ dv𝑚𝑒v𝐶𝑒𝑖(𝑓𝑒) = 0 (8.16)

• Conservation of energy - Collisions between particles of the same species cannot change
the total energy of that species so

∫dv𝑚𝑠v2𝐶𝑠𝑠(𝑓𝑠) = 0 (8.17)

while collisions between different species must conserve the total energy of both species
together so

∫dv𝑚𝑖v2𝐶𝑖𝑒(𝑓𝑖) +∫ dv𝑚𝑒v2𝐶𝑒𝑖(𝑓𝑒) = 0 (8.18)

In a sufficiently hot plasma, collisions can be neglected. If, furthermore, the force F is entirely
electromagnetic, Equation 8.13 takes the special form of Equation 8.12. Because of its com-
parative simplicity, this is the equation most commonly studied in kinetic theory. When there
are collisions with neutral atoms, the collision term in Equation 8.13 can be approximated
by

(𝜕𝑓𝜕𝑡 )𝑐
= 𝑓𝑛 − 𝑓

𝜏
1For simulations, the effect of numerical diffusion may be treated as one type of “collision”.

276



where 𝑓𝑛 is the distribution function of the neutral atoms, and 𝜏 is a constant collision time.
This is called the Krook collision term. It is the kinetic generalization of the collision term
in Eq. (5.5) in (F. F. Chen 2016). When there are Coulomb collisions, Equation 8.13 can be
approximated by

d𝑓
d𝑡 = − 𝜕

𝜕v ⋅ (𝑓 ⟨Δv⟩)12
𝜕2

𝜕v𝜕v ∶ (𝑓 ⟨ΔvΔv⟩) (8.19)

This is called the Fokker-Planck equation; it takes into account binary Coulomb collisions only.
Here, Δv is the change of velocity in a collision, and Equation 8.19 is a shorthand way of
writing a rather complicated expression. The colon operator ab ∶ cd = 𝑎𝑖𝑏𝑗𝑐𝑖𝑑𝑗.
The fact that d𝑓/d𝑡 is constant in the absence of collisions means that particles follow the
contours of constant 𝑓 as they move around in phase space. As an example of how these
contours can be used, consider the beam-plasma instability of Section ???. In the unperturbed
plasma, the electrons all have velocity 𝑣0, and the contour of constant 𝑓 is a straight line. The
function 𝑓(𝑥, 𝑣𝑥) is a wall rising out of the plane of the paper at 𝑣𝑥 = 𝑣0. The electrons move
along the trajectory shown. When a wave develops, the electric field E1 causes electrons to
suffer changes in 𝑣𝑥 as they stream along. The trajectory then develops a sinusoidal ripple
(?@fig-beam-e-dist-1d B). This ripple travels at the phase velocity, not the particle velocity.
Particles stay on the curve as they move relative to the wave. If E1 becomes very large as the
wave grows, and if there are a few collisions, some electrons will be trapped in the electrostatic
potential of the wave. In coordinate space, the wave potential appears as in ?@fig-wave-
potential. In phase space, 𝑓(𝑥, 𝑣𝑥) will have peaks wherever there is a potential trough
(?@fig-contour-dist). Since the contours of 𝑓 are also electron trajectories, one sees that
some electrons move in closed orbits in phase space; these are just the trapped electrons.

Electron trapping is a nonlinear phenomenon which cannot be treated by straightforward
solution of the Vlasov equation. However, electron trajectories can be followed on a computer,
and the results are often presented in the form of a plot like ?@fig-contour-dist.

ADD A TWO STREAM INSTABILITY PHASE ANIMATION!

8.4 Derivation of the Fluid Equations

Instead of just taking moments of the distribution function 𝑓 itself, moments will now be taken
of the entire Vlasov equation to obtain a set of partial differential equations relating the mean
quantities 𝑛(x),u(x), etc. We begin by integrating the Vlasov equation, Equation 8.12, over
velocity for each species. This first and simplest step in the procedure is called taking the
“zeroth” moment, since the operation of multiplying by unity can be considered as multiplying
the entire Vlasov equation by v raised to the power zero. Multiplying the Vlasov equation by
unity and then integrating over velocity gives

∫[𝜕𝑓𝑠𝜕𝑡 + 𝜕
𝜕x ⋅ (v𝑓𝑠) +

𝜕
𝜕v ⋅ (a𝑓𝑠)]dv = ∑

𝛼
∫𝐶𝑠𝛼(𝑓𝑠)dv
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The velocity integral commutes with both the time and space derivatives on the left-hand side
because x,v and 𝑡 are independent variables, while the third term on the left-hand side is the
volume integral of a divergence in velocity space. Gauss’ theorem (i.e., ∫𝑉 dx∇⋅Q = ∫𝐴 ds ⋅Q)
gives 𝑓𝑠 evaluated on a surface at 𝑣 = ∞. However, because 𝑓𝑠 → 0 as 𝑣 → ∞, this surface
integral in velocity space vanishes. Inserting Equation 8.1, Equation 8.4, and Equation 8.14
into the above, we have the species continuity equation

𝜕𝑛𝑠
𝜕𝑡 + ∇ ⋅ (𝑛𝑠u𝑠) = 0 (8.20)

Now let us multiply Equation 8.12 by v and integrate over velocity to take the “first mo-
ment”,

∫v [𝜕𝑓𝑠𝜕𝑡 + 𝜕
𝜕x ⋅ (v𝑓𝑠) +

𝜕
𝜕v ⋅ (a𝑓𝑠)]dv = ∑

𝛼
∫v𝐶𝑠𝛼(𝑓𝑠)dv

This may be rearranged in a more tractable form by:

1. pulling both the time and space derivatives out of the velocity integral,
2. writing v = v′(x, 𝑡) + u(x, 𝑡), where v′(x, 𝑡) is the random part of a given velocity, i.e.,

that part of the velocity that differes from the mean (note that v is independent of both
x and 𝑡 but v′ is not; also dv = dv′ since u is independent of v),

3. integrating by parts in 3-D velocity space on the acceleration term and using

𝜕𝑖v𝑗 = 𝛿𝑖𝑗
After performing these manipulations, the first moment of the Vlasov equation becomes

𝜕(𝑛𝑠u𝑠)
𝜕𝑡 + 𝜕

𝜕x ⋅ ∫ (v′v′ + v′u𝑠 + u𝑠v′ + u𝑠u𝑠) 𝑓𝑠dv′

− 𝑞𝑠
𝑚𝑠

∫(E + v × B) 𝑓𝑠dv′ = − 1
𝑚𝑠

R𝑠𝛼

(8.21)

where R𝑠𝛼 is the net frictional drag force due to collisions of species 𝑠 with species 𝛼. Note
that R𝑠𝑠 = 0, since a species cannot exert a net drag force on itself. The frictional terms have
the form

R𝑒𝑖 = 𝜈𝑒𝑖𝑚𝑒𝑛𝑒(u𝑒 − u𝑖)
R𝑖𝑒 = 𝜈𝑖𝑒𝑚𝑖𝑛𝑖(u𝑖 − u𝑒)

so that in the ion frame the drag on electrons is simply the total electron momentum 𝑚𝑒𝑛𝑒u𝑒
measured in this frame multiplied by the rate 𝜈𝑒𝑖 at which this momentum is destroyed by
collisions with ions. This form for frictional drag force has the following properties: (i) R𝑒𝑖 +
R𝑖𝑒 = 0, showing that the plasma cannot exert a frictional drag force on itself, (ii) friction
causes the faster species to be slowed down by the slower species, and (iii) there is no friction
between species if both have the same mean velocity.
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Equation 8.21 can be further simplified by factoring u out of the velocity integrals and recalling
that by definition ∫v′𝑓𝑠dv′ = 0. Thus Equation 8.21 reduces to

𝑚𝑠 [
𝜕(𝑛𝑠u𝑠)

𝜕𝑡 + 𝜕
𝜕x ⋅ (𝑛𝑠u𝑠u𝑠)] = 𝑛𝑠𝑞𝑠(E + u𝑠 × B) − 𝜕

𝜕x ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑠 − R𝑠𝛼

where the pressure tensor is defined by

⃡⃡⃡ ⃡⃡𝑃𝑠 ≡ 𝑚𝑠 ∫v′v′𝑓𝑠dv′ (8.22)

If 𝑓𝑠 is an isotropic function of v′, then the off-diagonal terms in ⃡⃡⃡ ⃡⃡𝑃𝑠 vanish and the three
diagonal terms are identical. In this case, it is useful to define the diagonal terms to be the
scalar pressure 𝑝𝑠, i.e.,

𝑝𝑠 = 𝑚𝑠 ∫𝑣′𝑥𝑣′𝑥𝑓𝑠dv′ = 𝑚𝑠 ∫𝑣′𝑦𝑣′𝑦𝑓𝑠dv′ = 𝑚𝑠 ∫𝑣′𝑧𝑣′𝑧𝑓𝑠dv′

= 𝑚𝑠
3 ∫v′ ⋅ v′𝑓𝑠dv′

(8.23)

Equation 8.23 defines pressure for a three-dimensional isotropic system. However, we will often
deal with systems of reduced dimensionality, i.e., systems with just one or two dimensions.
Equation 8.23 can therefore be generalized to these other cases by introducing the general
N-dimensional definition for scalar pressure

𝑝𝑠 = 𝑚𝑠
𝑁 ∫v′ ⋅ v′𝑓𝑠d𝑁v′ (8.24)

where v′ is the N-dimensional random velocity.

The scalar pressure has a simple relation to the generalized Maxwellian as seen by recasting
Equation 8.24 as

𝑝𝑠 = 𝑚𝑠
𝑁 ∫v′ ⋅ v′𝑓𝑠d𝑁v′

= 𝑛𝑠𝑚𝑠
𝑁 ( 𝑚𝑠

2𝜋𝑘𝐵𝑇𝑠
)

𝑁/2
∫v′2 exp(−𝑚𝑠v′2

2𝑘𝐵𝑇𝑠
)d𝑁v′

= −𝑛𝑠𝑚𝑠
𝑁 (𝛼𝜋)

𝑁/2 d
d𝛼 ∫𝑒−𝛼𝑣′2d𝑁v′, 𝛼 ≡ 𝑚𝑠/2𝑘𝐵𝑇𝑠

= −𝑛𝑠𝑚𝑠
𝑁 (𝛼𝜋)

𝑁/2 d
d𝛼 (𝛼𝜋)

−𝑁/2

= 𝑛𝑠𝑘𝐵𝑇𝑠

which is just the ideal gas law. Thus, the definitions that have been proposed for pressure and
temperature are consistent with everyday notions for these quantities.
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It is important to emphasize that assuming isotropy is done largely for mathematical conve-
nience and that in real systems the distribution function is often quite anisotropic. Collisions,
being randomizing, drive the distribution function towards isotropy, while competing processes
simultaneously drive it towards anisotropy. Thus, each situation must be considered individu-
ally in order to determine whether there is sufficient collisionality to make 𝑓 isotropic. Because
fully ionized hot plasmas often have insufficient collisions to make 𝑓 isotropic, the often-used
assumption of isotropy is an oversimplification, which may or may not be acceptable depending
on the phenomenon under consideration.

On expanding the derivatives on the left-hand side of Equation 8.21, it is seen that two of
the terms combine to give u times Equation 8.20. After removing this embedded continuity
equation, E@eq-vlasov-1st-moment reduces to

𝑛𝑠𝑚𝑠
du𝑠
d𝑡 = 𝑛𝑠𝑞𝑠(E + u𝑠 × B) − ∇𝑝𝑠 − R𝑠𝛼

where the operator d/d𝑡 is the convective derivative (Equation 3.2).

At this point in the procedure it becomes evident that a certain pattern recurs for each suc-
cessive moment of the Vlasov equation. When we took the zeroth moment, an equation for
the density ∫𝑓dv resulted, but this also introduced a term involving the next higher moment,
namely the mean velocity ∼ ∫v𝑓dv. Then, when we took the first moment to get an equation
for the velocity, an equation was obtained containing a term involving the next higher moment,
namely the pressure ∼ ∫vv𝑓dv. Thus, each time we take a moment of the Vlasov equation,
an equation for the moment we want is obtained, but because of the v ⋅∇𝑓 term in the Vlasov
equation, a next higher moment also appears. Thus, moment-taking never leads to a closed
system of equations; there will always be a “loose end”, a highest moment for which there is
no determining equation. Some sort of ad hoc closure procedure must always be invoked to
terminate this chain (as seen below, typical closures involve invoking adiabatic or isothermal
assumptions). Another feature of taking moments is that each higher moment embeds terms
that contain complete lower moment equations multiplied by some factor. Algebraic manip-
ulation can identify these lower moment equations and eliminate them to give a simplified
higher moment equation.

Let us now take the second moment of the Vlasov equation. Unlike the zeroth and first
moments, the dimensionality of the system now enters explicitly so the more general pressure
definition given by Equation 8.24 will be used. Multiplying the Vlasov equation by 𝑚𝑠𝑣2/2
and integrating over velocity gives

⎧{
⎨{⎩

𝜕
𝜕𝑡 ∫

𝑚𝑠𝑣2

2 𝑓𝑠d𝑁v
+ 𝜕

𝜕x ⋅ ∫ 𝑚𝑠𝑣2

2 v𝑓𝑠d𝑁v
+𝑞𝑠 ∫ 𝑣2

2
𝜕
𝜕v ⋅ (E + v × B)𝑓𝑠d𝑁v

⎫}
⎬}⎭

= ∑
𝛼

∫𝑚𝑠
𝑣2
2 𝐶𝑠𝛼𝑓𝑠d𝑁v (8.25)

We consider each term of this equation separately as follows:
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1. The time derivative term becomes

𝜕
𝜕𝑡 ∫

𝑚𝑠𝑣2
2 𝑓𝑠d𝑁v = 𝜕

𝜕𝑡 ∫
𝑚𝑠(v′ + u𝑠)2

2 𝑓𝑠d𝑁v′ = 𝜕
𝜕𝑡 (

𝑁𝑝𝑠
2 + 𝑚𝑠𝑛𝑠𝑢2

𝑠
2 )

2. Again using v = v′ + u𝑠, the space derivative term becomes

𝜕
𝜕x ⋅ ∫ 𝑚𝑠𝑣2

2 v𝑓𝑠d𝑁v = ∇ ⋅ (Q𝑠 +
2 +𝑁

2 𝑝𝑠u𝑠 +
𝑚𝑠𝑛𝑠𝑢2

𝑠
2 u𝑠)

where

Q𝑠 = ∫ 𝑚𝑠𝑣′
2

2 v′𝑓𝑠d𝑁v

is called the heat flux.

3. On integrating by parts, the acceleration term becomes

𝑞𝑠 ∫
𝑣2
2

𝜕
𝜕v ⋅ (E + v × B)𝑓𝑠d𝑁v = −𝑞𝑠 ∫v ⋅ E𝑓𝑠dv = −𝑞𝑠𝑛𝑠u𝑠 ⋅ E

4. The collision term becomes (using Equation 8.17)

∑
𝛼

∫𝑚𝑠
𝑣2
2 𝐶𝑠𝛼𝑓𝑠d𝑁v = ∫

𝑠≠𝛼
𝑚𝑠

𝑣2
2 𝐶𝑠𝛼𝑓𝑠dv = −(𝜕𝑊

𝜕𝑡 )
Es�

where (𝜕𝑊/𝜕𝑡)Es� is the rate at which species 𝑠 collisionally transfers energy to species
𝛼.

Combining the above four relations, Equation 8.25 becomes

𝜕
𝜕𝑡 (

𝑁𝑝𝑠
2 + 𝑚𝑠𝑛𝑠𝑢2

𝑠
2 ) +∇ ⋅ (Q𝑠 +

2 +𝑁
2 𝑝𝑠u𝑠 +

𝑚𝑠𝑛𝑠𝑢2
𝑠

2 u𝑠)− 𝑞𝑠𝑛𝑠u𝑠 ⋅ E

= −(𝜕𝑊
𝜕𝑡 )

E�s

(8.26)

This equation can be simplified by invoking two mathmatical identities, the first being

𝜕
𝜕𝑡 (

𝑚𝑠𝑛𝑠𝑢2
𝑠

2 ) +∇ ⋅ (𝑚𝑠𝑛𝑠𝑢2
𝑠

2 u𝑠) = 𝑛𝑠 (
𝜕
𝜕𝑡 + u𝑠 ⋅ ∇) 𝑚𝑠𝑢2

𝑠
2 = 𝑛𝑠

d
d𝑡 (

𝑚𝑠𝑢2
𝑠

2 )

The second identity is obtained by dotting the equation of motion with u𝑠:

𝑛𝑠𝑚𝑠 [
𝜕
𝜕𝑡 (

𝑢2
𝑠
2 ) + u𝑠 ⋅ (∇(𝑢2

𝑠
2 ) − u𝑠 ×∇× u𝑠)]

= 𝑛𝑠𝑞𝑠u𝑠 ⋅ E − u𝑠 ⋅ ∇𝑝𝑠 − R𝑠𝛼 ⋅ u𝑠
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or
𝑛𝑠

d
d𝑡 (

𝑚𝑠𝑢2
𝑠

2 ) = 𝑛𝑠𝑞𝑠u𝑠 ⋅ E − u𝑠 ⋅ ∇𝑝𝑠 − R𝑠𝛼 ⋅ u𝑠

Inserting these two into Equation 8.26 gives the energy evolution equation

𝑁
2

d𝑝𝑠
d𝑡 + 2 + 𝑁

2 𝑝𝑠∇ ⋅ u𝑠 = −∇ ⋅ Q𝑠 + R𝑠𝛼 ⋅ u𝑠 − (𝜕𝑊
𝜕𝑡 )

Es�
(8.27)

The first term on the right-hand side represents the heat flux, the second term gives the
frictional heating of species 𝑠 due to frictional drag on species 𝛼, while the last term on the
right-hand side gives the rate at which species 𝑠 collisionally transfers energy to other species.
Although Equation 8.27 is complicated, two important limiting situations become evident if we
let 𝑡char be the characteristic time scale for a given phenomenon and 𝑙char be its characteristic
length scale. A characteristic velocity 𝑉ph ∼ 𝑙char/𝑡char may then be defined for the phenomenon
and so, replacing temporal derivatives by 𝑡−1

char and spatial derivatives by 𝑙−1
char in Equation 8.27,

it is seen that the two limiting situations are:

1. Isothermal limit - The heat flux term dominates all other terms, in which case the
temperature becomes spatially uniform. This occurs if (i) 𝑣𝑇𝑠 ≫ 𝑉ph since the ratio of
the left-hand side terms to the heat flux term is ∼ 𝑉ph/𝑣𝑇𝑠 and (ii) the collisional terms
are small enough to be ignored.

2. Adiabatic limit - The heat flux terms and the collisional terms are small enough to be
ignored compared to the left-hand side terms; this occurs when 𝑉ph ≫ 𝑣𝑇𝑠. Adiabatic is
a Greek word meaning “impassable”, and is used here to denote that no heat is flowing,
i.e., the volume under consideration is thermally isolated from the outside world.

Both of these limits make it possible to avoid solving for Q𝑠, which involves the third moment,
and so both the adiabatic and isothermal limit provide a closure to the moment equations.

The energy equation may be greatly simplified in the adiabatic limit by re-arranging the
continuity equation to give

∇ ⋅ u𝑠 = − 1
𝑛𝑠

d𝑛𝑠
d𝑡

and then substituting this expression into the left-hand side of Equation 8.27 to obtain

1
𝑝𝑠

d𝑝𝑠
d𝑡 = 𝛾

𝑛𝑠

d𝑛𝑠
d𝑡 (8.28)

where
𝛾 = 𝑁 + 2

𝑁
Equation 8.28 implies

d
d𝑡 (

𝑝𝑠
𝑛𝛾
𝑠
) = 0
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so 𝑝𝑠/𝑛𝛾
𝑠 is a constant in the frame of the moving plasma. This constitutes a derivation

of adiabaticity based on geometry and statistical mechanics rather than on thermodynamic
arguments.

The energy equation derivation can also be found in An introductory guide to fluid models
with anisotropic temperatures.

As a short summary, the fluid equations we have been using are simply moments of the
Boltzmann equation. One interesting observation from Equation 8.12 is that in order to recover
the hydrodynamic equations, the acceleration term a⋅𝜕v𝑓 is not required: the pressure gradient
that drives the flow arises from the thermal motion embedded in the advection term v ⋅ 𝜕x𝑓 .

We must be careful not to become overconfident regarding the descriptive power of the fluid
point of view because weaknesses exist in this point of view. For example, as discussed above
neither the adiabatic nor the isothermal approximation is appropriate when 𝑉ph ∼ 𝑣𝑇𝑠. The
fluid description breaks down in this situation and the Vlasov description must be used in
this situation. Furthermore, the distribution function is Maxwellian only if there are sufficient
collisions or some other randomizing process. Because of the weak collisionality of a plasma,
this is very often not the case. In particular, since the collision frequency scales as 𝑣−3 (Equa-
tion 6.20), fast particles take much longer to become Maxwellian than slow particles. It is not
at all unusual for a real plasma to be in a state where the low-velocity particles have reached
a Maxwellian distribution whereas the fast particles form a non-Maxwellian tail.

8.5 Plasma Oscillations and Landau Damping

As an elementary illustration of the use of the Vlasov equation, we shall derive the dispersion
relation for electron plasma oscillations, which is originally treated from the fluid point of view.
This derivation will require a knowledge of contour integration.

In zeroth order, we assume a uniform plasma with a distribution 𝑓0(v), and we let B0 = E0 = 0.
In first order, we denote the perturbation in 𝑓(r,v, 𝑡) by 𝑓1(r,v, 𝑡):

𝑓(r,v, 𝑡) = 𝑓0(v) + 𝑓1(r,v, 𝑡)

Since v is now an independent variable and is not to be linearized, the first-order Vlasov
equation for electron is

𝜕𝑓1
𝜕𝑡 + v ⋅ ∇𝑓1 −

𝑒
𝑚E1 ⋅

𝜕𝑓0
𝜕v = 0 (8.29)

As before, we assume the ions are massive and fixed and that the waves are plane waves in
the x direction 𝑓1 ∝ 𝑒𝑖(𝑘𝑥−𝜔𝑡). Then the linearized Vlasov equation becomes
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−𝑖𝜔𝑓1 + 𝑖𝑘𝑣𝑥𝑓1𝑥 = 𝑒
𝑚𝐸𝑥

𝜕𝑓0
𝜕𝑣𝑥

𝑓1 = 𝑖𝑒𝐸𝑥
𝑚

𝜕𝑓0/𝜕𝑣𝑥
𝜔 − 𝑘𝑣𝑥

Poisson’s equation gives

𝜖0∇ ⋅ E1 = 𝑖𝑘𝜖0𝐸𝑥 = −𝑒𝑛1 = −𝑒∫∫∫𝑓1𝑑3𝑣

Substituting for 𝑓1 and dividing by 𝑖𝑘𝜖0𝐸𝑥, we have

1 = − 𝑒2
𝑘𝑚𝜖0

∫∫∫ 𝜕𝑓0/𝜕𝑣𝑥
𝜔 − 𝑘𝑣𝑥

𝑑3𝑣

A factor 𝑛0 can be factored out if we replace 𝑓0 by a normalized function ̂𝑓0:

1 = −𝜔2
𝑝
𝑘 ∫

∞

−∞
𝑑𝑣𝑧 ∫

∞

−∞
𝑑𝑣𝑦 ∫

∞

−∞

𝜕 ̂𝑓0(𝑣𝑥, 𝑣𝑦, 𝑣𝑧)/𝜕𝑣𝑥
𝜔 − 𝑘𝑣𝑥

𝑑𝑣𝑥

If 𝑓0 is a Maxwellian or some other factorable distribution, the integration over 𝑣𝑦 and 𝑣𝑧 can
be carried out easily. What remains is the one-dimensional distribution ̂𝑓0(𝑣𝑥). For instance,
a one-dimensional Maxwellian distribution is

̂𝑓𝑚(𝑣𝑥) = √ 𝑚
2𝜋𝑘𝐵𝑇

𝑒
−𝑚𝑣2𝑥
2𝑘𝐵𝑇

Since we are dealing with a one-dimensional problem we may drop the subscript x, begin
careful not to confuse 𝑣 (which is really 𝑣𝑥) with the total velocity 𝑣 used earlier:

1 = 𝜔2
𝑝

𝑘2 ∫
∞

−∞

𝜕 ̂𝑓0/𝜕𝑣
𝑣 − 𝜔/𝑘d𝑣 (8.30)

Here, ̂𝑓0 is understood to be a one-dimensional distribution function, the integrations over 𝑣𝑦
and 𝑣𝑧 having been made. This equation holds for any equilibrium distribution ̂𝑓0(𝑣).
The integral in this equation is not straightforward to evaluate because of the singularity at
𝑣 = 𝜔/𝑘. One might think that the singularity would be of no concern, because in practice 𝜔
is almost always never real; waves are usually slightly damped by collisions or are amplified
by some instability mechanisms. Since the velocity 𝑣 is a real quantity, the denominator never
vanishes. Landau was the first to treat this equation properly. He found that even though the
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singularity lies off the path of integration, its presence introduces an important modification
to the plasma wave dispersion relation — an effect not predicted by the fluid theory.

Consider an initial value problem in which the plasma is given a sinusoidal perturbation, and
therefore 𝑘 is real. If the perturbation grows or decays, 𝜔 will be complex. This integral must
be treated as a contour integral in the complex 𝑣 plane. Possible contours are shown for (a) an
unstable wave, with ℑ(𝜔) > 0, and (b) a dampled wave, with ℑ(𝜔) < 0. Normally, one would
evaluate the line integral along the real 𝑣 axis by the residue theorem:

∫
𝐶1

𝐺d𝑣 +∫
𝐶2

𝐺d𝑣 = 2𝜋𝑖𝑅(𝜔/𝑘)

where 𝐺 is the integrand, 𝐶1 is the path along the real axis, 𝐶2 is the semicircle at infinity,
and 𝑅(𝜔/𝑘) is the residue at 𝜔/𝑘. This works if the integral over 𝐶2 vanishes. Unfortunately,
this does not happen for a Maxwellian distribution, which contains the factor

exp(−𝑣2/𝑣2𝑡ℎ)

This factor becomes large for 𝑣 → ±𝑖∞, and the contribution from 𝐶2 cannot be neglected.
Landau showed that when the problem is properly treated as an initial value problem the
correct contour to use is the curve 𝐶1 passing below the singularity. This integral must in
general be evaluated numerically.

Although an exact analysis of this problem is complicated, we can obtain an approximate
dispersion relation for the case of large phase velocity and weak damping. In this case, the
pole at 𝜔/𝑘 lies near the real 𝑣 axis. The contour prescribed by Landau is then a straight line
along the ℜ(𝑣) axis with a small semicircle around the pole. In going around the pole, one
obtains 2𝜋𝑖 time half the residue there. Then Equation 8.30 becomes

1 = 𝜔2
𝑝

𝑘2 [𝑃 ∫
∞

−∞

𝜕 ̂𝑓0/𝜕𝑣
𝑣 − (𝜔/𝑘)d𝑣 + 𝑖𝜋𝜕

̂𝑓0
𝜕𝑣 ∣

𝑣=𝜔/𝑘
] (8.31)

where 𝑃 stands for the Cauchy principal value. To evaluate this, we integrate along the
real 𝑣 axis but stop just before encountering the pole. If the phase velocity 𝑣𝜙 = 𝜔/𝑘 is
sufficiently large, as we assume, there will not be much contribution from the neglected part
of the contour, since both ̂𝑓0 and 𝜕 ̂𝑓0/𝜕𝑣 are very small there. The integral above can be
evaluated by integration by parts:

∫
∞

−∞

𝜕 ̂𝑓0
𝜕𝑣

d𝑣
𝑣 − 𝑣𝜙

= [
̂𝑓0

𝑣 − 𝑣𝜙
]
∞

−∞
−∫

∞

−∞

− ̂𝑓0d𝑣
(𝑣 − 𝑣𝜙)2

= ∫
∞

−∞

̂𝑓0d𝑣
(𝑣 − 𝑣𝜙)2

Since this is just an average of (𝑣 − 𝑣𝜙)−2 over the distribution, the real part of the dispersion
relation can be written

1 = 𝜔2
𝑝

𝑘2 (𝑣 − 𝑣𝜙)−2
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Since 𝑣𝜙 ≫ 𝑣 has been assumed, we can expand (𝑣 − 𝑣𝜙)−2:

(𝑣 − 𝑣𝜙)−2 = 𝑣−2
𝜙 (1 − 𝑣

𝑣𝜙
)
−2

= 𝑣−2
𝜙 (1 + 2𝑣

𝑣𝜙
+ 3𝑣2

𝑣2𝜙
+ 4𝑣3

𝑣3𝜙
+ ...)

The odd terms vanish upon taking the average, and we have

(𝑣 − 𝑣𝜙)−2 ≈ 𝑣−2
𝜙 (1 + 3𝑣2

𝑣2𝜙
)

We now let ̂𝑓0 be Maxwellian and evaluate 𝑣2. Remembering that 𝑣 here is an abbreviation
for 𝑣𝑥, we can write

1
2𝑚𝑣2𝑥 = 1

2𝑘𝐵𝑇𝑒

there being only one degree of freedom. The dispersion relation then becomes

1 = 𝜔2
𝑝

𝑘2
𝑘2

𝜔2(1 + 3𝑘
2

𝜔2
𝑘𝐵𝑇𝑒
𝑚 )

𝜔2 = 𝜔2
𝑝 + 𝜔2

𝑝
𝜔2

3𝑘𝐵𝑇𝑒
𝑚 𝑘2

If the thermal correction is small (i.e. the second term on the right-hand side is small, such
that 𝜔 ≈ 𝜔𝑝), we may replace 𝜔2 by 𝜔2

𝑝 in the second term. We then have

𝜔2 = 𝜔2
𝑝 + 3𝑘𝐵𝑇𝑒

𝑚 𝑘2

which is the same as that been obtained from the fluid equations with 𝛾 = 3.
We now return to the imaginary term in the dispersion relation. In evaluating this small term,
it will be sufficiently accurate to neglect the thermal correction to the real part of 𝜔 and let
𝜔2 ≈ 𝜔2

𝑝. From the evaluation of the real part above we see that the principle value of the
integral is approximately 𝑘2/𝜔2. The dispersion relation now becomes

1 = 𝜔2
𝑝

𝜔2 + 𝑖𝜋𝜔
2
𝑝

𝑘2
𝜕 ̂𝑓0
𝜕𝑣 ∣

𝑣=𝑣𝜙

𝜔2(1 − 𝑖𝜋𝜔
2
𝑝

𝑘2
𝜕 ̂𝑓0
𝜕𝑣 ∣

𝑣=𝑣𝜙

) = 𝜔2
𝑝

Treating the imaginary term as small, we can bring it to the right-hand side and take the
square root by Taylar series expansion. We then obtain

𝜔 = 𝜔𝑝(1 + 𝑖𝜋2
𝜔2
𝑝

𝑘2
𝜕 ̂𝑓0
𝜕𝑣 ∣

𝑣=𝑣𝜙

) (8.32)
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If ̂𝑓0 is a one-dimensional Maxwellian, we have

𝜕 ̂𝑓0
𝜕𝑣 = (𝜋𝑣2𝑡ℎ)−1/2(−2𝑣

𝑣2𝑡ℎ
) exp(−𝑣2

𝑣2𝑡ℎ
) = − 2𝑣√𝜋𝑣𝑡ℎ

exp(−𝑣2
𝑣2𝑡ℎ

)

We may approximate 𝑣𝜙 by 𝜔𝑝/𝑘 in the coefficient, but in the exponent we must keep the
thermal correction in the real part of the dispersion relation. The damping is then given by

ℑ(𝜔) = −𝜋
2
𝜔2
𝑝

𝑘2
2𝜔𝑝
𝑘√𝜋

1
𝑣3𝑡ℎ

exp( −𝜔2

𝑘2𝑣2𝑡ℎ
)

= −√𝜋𝜔𝑝(
𝜔𝑝
𝑘𝑣𝑡ℎ

)
3
exp( −𝜔2

𝑝
𝑘2𝑣2𝑡ℎ

) exp(−3
2 )

ℑ( 𝜔
𝜔𝑝

) = −0.22√𝜋( 𝜔𝑝
𝑘𝑣𝑡ℎ

)
3
exp( −1

2𝑘2𝜆2
𝐷
)

Since ℑ(𝜔) is negative, there is a collisionless damping of plasma waves; this is called Landau
damping. As is evident from the expression, this damping is extremely small for small 𝑘𝜆𝐷,
but becomes important for 𝑘𝜆𝐷 = 𝒪(1). This effect is connected with 𝑓1, the distortion of the
distribution function caused by the wave.

8.6 The Meaning of Landau Damping

The theoretical discovery of wave damping without energy dissipation by collisions
is perhaps the most astounding result of plasma physics research. That this is a real
effect has been demonstrated in the laboratory. Although a simple physical explanation for this
damping is now available, it is a triumph of applied mathematics that this unexpected effect
was first discovered purely mathematically in the course of a careful analysis of a contour
integral. Landau damping is a characteristic of collisionless plasmas, but it may also have
application in other fields. For instance, in the kinetic treatment of galaxy formation, stars can
be considered as atoms of a plasma interacting via gravitational rather than electromagnetic
forces. Instabilities of the gas of stars can cause spiral arms to form, but this process is limited
by Landau damping.

To see what is responsible for Landau damping, we first notice that ℑ(𝜔) arises from the pole at
𝑣 = 𝑣𝜙. Consequently, the effect is connected with those particles in the distribution that have
a velocity nearly equal to the phase velocity — the “resonant particles”. These particles travel
along with the wave and do not see a rapidly fluctuating electric field: they can, therefore,
exchange energy with the wave effectively. The easiest way to understand this exchange of
energy is to picture a surfer trying to catch an ocean wave. (Warning: this picture is only for
directing our thinking along the right lines; it does not correctly explain the damping.) If the
surfboard is not moving, it merely bobs up and down as the wave goes by and does not gain any
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energy on the average. Similarly, a boat propelled much faster than the wave cannot exchange
much energy with the wave. However, if the surfboard has almost the same velocity as the
wave, it can be caught and pushed along by the wave; this is, after all, the main purpose of
the exercise. In that case, the surfboard gains energy, and therefore the wave must lose energy
and is damped. On the other hand, if the surfboard should be moving slightly faster than the
wave, it would push on the wave as it moves uphill; then the wave could gain energy. In a
plasma, there are electrons both faster and slower than the wave. A Maxwellian distribution,
however, has more slow electrons than fast ones. Consequently, there are more particles taking
energy from the wave than vice versa, and the wave is damped. As particles with 𝑣 ≈ 𝑣𝜙 are
trapped in the wave, 𝑓(𝑣) is flattened near the phase velocity. This distortion is 𝑓1(𝑣) which
we calculated. As seen in Fig (ADD IT!), the perturbed distribution function contains the
same number of particles but has gained total energy (at the expense of the wave).

From this discussion, one can surmise that if 𝑓0(𝑣) contained more fast particles than slow
particles, a wave can be excited. Indeed, from the expression of 𝜔 above, it is apparent that
ℑ(𝜔) is positive if 𝜕 ̂𝑓0/𝜕𝑣 is positive at 𝑣 = 𝑣𝜙. Such a distribution is shown in Fig.7-19
(ADD IT!). Waves with 𝑣𝜙 in the region of positive slope will be unstable, gaining energy at
the expense of the particles. This is just the finite-temperature analogy of the two stream
instability. When there are two cold (𝑘𝐵𝑇 = 0) electron streams in motion, 𝑓0(𝑣) consists of
two 𝛿-functions. This is clearly unstable because 𝜕𝑓0/𝜕𝑣 is infinite; and indeed, we found the
instability from fluid theory. When the streams have fnite temperature, kinetic theory tells
us that the relative densities and temperatures of the two stream must be such as to have
a region of positive 𝜕𝑓0(𝑣)/𝜕𝑣 between them; more precisely, the total distribution function
must have a minimum for instability.

The physical picture of a surfer catching waves is very appealing, but it is not
precise enough to give us a real understanding of Landau damping. There are
actually two kinds of Landau damping. Both kinds are independent of dissipative collisional
mechanisms. If a particle is caught in the potential well of a wave, the phenomenon is called
“trapping”. As in the case of a surfer, particles can indeed gain or lose energy in trapping.
However, trapping does not lie within the purview of the linear theory. That this is true can
be seen from the equation of motion

𝑚 ̈𝑥 = 𝑞𝐸(𝑥)

If one evaluates 𝐸(𝑥) by inserting the exact value of 𝑥, the equation would be nonlinear, since
𝐸(𝑥) is somehting like sin 𝑘𝑥. What is done in linear theory is to use for 𝑥 the unperturbed
orbit; i.e. 𝑥 = 𝑥0 + 𝑣0𝑡. Then this becomes linear. This approximation, however, is no longer
valid when a particle is trapped. When it encounters a potential hill large enough to reflect it,
its velocity and position are, of course, greatly affected by the wave and are not close to their
unperturbed values. In fluid theory, the equation of motion is
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𝑚[𝜕v
𝜕𝑡 + (v ⋅ ∇)v] = 𝑞E(𝑥)

Here, E(𝑥) is to be evaluated in the laboratory frame, which is easy; but to make up for it,
there is the (v ⋅ ∇)v term. The neglect of (v1 ⋅ ∇)v1 in linear theory amounts to the same
thing as using unperturbed orbits. In kinetic theory, the nonlinear term that is neglected is,
from the first-order Vlasov Equation 8.29,

𝑞
𝑚𝐸1

𝜕𝑓1
𝜕𝑣

When the particles are trapped, they reverse their direction of travel relative to the wave, so
the distribution function 𝑓(𝑣) is greatly disturbed near 𝑣 = 𝜔/𝑘. This means that 𝜕𝑓1/𝜕𝑣 is
comparable to 𝜕𝑓0/𝜕𝑣, and the term above is not negligible. Hence, trapping is not in the
linear theory.

When a wave grows to a large amplitude, collisionless damping with trapping does occur.
One then finds that the wave does not decay monotonically; rather, the amplitude fluctuates
during the decay as the trapped particles bounce back and forth in the potential wells. This is
nonlinear Landau damping. Since the result before was derived from a linear theory, it must
arise from a different physical effect. The question is: can untrapped electrons moving close
to the phase velocity of the wave exchange energy with the wave? Before giving the answer,
let us examine the energy of such electrons.

8.6.1 The Kinetic Energy of a Beam of Electrons

We may divide the electron distribution 𝑓0(𝑣) into a large number of monoenergetic beams.
Consider one of these beams: it has unperturbed velocity 𝑢 and density 𝑛𝑢. The velocity
𝑢 may lie near 𝑣𝜙, so that this beam may consist of resonant electrons. We now turn on a
plasma oscillation 𝐸(𝑥, 𝑡) and consider the kinetic energy of the beam as it moves through
the crests and troughs of the wave. The wave is caused by a self-consistent motion of all the
beams together. If 𝑛𝑢 is small enough (the number of beams large enough), the beam being
examined has a negligible effect on the wave and may be considered as moving in a given field
𝐸(𝑥, 𝑡). Let

𝐸 = 𝐸0 sin(𝑘𝑥 − 𝜔𝑡) = −𝑑𝜙/d𝑡
𝜙 = (𝐸0/𝑘) cos(𝑘𝑥 − 𝜔𝑡)

The linearized fluid equation for the beam is

𝑚(𝜕𝑣1𝜕𝑡 + 𝑢𝜕𝑣1𝜕𝑥 ) = −𝑒𝐸0 sin(𝑘𝑥 − 𝜔𝑡)
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A possible solution is

𝑣1 = −𝑒𝐸0
𝑚

cos(𝑘𝑥 − 𝜔𝑡)
𝜔 − 𝑘𝑢

This is the velocity modulation caused by the wave as the beam electrons move past. To
conserve particle flux, there is a corresponding oscillation in density, given by the linearized
continuity equation:

𝜕𝑛1
𝜕𝑡 + 𝑢𝜕𝑛1

𝜕𝑥 = −𝑛𝑢
𝜕𝑣1
𝜕𝑥

Since 𝑣1 is proportional to cos(𝑘𝑥− 𝜔𝑡), we can try 𝑛1 = �̄�1 cos(𝑘𝑥− 𝜔𝑡). Substitution of this
into the above yields

𝑛1 = −𝑛𝑢
𝑒𝐸0𝑘
𝑚

cos(𝑘𝑥 − 𝜔𝑡)
(𝜔 − 𝑘𝑢)2

(𝑛1 and 𝑣1 can be shown in a series of phase relation plots as in Fig.7-21)(ADD IT!) one
wavelength of 𝐸 and of the potential −𝑒𝜙 seen by the beam electrons.

We may now compute the kinetic energy 𝑊𝑘 of the beam:

𝑊𝑘 = 1
2𝑚(𝑛𝑢 + 𝑛1)(𝑢 + 𝑣1)2

= 1
2𝑚(𝑛𝑢𝑢2 + 𝑛𝑢𝑣21 + 2𝑢𝑛1𝑣1 + 𝑛1𝑢2 + 2𝑛𝑢𝑢𝑣1 + 𝑛1𝑣21)

The last three terms contain odd powers of oscillating quantites, so they will vanish when we
average over a wavelength. The change in 𝑊𝑘 due to the wave is found by subtracting the
first term, which is the original energy. The average energy change is then

⟨Δ𝑊𝑘⟩ =
1
2𝑚⟨𝑛𝑢𝑣21 + 2𝑢𝑛1𝑣1⟩

From the form of 𝑣1, we have

𝑛𝑢 ⟨𝑣21⟩ =
1
2𝑛𝑢

𝑒2𝐸2
0

𝑚2(𝜔 − 𝑘𝑢)2

the factor 1
2 representing ⟨cos2(𝑘𝑥 − 𝜔𝑡)⟩. Similarly, from the form of 𝑛1,
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2𝑢 ⟨𝑛1𝑣1⟩ = 𝑛𝑢
𝑒2𝐸2

0𝑘𝑢
𝑚2(𝜔 − 𝑘𝑢)3

Consequently,

⟨Δ𝑊𝑘⟩ =
1
4𝑚𝑛𝑢

𝑒2𝐸2
0

𝑚2(𝜔 − 𝑘𝑢)2 [1 + 2𝑘𝑢
𝜔 − 𝑘𝑢]

= 𝑛𝑢
4

𝑒2𝐸2
0

𝑚
𝜔 + 𝑘𝑢

𝑚2(𝜔 − 𝑘𝑢)3

This result shows that ⟨Δ𝑊𝑘⟩ depends on the frame of the observer and that it does not change
secularly with time. Consider the picture of a frictionless block sliding over a washboard-like
surface. (ADD FIGURE!) In the frame of the washboard, ⟨Δ𝑊𝑘⟩ is proportional to −(𝑘𝑢)−2,
as seen by taking 𝜔 = 0. It is intuitively clear that (1) ⟨Δ𝑊𝑘⟩ is negative, since the block
spends more time at the peaks than at the valleys, and (2) the block does not gain or lose energy
on the average, once the oscillation is started (no time-dependence). Now if one goes into a
frame in which the washboard is movign with a steady velocity 𝜔/𝑘 (a velocity unaffected by
the motion of the block, since we have assumed that 𝑛𝑢 is negligibly small compared with the
density of the whole plasma), it is still true that the block does not gain or lose energy on the
average, once the oscillation is started. But the above equation tells us that ⟨Δ𝑊𝑘⟩ depends
on the velocity 𝜔/𝑘, and hence on the frame of the observer. In particular, it shows that a
beam has less energy in the presence of the wave than in its absence if 𝜔 − 𝑘𝑢 < 0 or 𝑢 > 𝑢𝜙,
and it has more energy if 𝜔−𝑘𝑢 > 0 or 𝑢 < 𝑢𝜙. The reason for this can be traced back to the
phase relation between 𝑛1 and 𝑣1. As Fig.7-23 (ADD IT!) shows, 𝑊𝑘 is a parabolic function
of 𝑣. As 𝑣 oscillates between 𝑢− |𝑣1| and 𝑢+ |𝑣1|, 𝑊𝑘 will attain an average value larger than
the equilibrium value 𝑊𝑘0, provided that the particle spends an equal amount of time in each
half of the oscillation. This effect is the meaning of the first term 1

2𝑚⟨𝑛𝑢𝑣21⟩, which is positive
definite. The second term 1

2𝑚⟨2𝑢𝑛1𝑣1⟩ is a correction due to the fact that the particle does
not distribution its time equally. In Fig.7-21 (ADD IT!), one sees that both electrons a and
b spend more time at the top the potential hill than at the bottom, but electron a reaches
that point after a period of deceleration, so that 𝑣1 is negative there, while electron b reaches
that point after a period of acceleration (to the right), so that 𝑣1 is positive there. This effect
causes ⟨𝑊𝑘⟩ to change sign at 𝑢 = 𝑣𝜙.

8.6.2 The Effect of Initial Conditions

The result we have just derived, however, still has nothing to do with linear Landau damping.
Damping requires a continuous increase of 𝑊𝑘 at the expense of wave energy, but we have found
that ⟨Δ𝑊𝑘⟩ for untrapped particles is contant in time. If neither the untrapped particles nor
the trapped particles are responsible for linear Landau damping, what is? The answer can
be gleaned form the following observation: if ⟨Δ𝑊𝑘⟩ is positive, say, there must have been a
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time when it was increasing. Indeed, there are particles in the original distribution which have
velocities so close to 𝑣𝜙 that at time 𝑡 they have not yet gone a half wavelength relative to
the wave. For these particles, one cannot take the average ⟨Δ𝑊𝑘⟩. These particles can absorb
energy from the wave and are properly called the “resonant” particles. As time goes on, the
number of resonant electrons decreases, since an increasing number will have shifted more
than 1

2𝜆 from their orginal positions. The damping rate, however, can stay constant, since the
amplitude is now smaller, and it takes fewer electrons to maintain a constant damping rate.

The effect of the initial conditions is most easily seen form a phase-space diagram (Fig.7-
24)(ADD IT with Luxor?).

8.7 A Physical Derivation of Landau Damping

We are now in a position to derive the Landau damping rate recourse to contour integration.
Although Landau’s derivation of collisionless damping was short and neat, it was not clear
that it concerned a physically observable phenomenon until J. M. Dawson gave the longer,
intuitive derivation which is paraphrased in this section. As before, we divide the plasma up
into beams of velocity 𝑢 and density 𝑛𝑢, and examine their motion in a wave

𝐸 = 𝐸1 sin(𝑘𝑥 − 𝜔𝑡)

From the derivations in the previous section, the velocity of each beam is

𝑣1 = −𝑒𝐸1
𝑚

cos(𝑘𝑥 − 𝜔𝑡)
𝜔 − 𝑘𝑢

This solution satisfies the equation of motion, but it does not satisfy the initial condition 𝑣1 = 0
at 𝑡 = 0. It is clear that this initial condition must be imposed; otherwise, 𝑣1 would be very
large in the vicinity of 𝑢 = 𝜔/𝑘, and the plasma would be in a specially prepared state initially.
We can fix up the solution to satisfy the initial condition by adding an arbitrary function
of 𝑘𝑥 − 𝑘𝑢𝑡. The composite solution would still satisfy the equation of motion because the
operator on the left-hand side, when applied to 𝑓(𝑘𝑥 − 𝑘𝑢𝑡), gives zero. Obviously, to get
𝑣1 = 0 at 𝑡 = 0, the function 𝑓(𝑘𝑥− 𝑘𝑢𝑡) must be taken to be − cos(𝑘𝑥 − 𝑘𝑢𝑡). Thus we have,
instead of the expression above,

𝑣1 = −𝑒𝐸1
𝑚

cos(𝑘𝑥 − 𝜔𝑡) − cos(𝑘𝑥 − 𝑘𝑢𝑡)
𝜔 − 𝑘𝑢

Next, we must solve the equation of continuity for 𝑛1, again subject to the initial condition
𝑛1 = 0 at 𝑡 = 0. Since we are now much cleverer than before, we may try a solution of the
form
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𝑛1 = �̄�1[cos(𝑘𝑥 − 𝜔𝑡) − cos(𝑘𝑥 − 𝑘𝑢𝑡)]

Inserting this into the equation of continuity and using the expression for 𝑣1 above, we find

�̄�1 sin(𝑘𝑥 − 𝜔𝑡) = −𝑛𝑢
𝑒𝐸1𝑘
𝑚

sin(𝑘𝑥 − 𝜔𝑡) − sin(𝑘𝑥 − 𝑘𝑢𝑡)
(𝜔 − 𝑘𝑢)2

Apparently, we were not clever enough, since the sin(𝑘𝑥 − 𝜔𝑡) factor does not cancel. To get
a term of the form sin(𝑘𝑥 − 𝑘𝑢𝑡), which came from the added term in 𝑣1, we can add a term
of the form 𝐴𝑡 sin(𝑘𝑥 − 𝑘𝑢𝑡) to 𝑛1. This term obviously vanishes at 𝑡 = 0, and it will give
the sin(𝑘𝑥 − 𝑘𝑢𝑡) term when the operator on the left-hand side of the equation of continuity
operates on the 𝑡 factor. When the operator operates on the sin(𝑘𝑥 − 𝑘𝑢𝑡) factor, it yields
zero. The coefficient 𝐴 must be proportional to (𝜔 − 𝑘𝑢)−1 in order to match the same factor
in 𝜕𝑣1/𝜕𝑥. Thus we take

𝑛1 =− 𝑛𝑢
𝑒𝐸1𝑘
𝑚

1
(𝜔 − 𝑘𝑢)2

× [cos(𝑘𝑥 − 𝜔𝑡) − cos(𝑘𝑥 − 𝑘𝑢𝑡) − (𝜔 − 𝑘𝑢)𝑡 sin(𝑘𝑥 − 𝑘𝑢𝑡)]

This clearly vanishes at 𝑡 = 0, and one can easily verify that it satisfies the equation of
continuity.

These expressions for 𝑣1 and 𝑛1 allow us now to calculate the work done by the wave on each
beam. The force acting on a unit volume of each beam is

𝐹𝑢 = −𝑒𝐸𝑞 sin(𝑘𝑥 − 𝜔𝑡)(𝑛𝑢 + 𝑛1)

and therefore its energy changes at the rate

d𝑊
d𝑡 = 𝐹𝑢(𝑢 + 𝑣1) = −𝑒𝐸1 sin(𝑘𝑥 − 𝜔𝑡)(𝑛𝑢𝑢⏟

1
+𝑛𝑢𝑣1⏟

2
+𝑛1𝑢⏟

3
+𝑛1𝑣1⏟

4
)

We now take the spatial average over a wavelength. The first term vanishes because 𝑛𝑢𝑢 is a
constant. The fourth term can be neglected because it is second order, but in any case it can
be shown to have zero average. The second and third terms can be evaluated with the help of
identities

⟨sin(𝑘𝑥 − 𝜔𝑡) cos(𝑘𝑥 − 𝑘𝑢𝑡)⟩ = −1
2 sin(𝜔𝑡 − 𝑘𝑢𝑡)

⟨sin(𝑘𝑥 − 𝜔𝑡) sin(𝑘𝑥 − 𝑘𝑢𝑡)⟩ = 1
2 cos(𝜔𝑡 − 𝑘𝑢𝑡)
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The result is then

⟨d𝑊
d𝑡 ⟩

𝑢
= 𝑒2𝐸2

1
2𝑚 𝑛𝑢[

sin(𝜔𝑡 − 𝑘𝑢𝑡)
𝜔 − 𝑘𝑢

+ 𝑘𝑢sin(𝜔𝑡 − 𝑘𝑢𝑡) − (𝜔 − 𝑘𝑢)𝑡 cos(𝜔𝑡 − 𝑘𝑢𝑡)
(𝜔 − 𝑘𝑢)2 ]

The total work done on the particles is found by summing over all the beams:

∑
𝑢

⟨d𝑊
d𝑡 ⟩

𝑢
= ∫ 𝑓0(𝑢)

𝑛𝑢
⟨d𝑊

d𝑡 ⟩
𝑢
𝑑𝑦 = 𝑛0 ∫

̂𝑓0(𝑢)
𝑛𝑢

⟨d𝑊
d𝑡 ⟩

𝑢
𝑑𝑢

Inserting the expression of ⟨d𝑊
d𝑡 ⟩𝑢 and using the definition of 𝜔𝑝, we then find for the rate of

change of kinetic energy

⟨𝑑𝑊𝑘
d𝑡 ⟩ =𝜖0𝐸2

1
2 𝜔2

𝑝[∫ ̂𝑓0(𝑢)
sin(𝜔𝑡 − 𝑘𝑢𝑡)

𝜔 − 𝑘𝑢 𝑑𝑢

+∫ ̂𝑓0(𝑢)
sin(𝜔𝑡 − 𝑘𝑢𝑡) − (𝜔 − 𝑘𝑢)𝑡 cos(𝜔𝑡 − 𝑘𝑢𝑡)

(𝜔 − 𝑘𝑢)2 𝑘𝑢𝑑𝑢]

=1
2𝜖0𝐸

2
1𝜔2

𝑝 ∫
∞

−∞
̂𝑓0(𝑢)𝑑𝑢{

sin(𝜔𝑡 − 𝑘𝑢𝑡)
𝜔 − 𝑘𝑢 + 𝑢 𝑑

𝑑𝑢[
sin(𝜔𝑡 − 𝑘𝑢𝑡)

𝜔 − 𝑘𝑢 ]}

=1
2𝜖0𝐸

2
1𝜔2

𝑝 ∫
∞

−∞
̂𝑓0(𝑢)𝑑𝑢

𝑑
𝑑𝑢[𝑢

sin(𝜔𝑡 − 𝑘𝑢𝑡)
𝜔 − 𝑘𝑢 ]

This is to be set equal to the rate of loss of wave energy density 𝑊𝑤. The wave energy consists
of two parts. The first part is the energy density of the electrostatic field:

⟨𝑊𝐸⟩ =
𝜖 ⟨𝐸2⟩

2 = 𝜖𝐸2
1

4
The second part is the kinetic energy of oscillation of the particles. If we again divide the
plasma up into beams, the energy per beam is given as before

⟨Δ𝑊𝑘⟩𝑢 = 1
4
𝑛𝑢
𝑚

𝑒2𝐸2
1

(𝜔 − 𝑘𝑢)2 [1 + 2𝑘𝑢
𝜔 − 𝑘𝑢]

In deriving this result, we did not use the correct initial conditions, which are important for
the resonant particles; however, the latter contribute very little to the total energy of the wave.
Summing over the beams, we have
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⟨Δ𝑊𝑘⟩ =
1
4
𝑒2𝐸2

1
𝑚 ∫

∞

−∞

𝑓0(𝑢)
(𝜔 − 𝑘𝑢)2 [1 + 2𝑘𝑢

𝜔 − 𝑘𝑢]𝑑𝑢

The second term in the brackets can be neglected in the limit 𝜔/𝑘 ≫ 𝑣𝑡ℎ, which we shall
take in order to compare with our previous results. (???) The dispersion relation is found by
Poisson’s equation:

𝑘𝜖0𝐸1 cos(𝑘𝑥 − 𝜔𝑡) = −𝑒∑
𝑢

𝑛1

Using the expression for 𝑛1 in the previous section with the wrong initial conditions, we have

1 = 𝑒2
𝜖0𝑚

∑
𝑢

𝑛𝑢
(𝜔 − 𝑘𝑢)2 = 𝑒2

𝜖0𝑚
∫

∞

−∞

𝑓0(𝑢)𝑑𝑢
(𝜔 − 𝑘𝑢)2

Comparing this with the expression of ⟨Δ𝑊𝑘⟩, we find

⟨Δ𝑊𝑘⟩ =
1
4
𝑒2𝐸2

1
𝑚

𝜖0𝑚
𝑒2 = 𝜖0𝐸2

1
4 = ⟨𝑊𝐸⟩

Thus

𝑊𝑤 = 𝜖𝐸2
1

2

The rate of change of wave energy density 𝑊𝑤 is given by −⟨𝑑𝑊𝑘
d𝑡 ⟩:

𝑑𝑊𝑤
d𝑡 = −𝑊𝑤𝜔2

𝑝 ∫
∞

−∞
̂𝑓0(𝑢)𝑑𝑢

𝑑
𝑑𝑢[𝑢

sin(𝜔𝑡 − 𝑘𝑢𝑡)
𝜔 − 𝑘𝑢 ]

Integration by parts gives

𝑑𝑊𝑤
d𝑡 =𝑊𝑤𝜔2

𝑝{[𝑢 ̂𝑓0(𝑢)
sin(𝜔 − 𝑘𝑢)𝑡

𝜔 − 𝑘𝑢 ]
∞

−∞

−∫
∞

−∞
𝑢𝑑

̂𝑓0
𝑑𝑢

sin(𝜔 − 𝑘𝑢)𝑡
𝜔 − 𝑘𝑢 𝑑𝑢}

The integrated part vanishes for well-behaved functions ̂𝑓0(𝑢), and we have
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𝑑𝑊𝑤
d𝑡 = 𝑊𝑤

𝜔
𝑘𝜔

2
𝑝 ∫

∞

−∞

𝑑 ̂𝑓0
𝑑𝑢 [sin(𝜔 − 𝑘𝑢)𝑡

𝜔 − 𝑘𝑢 ]𝑑𝑢

where 𝑢 has been set equal to 𝜔/𝑘 (a constant), since only velociies very close to this will con-
tirbute to the integral. In fact, for sufficiently large 𝑡, the square bracket can be approximated
by a 𝛿-function:

𝛿(𝑢 − 𝜔
𝑘) = 𝑘

𝜋 lim
𝑡→∞

[sin(𝜔 − 𝑘𝑢)𝑡
𝜔 − 𝑘𝑢 ]

(The original form is 𝛿(𝑥) = lim𝜖→0
sin(𝑥/𝜖)

𝜋𝑥 , where the function on the right is called sinc.)

Thus

𝑑𝑊𝑤
d𝑡 = 𝑊𝑤

𝜔
𝑘𝜔

2
𝑝
𝜋
𝑘
𝜔
𝑘

̂𝑓0(
𝜔
𝑘) = 𝑊𝑤𝜋𝜔

𝜔2
𝑝

𝑘2
̂𝑓 ′
0(

𝜔
𝑘)

Since ℑ(𝜔) is the growth rate of 𝐸1, and 𝑊𝑤 is proportional to 𝐸2
1 , we must have

𝑑𝑊𝑤
d𝑡 = 2ℑ(𝜔)𝑊𝑤

Hence

ℑ(𝜔) = 𝜋
2𝜔

𝜔2
𝑝

𝑘2
̂𝑓 ′
0(

𝜔
𝑘)

in agreement with the previous result for 𝜔 = 𝜔𝑝.

8.7.1 The Resonant Particles

We are now in a position to see precisely which are the resonant particles that contribute to
linear Landau damping. Fig.7-25(Sinc function, ADD IT!) gives a plot of the factor multiplying
̂𝑓 ′
0(𝑢) in the integrand. We see that the largest contribution comes from particles with |𝜔−𝑘𝑢| <

𝜋/𝑡, or |𝑣 − 𝑣𝜙| < 𝜋/𝑘 = 𝜆/2; i.e. those particles in the initial distribution that have not yet
traveled a half-wavelength relative to the wave. The width of the central peak narrows with
time, as expected. The subsidiary peaks in the “diffraction pattern” of Fig.7-25 come form
particles that have traveled into neighboring half-wavelengths of the wave potential. These
particles rapidly become spread out in phase, so that they contribute little on the average;
the initial distribution is forgotten. Note that the width of the central peak is independent of
the initial amplitude of the wave; hence, the resonant particles may include both trapped and
untrapped particles. This phenomenon is unrelated to particle trapping.
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8.7.2 Two Paradoxes Resolved

Fig.7-25 shows that the integrand sinc function is an even function of 𝜔−𝑘𝑢, so that particles
going both faster than the wave and slower than the wave add to Landau damping. This
is the physical picture we found in Fig.7-24. On the other hand, the slope of the curve of
Fig.7-25, which represents the factor in the integrand of one previous equation (WE NEED
NUMBERING!), is an odd function of 𝜔 − 𝑘𝑢; and one would infer from this that particles
traveling faster than the wave give energy to it, while those traveling slower than the wave
take energy from it. The two descriptions differ by an integration by parts. Both descriptions
are correct; which is to be chosen depends on whether one wishes to have ̂𝑓0(𝑢) or ̂𝑓0(𝑢)′ in
the integrand.

A second paradox concerns the question of Galilean invariance. If we take the view that
damping requires there be fewer particles traveling faster than the wave than slower, there
is no problem as long as one is in the frame in which the plasma is at rest. However, if one
goes into another frame moving with a velocity 𝑉 , there would appear to be more particles
moving faster than the wave than slower, and one would expect the wave to grow instead of
decay. This paradox is removed by reinserting the second term in Eq.(???) 2𝑘𝑢

𝜔−𝑘𝑢 which we
neglected. As shown in the previous section, this term can make ⟨Δ𝑊𝑘⟩ negative. Indeed, in
the moving frame, the second term is not negligible, ⟨Δ𝑊𝑘⟩ is negative, and the wave appears
to have negative energy (that is, there is more energy in the quiescent, drifting Maxwellian
distribution than in the presence of an oscillation). The wave “grows”, but adding energy to
a negative energy wave makes its amplitude decrease.

8.8 BGK and Van Kampen Modes

We have seen that Landau damping is directly connected to the requirement that 𝑓0(𝑣) be
initially uniform in space. (It tends to make negative slopes to zero.) On the other hand,
one can generate undamped electron waves if 𝑓(𝑣, 𝑡 = 0) is mode to be constant along the
particle trajectories initially. (???) It is easy to from Fig.7-24 that the particles will neither
gain nor lose energy, on the average, if the plasma is initially prepared so that the density is
constant along each trajectory. Such a wave is called a BGK mode, since it was I. B. Bernstein,
J. M. Greene, and M. D. Kruskal who first showed that undamped waves of arbitrary 𝜔, 𝑘,
amplitude, and waveform were possible. The crucial parameter to adjust in tailoring 𝑓(𝑣, 𝑡 = 0)
to form a BGK mode is the relative number of trapped and untrappped particles. If we take
the small-amplitude limit of a BGK mode, we obtain what is called a Van Kampen mode. In
this limit, only the particles with 𝑣 = 𝑣𝜙 are trapped. We can change the number of trapped
particles by adding to 𝑓(𝑣, 𝑡 = 0) a term proportional to 𝛿(𝑣 − 𝑣𝜙). Examination of Fig.7-24
will show that adding particles along the line 𝑣 = 𝑣𝜙 will not cause damping — at a later
time, there are just as many particles gaining energy as losing energy. In fact, by choosing
distributions with 𝛿-functions at other values of 𝑣𝜙, one can generate undamped Van Kampen
modes of arbitrary 𝑣𝜙. Such sungular initial conditions are, however, not physical. To get a

297



smoothly varying 𝑓(𝑣, 𝑡 = 0), one must sum over Van Kampen modes with a distribution of
𝑣𝜙𝑠. Although each mode is undamped, the total perturbation will show Landau damping
because the various modes get out of phase with one another. (???)

8.9 Ion Landau Damping

Electrons are not the only resonant particles. If a wave has a slow enough phase velocity to
match the thermal velocity of ions, ion Landau damping can occur. The ion acoustic wave,
for instance, is greatly affected by Landau damping. Recall from the fluid theory that the
dispersion relation for ion waves is

𝜔
𝑘 = 𝑣𝑠 = (𝑘𝐵𝑇𝑒 + 𝛾𝑖𝑘𝐵𝑇𝑖

𝑚𝑖
)
1/2

If 𝑇𝑒 ≤ 𝑇𝑖, the phase velocity lies in the region where 𝑓0𝑖(𝑣) has a negative slope, as shown in
Fig.7-30(A)(ADD IT!!!). Consequently, ion waves are heavily Landau-damped if 𝑇𝑒 ≤ 𝑇𝑖. Ion
waves are observable only if 𝑇𝑒 ≫ 𝑇𝑖(Fig.7-30(B)), so that the phase velocity lies far in the tail
of the ion velocity distribution. A clever way to introduce Landau damping in a controlled
manner was employed by Alexeff, Jones, and Montgomery. A weakly damped ion wave was
created in a heavy-ion plasma (such as xenon) with 𝑇𝑒 ≫ 𝑇𝑖. A small amount of a light atom
(helium) was then added. Since the helium had about the temperature as the xenon but had
much smaller mass, its distribution function was much broader, as shown by the dashed curve
in Fig.7-30(B). The resonant helium ions then caused the wave to damp.

8.9.1 The Plasma Dispersion Function

To introduce some of the standard terminlogy of kinetic theory, we now calculate the ion
Landau damping of ion acoustic waves in the absence of magnetic fields. Ions and electrons
follow the Vlasov equation and have perturbations of the form 𝑓1 ∝ exp(𝑖𝑘𝑥 − 𝑖𝜔𝑡) indicating
plane waves propagating in the x direction. The solution for 𝑓1 is given by the linearized
momentum equation with appropriate modifications:

𝑓1𝑗 = −𝑖𝑞𝑗𝐸
𝑚𝑗

𝜕𝑓𝑜𝑗/𝜕𝑣𝑗
𝜔 − 𝑘𝑣𝑗

where 𝐸 and 𝑣𝑗 stand for 𝐸𝑥, 𝑣𝑥𝑗; and the 𝑗th species has charge 𝑞𝑗, mass 𝑚𝑗, and particle
velocity 𝑣𝑗. The density perturbation of the 𝑗th species is given by

𝑛1𝑗 = ∫
∞

−∞
𝑓1𝑗(𝑣𝑗)𝑑𝑣𝑗 = −𝑖𝑞𝑗𝐸

𝑚𝑗
∫

∞

−∞

𝜕𝑓𝑜𝑗/𝜕𝑣𝑗
𝜔 − 𝑘𝑣𝑗

𝑑𝑣𝑗
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Let the equilibrium distributions 𝑓0𝑗 be one-dimensional Maxwellians:

𝑓0𝑗 =
𝑛0𝑗

𝑣𝑡ℎ𝑗𝜋1/2 𝑒
−𝑣2

𝑗/𝑣2
𝑡ℎ , 𝑣𝑡ℎ𝑗 ≡ (2𝑘𝐵𝑇𝑗/𝑚𝑗)1/2

Introducing the dummy integration variable 𝑠 = 𝑣𝑗/𝑣𝑡ℎ𝑗, we can write 𝑛1𝑗 as

𝑛1𝑗 =
𝑖𝑞𝑗𝐸𝑛0𝑗
𝑘𝑚𝑗𝑣2𝑡ℎ𝑗

1
𝜋1/2 ∫

∞

−∞

(𝑑/𝑑𝑠)(𝑒−𝑠2)
𝑠 − 𝜁𝑗

𝑑𝑠

where
𝜁 ≡ 𝜔/𝑘𝑣𝑡ℎ𝑗

We now define the plasma dispersion function 𝑍(𝜁):

𝑍(𝜁) = 1
𝜋1/2 ∫

∞

−∞

𝑒−𝑠2

𝑠 − 𝜁 𝑑𝑠 ℑ(𝜁) > 0 (8.33)

(Why positive imaginary part???)This is a contour integral, as explained in previous sections,
and analytic continuation to the lower half plane must be used if ℑ(𝜁) < 0. 𝑍(𝜁) is a complex
function of a complex argument (since 𝜔 or 𝑘 usually has an imaginary part). In cases where
𝑍(𝜁) cannot be approximated by an asymptotic formula, one can do it numerically.

To express 𝑛1𝑗 in terms of 𝑍(𝜁), we take the derivative with respect to 𝜁:

𝑍′(𝜁) = 1
𝜋1/2 ∫

∞

−∞

𝑒−𝑠2

(𝑠 − 𝜁)2𝑑𝑠

Integration by parts yields

𝑍′(𝜁) = 1
𝜋1/2 [

−𝑒−𝑠2

𝑠 − 𝜁 ]
∞

−∞
+ 1

𝜋1/2 ∫
∞

−∞

(𝑑/𝑑𝑠)(𝑒−𝑠2)
𝑠 − 𝜁 𝑑𝑠

The first term vanishes, as it must for any well-behaved distribution function. Now we have

𝑛1𝑗 =
𝑖𝑞𝑗𝐸𝑛0𝑗
𝑘𝑚𝑗𝑣2𝑡ℎ𝑗

𝑍′(𝜁𝑗)

Poisson’s equation is
𝜖∇ ⋅ E = 𝑖𝑘𝜖0𝐸 = ∑

𝑗
𝑞𝑗𝑛1𝑗

Combining the last two equations, separating out the electron term explicitly, and defining

Ω𝑝𝑗 ≡ (𝑛𝑜𝑗𝑍2
𝑗 𝑒2/𝜖0𝑚𝑗)1/2
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We obtain the dispersion relation

𝑘2 = 𝜔2
𝑝

𝑣2𝑡ℎ𝑒
𝑍′(𝜁𝑒) +∑

𝑗

Ω2
𝑝𝑗

𝑣2𝑡ℎ𝑗
𝑍′(𝜁𝑗)

Electron plasma waves can be obtained by setting Ω𝑝𝑗 = 0 (infinitely massive ions). Defining

𝑘2
𝐷 = 2𝜔2

𝑝/𝑣2𝑡ℎ𝑒 = 𝜆−2
𝐷

we then obtain
𝑘/𝑘2

𝐷 = 1
2𝑍

′(𝜁𝑒)
which is the same as Equation 8.30 when 𝑓0𝑒 is Maxwellian.

8.9.2 Ion Waves and Their Damping

To obtain ion waves, go back to the plasma dispersion relation and use the fact that their
phase velocity 𝜔/𝑘 is much smaller than 𝑣𝑡ℎ𝑒; hence 𝜁𝑒 is small, and we can expand 𝑍(𝜁𝑒) in
a power series:

𝑍(𝜁𝑒) = 𝑖√𝜋𝑒−𝜁2
𝑒 − 2𝜁𝑒(1 − 2

3𝜁
2
𝑒 + ...)

The imaginary term comes from the residue at a pole lying near the real 𝑠 axis and represents
electron Landau damping. For 𝜁𝑒 ≪ 1, the derivative of the above gives

𝑍′(𝜁𝑒) = −2𝑖√𝜋𝜁𝑒𝑒−𝜁2
𝑒 − 2 + ... ≃ −2

Electron Landau damping can usually be neglected in ion waves because the slope of 𝑓𝑒(𝑣) is
small near its peak. Replacing 𝑍′(𝜁𝑒) by -2 in the dispersion relation gives

𝜆𝐷 ∑
𝑗

Ω2
𝑝𝑗

𝑣2𝑡ℎ𝑗
𝑍′(𝜁𝑗) = 1 + 𝑘2𝜆2

𝐷 ≃ 1

The term 𝑘2𝜆2
𝐷 represents the deviation from quasineutrality. (1/𝑘 ∼ 𝐿, 𝑘2𝜆2

𝐷 ∼ 𝜆2
𝐷/𝐿2 ≪ 1

where 𝐿 is the system length scale.)

We now specialize tothe case of a single ion species. Since 𝑛0𝑒 = 𝑍𝑖𝑛0𝑖, the coefficient in the
equation above is

𝜆𝐷
Ω2

𝑝
𝑣2𝑡ℎ𝑖

= 𝜖𝑘𝐵𝑇𝑒
𝑛0𝑒𝑒2

𝑛0𝑖𝑍2𝑒2
𝜖𝑚𝑖

𝑚𝑖
2𝑘𝐵𝑇𝑖

= 1
2
𝑍𝑇𝑒
𝑇𝑖

For 𝑘2𝜆2
𝐷 ≪ 1, the dispersion relation becomes

𝑍′( 𝜔
𝑘𝑣𝑡ℎ𝑖

) = 2𝑇𝑖
𝑍𝑇𝑒
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Solving this equation is a nontrivial problem. Suppose we take real 𝑘 and complex 𝜔 to study
damping in time. Then the real and imaginary parts of 𝜔 must be adjusted so that ℑ(𝑍′) = 0
and ℜ(𝑍′) = 2𝑇𝑖/𝑍𝑇𝑒. There are in general many possible roots 𝜔 that satisfy this, all of
them having ℑ(𝜔) < 0. The least damped, dominant root is the one having the smallest |ℑ(𝜔)|.
Damping in space is usually treated by taking 𝜔 real and 𝑘 complex. Again we get a series
of roots 𝑘 with ℑ(𝑘) > 0, representing spatial damping. However, the dominant root does not
correspond to the same value of 𝜁𝑖 as in the complex 𝜔 case. It turns out that the spatial
problem has to be treated with special attention to the excitation mechanism at the boundaries
and with more careful treatment of the electron term 𝑍′(𝜁𝑒).
To obtain an analytic result, we consider the limit 𝜁𝑖 ≫ 1, corresponding to large temperature
ratio 𝜃 ≡ 𝑍𝑇𝑒/𝑇𝑖. (???) The asymptotic expression for 𝑍′(𝜁𝑖) is

𝑍′(𝜁𝑖) = −2𝑖√𝜋𝜁𝑖𝑒−𝜁2
𝑖 + 𝜁−2

𝑖 + 3
2𝜁

−4
𝑖 + ...

(I think this can be found from the plasma handbook; it can also be found here) If the damping
is small, we cna neglect the Landau term in the first approximation. The equation becomes

1
𝜁2𝑖

(1 + 3
2
1
𝜁2𝑖

) = 2
𝜃

Since 𝜃 is assumed large, 𝜁2𝑖 is large; and we can approximate 𝜁2𝑖 by 𝜃/2 in the second term.
Thus

1
𝜁2𝑖

(1 + 3
𝜃) = 2

𝜃 , 𝜁2𝑖 = 3
2 + 𝜃

2
or

𝜔2

𝑘2 = 2𝑘𝐵𝑇𝑖
𝑚𝑖

(32 + 𝑍𝑇𝑒
2𝑇𝑖

) = 𝑍𝑘𝐵𝑇𝑒 + 3𝑘𝐵𝑇𝑖
𝑚𝑖

This is the ion wave dispersion relation with 𝛾𝑖 = 3, generalized to arbitrary 𝑍.

We now substitue the above approximations back into the dispersion relation retaining the
Landau term: 1

𝜁2𝑖
(1 + 3

𝜃) − 2𝑖√𝜋𝜁𝑖𝑒−𝜁2
𝑖 = 2

𝜃
1
𝜁2𝑖

(1 + 3
𝜃) = 2

𝜃(1 + 𝑖√𝜋𝜃𝜁𝑖𝑒−𝜁2
𝑖 )

𝜁2𝑖 = (3 + 𝜃
2 )

1/2
(1 + 𝑖√𝜋𝜃𝜁𝑖𝑒−𝜁2

𝑖 )−1

Expanding the square root, we have

𝜁𝑖 ≃ (3 + 𝜃
2 )

1/2
(1 − 1

2𝑖
√𝜋𝜃𝜁𝑖𝑒−𝜁2

𝑖 )
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The approximate damping rate is found by using the above approximation in the imaginary
term:

− ℑ(𝜁𝑖)
ℜ(𝜁𝑖)

= ℑ(𝜔)
ℜ(𝜔) = (𝜋8)

1/2
𝜃(3 + 𝜃)1/2𝑒−(3+𝜃)/2

This asymptotic expression, accurate for large 𝜃, shows an exponential decrease in damping
with increasing 𝜃. When 𝜃 falls below 10, this expression becomes inacuurate, and the damp-
ing must be computed from the original expression which employs the Z-function. For the
experimentally interesting region 1 < 𝜃 < 10, the following simple formula is ananalytic fit to
the exact solution:

−ℑ(𝜔)/ℜ(𝜔) = 1.1𝜃7/4 exp(−𝜃2)

What happens when collisions are added to ion Landau damping? Surprisingly little. Ion-
electron collisions are weak because the ion and electron fluids move almost in unison, creating
little friction between them. Ion-ion collisions (ion viscosity) can damp ion acoustic waves, but
we know that sound waves in air can propagate well in spite of the dominance of collisions.
Actually, collisions spoil the particle resonances that cause Landau damping, and one finds
that the total damping is less than the Landau damping unless the collision rate is extremely
large. In summary, ion Landau damping is almost always the dominant process with ion waves,
and this varies exponentially with the ratio 𝑍𝑇𝑒/𝑇𝑖.

8.10 Kinetic Effects in a Magnetic Field

When either the dc magnetic field B0 or the oscillating magnetic field B1 is finite, the v × B
term in the Vlasov equation for a collisionless plasma must be included. The linearized equation
is then replaced by

d𝑓1
d𝑡 = 𝜕𝑓1

𝜕𝑡 + v ⋅ ∇𝑓1 +
𝑞
𝑚(v × B0) ⋅

𝜕𝑓1
𝜕v = − 𝑞

𝑚(E1 + v × B1) ⋅
𝜕𝑓0
𝜕v (8.34)

Resonant particles moving along B0 still cause Landau damping if 𝜔/𝑘 ≃ 𝑣𝑡ℎ, but two new
kinetic effects now appear which are connected with the velocity component v⟂ perpendicular
to B0. One of these is cyclotron damping, which will be discussed later; the other is the
generation of cyclotron harmonics, leading to the possibility of the oscillation commonly called
Bernstein waves.

Harmonics of the cyclotron frequency are generated when the particles’ circular Larmor orbits
are distorted by the wave fields E1 and B1. These finite-𝑟𝐿 effects are neglected in ordinary
fluid theory but can be taken into account to order 𝑘2𝑟2𝐿 by including the viscosity. A kinetic
treatment can be accurate even for 𝑘2𝑟2𝐿 = 𝒪(1). To understand how harmonics aris, consider
the motion of a particle in an electric field:

E = 𝐸𝑥𝑒𝑖(𝑘𝑥−𝜔𝑡)x̂
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The equation of motion is
̈𝑥 + 𝜔2

𝑐𝑥 = 1
𝑚𝐸𝑥𝑒𝑖(𝑘𝑥−𝜔𝑡)

If 𝑘𝑟𝐿 is not small, the exponent varies from one side of the orbit to the other. We can
approximate 𝑘𝑥 by substituting the undisturbed orbit 𝑥 = 𝑟𝐿 sin𝜔𝑐𝑡

̈𝑥 + 𝜔2
𝑐𝑥 = 1

𝑚𝐸𝑥𝑒𝑖(𝑘𝑟𝐿 sin𝜔𝑐𝑡−𝜔𝑡)

The generating function for the Bessel function 𝐽𝑛(𝑧) is

𝑒𝑧(𝑡−1/𝑡)/2 =
∞
∑

𝑛=−∞
𝑡𝑛𝐽𝑛(𝑧)

Letting 𝑧 = 𝑘𝑟𝐿 and 𝑡 = exp(𝑖𝜔𝑐𝑡), we obtain

𝑒𝑖𝑘𝑟𝐿 sin𝜔𝑐𝑡 =
∞
∑

𝑛=−∞
𝐽𝑛(𝑘𝑟𝐿)𝑒𝑖𝑛𝜔𝑐𝑡

̈𝑥 + 𝜔2
𝑐𝑥 = 𝑞

𝑚𝐸𝑥
∞
∑

𝑛=−∞
𝐽𝑛(𝑘𝑟𝐿)𝑒𝑖(𝜔−𝑛𝜔𝑐)𝑡

The following solution can be verified by direct substitution:

𝑥 = 𝑞
𝑚𝐸𝑥

∞
∑

𝑛=−∞

𝐽𝑛(𝑘𝑟𝐿)𝑒𝑖(𝜔−𝑛𝜔𝑐)𝑡

𝜔2𝑐 − (𝜔 − 𝑛𝜔𝑐)2

This shows that the motion has frequency components differing from the driving frequency by
multiples of 𝜔𝑐, and that the amplitudes of these components are proportional to 𝐽𝑛(𝑘𝑟𝐿)/[𝜔2

𝑐−
(𝜔 − 𝑛𝜔𝑐)2]. When the denominator vanishes, the amplitude becomes large. This happens
when 𝜔 − 𝑛𝜔𝑐 = ±𝜔𝑐, or 𝜔 = (𝑛 ± 1)𝜔𝑐, 𝑛 = 0,±1,±2, ...; that is, when the field E(𝑥, 𝑡)
resonates with any harmonic of 𝜔𝑐. In the fluid limit 𝑘𝑟𝐿 → 0, 𝐽𝑛(𝑘𝑟𝐿) can be approximated
by (𝑘𝑟𝐿/2)𝑛/𝑛!, which approaches 0 for all 𝑛 except 𝑛 = 0. For 𝑛 = 0, the coefficient becomes
(𝜔2

𝑐 − 𝜔2)−1, which is the fluid result containing only the fundamental cyclotron frequency.
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8.10.1 The Hot Plasma Dielectric Tensor

After Fourier analysis of 𝑓1(r,v, 𝑡) in space and time, the linearized Vlasov equation can be
solved for a Maxwellian distribution 𝑓0(v), and the resulting expression 𝑓1(k,v, 𝜔) can be used
to calculate the density and current of each species. The result is usually expressed in the
form of an equivalent dielectric tensor ⃡𝜖, such that the dispersion vector D = ⃡𝜖 ⋅E can be used
in the Maxwell’s equations to calculate dispersion relations for various waves. The algebra is
horrendous and therefore omitted. We quote only a restricted result valid for nonrelativistic
plasmas with isotropic pressure 𝑇⟂ = 𝑇∥ and no zero-order drifts v0𝑗; these restrictions are
easily removed, but he general formulas are too cluttered for our purposes. We further assume
k = 𝑘𝑥x̂ + 𝑘𝑧 ̂z, with ̂z being the direction of B0; no generality is lost by setting 𝑘𝑦 equal to
zero, since the plasma is isotropic in the plane perpendicular to B0. The elements of ⃡𝜖𝑅 = ⃡𝜖/𝜖0
are then

𝜖𝑥𝑥 =
𝜖𝑦𝑦 =
𝜖𝑧𝑧 =
𝜖𝑥𝑧 =
𝜖𝑦𝑧 =
𝜖𝑧𝑥 =

where 𝑍(𝜁) is the plasma dispersion function, 𝐼𝑛(𝑏) is the 𝑛th order Bessel function of imaginary
argument, and the other symbols are defined by

𝜔2
𝑝𝑠 = 𝑛0𝑠𝑍2

𝑠𝑒2/𝜖0𝑚𝑠
𝜁𝑠 = (𝜔 + 𝑛𝜔𝑐𝑠)/𝑘𝑧𝑣𝑡ℎ𝑠

𝜔𝑐𝑠 = |𝑍𝑠𝑒𝐵0/𝑚𝑠|
𝑣2𝑡ℎ𝑠 = 2𝑘𝐵𝑇𝑠/𝑚𝑠

𝑏𝑠 = 1
2𝑘

2
⟂𝑟𝐿𝑠 = 𝑘2

𝑥𝑘𝐵𝑇𝑠/𝑚𝑠𝜔2
𝑐𝑠

The first sum is over species 𝑠, with the understanding that 𝜔𝑝, 𝑏, 𝜁0, and 𝜁𝑛 all depend on 𝑠,
and that the ± stands for the sign of the charge. The second sum is over the harmonic number
𝑛. The primes indicate differentiation with respect to the argument.

As foreseen, there appear Bessel functions of finite-𝑟𝐿 parameter 𝑏. (The change from 𝐽𝑛(𝑏)
to 𝐼𝑛(𝑏) occurs in the integration over velocities.) The elements of ⃡𝜖 involving motion along ̂z
contain 𝑍′(𝜁𝑛), which gives rise to Landau damping when 𝑛 = 0 and 𝜔/𝑘𝑧 ≃ 𝑣𝑡ℎ. The 𝑛 ≠ 0
terms now make possible another collisionless damping mechanism, cyclotron damping, which
occurs when (𝜔𝑐 ± 𝑛𝜔𝑐)/𝑘𝑧 ≃ 𝑣𝑡ℎ.
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8.10.2 Bernstein Waves

Electrostatic waves propagating at right angles to B0 at harmonics of the cyclotron frequency
are called Bernstein waves. The dispersion relation can be found by using the dielectric
elements give in the previous section in Poisson’s equation ∇ ⋅ ⃡𝜖 ⋅ E = 0. If we assume
electrostatic perturbations such that E1 = −∇𝜙0, and consider waves of the form 𝜙1 =
𝜙1 exp 𝑖(k ⋅ r − 𝜔𝑡), Poisson’s equation can be written

𝑘2
𝑥𝜖𝑥𝑥 + 2𝑘𝑥𝑘𝑧𝜖𝑥𝑧 + 𝑘2

𝑧𝜖𝑧𝑧 = 0

Note that we have chosen a coordinate system that has k lying in the x-z plane, so that 𝑘𝑦 = 0.
We next substitute for 𝜖𝑥𝑥, 𝜖𝑥𝑧, and 𝜖𝑧𝑧 from the dielectric tensor expression and express 𝑍′(𝜁𝑛)
in terms of 𝑍(𝜁𝑛) with the identity

𝑍′(𝜁𝑛) = −2[1 + 𝜁𝑍(𝜁𝑛)]

via integration by parts. The equation becomes

𝑘2
𝑥+𝑘2

𝑧 +∑
𝑠

𝜔2
𝑝

𝜔2 𝑒−𝑏𝜁0
∞
∑

𝑛=−∞
𝐼𝑛(𝑏)

× [𝑘2
𝑥
𝑛2

𝑏 𝑍 − 2(2𝑏 )
1/2𝑛𝑘𝑥𝑘𝑧(1 + 𝜁𝑛𝑍) − 2𝑘2

𝑧𝜁𝑛(1 + 𝜁𝑛𝑍)] = 0

The expression in the square brackets can be simplified in a few algebraic steps to 2𝑘2
𝑧[𝜁−𝑛 +

𝜁20𝑍(𝜁𝑛)] by using the definitions 𝑏 = 𝑘2
𝑥𝑣2𝑡ℎ/2𝜔2

𝑐 and 𝜁𝑛 = (𝜔 + 𝑛𝜔𝑐)/𝑘𝑧𝑣𝑡ℎ. Further noticing
that 2𝑘2

𝑧𝜔2
𝑝𝜁0/𝜔2 = 2𝜔2

𝑝/𝑣2𝑡ℎ ≡ 𝑘2
𝐷 for each species, we can write the equation as

𝑘2
𝑥 + 𝑘2

𝑧 +∑
𝑠

𝑘2
𝐷𝑒−𝑏

∞
∑

𝑛=−∞
𝐼𝑛(𝑏)[𝜁−𝑛/𝜁0 + 𝜁0𝑍(𝜁𝑛)] = 0

The term 𝜁−𝑛/𝜁0 = 1− 𝑛𝜔𝑐/𝜔. Since 𝐼𝑛(𝑏) = 𝐼−𝑛(𝑏), the term 𝐼𝑛(𝑏)𝑛𝜔𝑐/𝜔 sums to zero when
𝑛 goes from −∞ to ∞; hence, 𝜁−𝑛/𝜁0 can be replaced by 1. Defining 𝑘2 = 𝑘2

𝑥 + 𝑘2
𝑧, we obtain

the general dispersion relation for Bernstein waves:

1 +∑
𝑠

𝑘2
𝐷
𝑘2
⟂
𝑒−𝑏

∞
∑

𝑛=−∞
𝐼𝑛(𝑏)[1 + 𝜁0𝑍(𝜁𝑛)] = 0
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(A) Electron Bernstein Waves. Let us first consider high-frequency waves in which the ions
do not move. These waves are not sensitive to small deviations from perpendicular
propagation, and we may set 𝑘𝑧 = 0, so that 𝜁𝑛 → ∞. There is, therefore, no cyclotron
damping; the gaps in the spectrum that we shall find are not caused by such damping.
For large 𝜁𝑛, we may replace 𝑍(𝜁𝑛) by −1/𝜁𝑛. (???) The 𝑛 = 0 term in teh second sum
of the above equation then cancels out, and we can divide the sum into two sums, as
follows:

𝑘2
⟂ +∑

𝑠
𝑘2
𝐷𝑒−𝑏[

∞
∑
𝑛=1

𝐼𝑛(𝑏)(1 − 𝜁0/𝜁𝑛) +
∞
∑
𝑛=1

𝐼−𝑛(𝑏)(1 − 𝜁0/𝜁−𝑛)] = 0

or

𝑘2
⟂ +∑

𝑠
𝑘2
𝐷𝑒−𝑏

∞
∑
𝑛=1

𝐼𝑛(𝑏)[2 − 𝜔
𝜔 + 𝑛𝜔𝑐

− 𝜔
𝜔 − 𝑛𝜔𝑐

] = 0

The bracket collapses to a single term upon combining over a common denominator:

1 = ∑
𝑠

𝑘2
𝐷
𝑘2
⟂
𝑒−𝑏

∞
∑
𝑛=1

𝐼𝑛(𝑏)
2𝑛2𝜔2

𝑐
𝜔2 − 𝑛2𝜔2𝑐

Using the definitions of 𝑘𝐷 and 𝑏, one obtains the well-known (NOT TO ME!!!) 𝑘𝑧 = 0
dispersion relation

1 = ∑
𝑠

𝜔2
𝑝

𝜔2𝑐

2
𝑏 𝑒

−𝑏
∞
∑
𝑛=1

𝐼𝑛(𝑏)
(𝜔/𝑛𝜔𝑐)2 − 1

We now specialize to the case of electron oscillations. Dropping the sum over species, we
obtain

𝑘2
⟂

𝑘2
𝐷

= 2𝜔2
𝑐

∞
∑
𝑛=1

𝑒−𝑏𝐼𝑛(𝑏)
𝜔2 − 𝑛𝜔2𝑐

𝑛2 ≡ 𝛼(𝜔, 𝑏)

… (ADD fig.7-33!!!)

To obtain the fluid limit, we repalce 𝐼𝑛(𝑏) by its small-𝑏 value (𝑏/2)𝑛/𝑛!. Only the 𝑛 = 1 term
remains in the limit 𝑏 → 0, and we obtain

1 = 𝜔2
𝑝

𝜔2𝑐

2
𝑏
𝑏
2(

𝜔2

𝜔2𝑐
− 1)

−1
= 𝜔2

𝑝
𝜔2 − 𝜔2𝑐
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or 𝜔2 = 𝜔2
𝑝 + 𝜔2

𝑐 = 𝜔2
ℎ, which is the upper hybrid oscillation. As 𝑘⟂ → 0, this frequency must

be one of the roots. If 𝜔ℎ falls between two high harmonics of 𝜔𝑐, the shape of the 𝜔−𝑘 curves
changes near 𝜔 = 𝜔ℎ to allow this to occur. …

(B) Ion Bernstein Waves. In the case of waves at ion cyclotron harmonics, one has to
distinguish between pure ion Bernstein waves, for which 𝑘𝑧 = 0, and neutralized ion
Bernstein waves, for which 𝑘𝑧 has a small but finite value. The difference, as we have
seen earlier for lower hybrid oscillations, is that finite 𝑘𝑧 allows electrons to flow along
B0 to cancel charge separations. Though the 𝑘𝑧 = 0 case has already been treated in …
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9 Stability

This chapter discusses plasma equilibrium and stability, or more precisely, instability. We are
interested in when, where, and how instabilities arise in plasmas.

Magnetic fields are ubiquitous in cosmological objects. General questions exist about why are
they of the form that they are:

• Why does this particular form remain?
• How does it get to this form?

Anything that reorganizes magnetic field is a transport phenomenon therefore instabilities are
of great interest. From hydrodynamic instabilities to plasma instabilities, we need to realize
the role of magnetic field and kinetic physics in the instability process:

• Existing hydro-instability may be affected by the presence of magnetic field
• Instability may be driven by presence of magnetic fields
• Instability that does not exist in hydrodynamics may arise in the kinetic description.

Because of a multitude of free-energy sources in space plasmas, a very large number of insta-
bilities can develop. The instabilities grow and then saturate in such a way as to reduce the
free energy. Generally they can be separated into two groups:

1. Macroinstability, where the involved spatial scale is comparable to the macroscopic size
(bulk scale of plasma), and can be treated with fluid theory;

2. Microinstability, where the involved spatial scale is comparable to the microscopic size
(gyroradius, inertial length), and should be treated with kinetic theory.

There exists a massive catalogue of plasma instabilities.

Type Description
Beam acoustic instability
Bump-on-tail instability
Buneman instability
Cherenkov instability
Chute instability
Coalescence instability
Collapse instability
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Type Description
Counter-streaming instability
Cyclotron instabilities Alfvén, electron, electrostatic, ion, magnetoacoustic
Disruptive instability
Double mission instability
Drift instability
Electrothermal instability
Fan instability
Filamentation instability
Firehose instability Section 10.1
Free electron maser instability
Gyrotron instability
Helical instability Helix
Interchange instability Rayleigh-Taylor, flute, ballooning, kink, sausage
Ion beam instability
Lower hybrid drift instability Section 9.9
Magnetic drift instability
Modulation instability
Non-Abelian instability Chromo-Weibel
Pair instability
Parker instability Magnetic buoyancy
Peratt instability
Pinch instability
Tearing mode instability Section 9.7.5
Two stream instability Kelvin-Helmholtz, Section 9.5
Weak beam instability
Weibel instability
Z-pinch instability Bennett pinck

The basic methodology of examining instabilities

• Take the equations
• Linearize about an equilibrium solution
• Add some perturbations and see what happens

– Look for normal mode solutions 𝑒𝑖(k⋅x−𝜔𝑡) and find a relationship between the growth
rate ℑ(𝜔) and the wavenumbers of the disturbance k and the parameters of the
problem (i.e. dispersion relation).

– Use the MHD energy principle: calculate 𝛿𝑊 , the change in potential energy asso-
ciated wit the disturbance, and look for disturbances with 𝛿𝑊 < 0 (the existence
of any one means unstable; need 𝛿𝑊 > 0∀ types of disturbances).
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9.1 Analogy of the Energy Principle

First, let us have an intuitive inspection from the energy principle. In classical mechanics, we
learn that motion acts to lower the energy in the system. For the simplest Rayleigh-Taylor
instability between two fluids with different density, we can easily decide if there is an instability
by checking the total potential energy change. In a current-carrying plasma, similar motions
can be developed. The energy can be expressed as

𝑊 = 1
2𝐿𝐼

2

where 𝐿 is the inductance and 𝐼 is the current. The magnetic flux can be written as

Φ = 𝐿𝐼

so the energy can also be written as

𝑊 = Φ2

2𝐿
The relation between magnetic flux and current is similar to charge and voltage, 𝑄 = 𝐶𝑉 ,
where 𝐶 is the electric capacity. In a system where magnetic flux Φ is conserved (e.g. ideal
MHD), plasma lowers its potential by increasing its inductance 𝐿. Check (Bellan 2008) P315.

1. current loop, hoop force, increase area;
2. sausage mode;
3. current wire into helix.

9.2 Implication of Single Particle Motion on Instabilities

This section provides some qualitative understanding of instabilities in plasma. Thinking of
instabilities from the prospective of single particle motion provides us the physical intuition
of the causes and development of instabilities from a very basic level.

9.2.1 Equilibrium stability of a plasma from drifts

A key problem in nuclear fusion is to confine plasma. In the first stage, we need current loops
around a torus tube (ADD FIGURE!) to provide a toroidal magnetic field B𝑡 along the torus.
Let us take a look at a torus cut. (ADD FIGURE!) ∇𝐵0 is pointing towards the inside. B0
points outside the plane, so the gradient-curvature drift will lead electrons upward and ions
downward, which in turn creates a E field pointing upwards. E × B drift then will lead both
electrons and ions towards the outer boundary. Eventually we will lose the plasma. One way
to fix this is to add J𝑡, an internal plasma current in the toroidal direction to generate a
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poloidal B𝑝, so that the magnetic field is stronger on the boundary than that at the center.
In this way the total magnetic field becomes a helix.

Consider the poloidal magnetic field generated by J𝑡. One step further, our question is: will
the plasma tube be stable under infinitesimal perturbations to the ideal cylinder configuration?
The answer is no. Imagine a small perturbation shown as in Figure 9.1 b. ∇𝐵 points from
weak B to strong B regions. On the convex side, the gradient-curvature drift will lead ions to
the left and electrons to the right, which in turn generates an electric field pointing left to right.
Thereafter the E × B drift will further drag the plasma to the convex region, and the whole
system can never return to equilibrium. This the current-carrying plasma instability is called
kink instability. The situation described here is sometimes referred to as linear kink instability.
The kink mode can carry currents. Another similar mode is the sausage instability as shown
in Figure 9.1. Also note that a sufficiently strong 𝐵𝑧 (not poloidal/toroidal component) can
stabilize these instabilities.

Another famous instability is the Rayleigh-Taylor instability. In fluid dynamics, Rayleigh-
Taylor instability happens due to gravity. Here in plasma physics, the role of gravity force
is replaced by the electromagnetic force. Imagine a situation where plasma are located at
𝑧 > 0 region, below which is a vacuum space. There is a B field pointing outside the plane
while ∇𝐵 is pointing upwards (𝐵up > 𝐵down). Due to gradient drift on the boundary, ions
will move to the left while electrons will move to the right, where a E field pointing left to
right is created. Thus the E×B drift will lead plasma from upper region to lower region, and
eventually breaks the interface. (Actually I have some questions for this figure: it seems to me
that it is impossible to decide which part of the interface is changing first?)

9.2.2 Stability of magnetic mirror in the scope of single particle motion

We can deduce the stability of magnetic mirror by assuming a initial small perturbation along
the boundary. In the center cross-section cut, first there is a centrifugal force pointing outward,
which will cause electrons drifting to one way and ions drifting to the other way. The charge
separation will generate an electric field. The E × B drift will then pull the plasma further
out if there’s a ripple, which will lead to instability. Several names describe the same thing:
flute instability, R-T instability, interchangeable instability, gravitational instability and so on.
This instability propagates at Alfvén speed.

In general, we can define two configuration categories: the unstable situation, where B has
a “bad” unfavorable curvature, and the stable situation, where B has a “good” favorable
curvature. This depends on whether or not the magnetic pressure in the vacuum is stronger
than that inside the plasma. In a basic magnetic mirror, the plasma on the center boundaries
are unstable, while those around the coil curvature are stable.

A famous Russian scientist Ioffe introduced conducting bars around the mirror to create an
absolute minimum B-geometry, where in any point away from the center the B field is stronger.
This indeed supresses the R-T instability, but the whole system is, unfortunately, still unstable
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Figure 9.1: Sausage and kink modes.
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Figure 9.2: Basic magnetic mirror configuration.
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due to microinstabilities caused by lost cone distribution. The inverted population (more high
speed particles than low speed ones) will lead to instabilities. Later scientists came up with
the idea of adding cold gas to modify the distribution, but the cold gas injection procedure
eventually kills the mirror configuration.

9.2.3 Stability in the Tokamak

In a classical Tokamak geometry, the poloidal and toroidal magnetic field together created a
spiral around the torus.

B = B𝑇 + B𝑃

𝐵 = √𝐵𝑇
2 +𝐵𝑃

2 ≈ 𝐵𝑇

The field strength goes down as 𝑅 increases, which implies that the inner semi-tube is in good
curvature and the outer semi-tube is in bad curvature. By plotting mechanical potential=𝜇𝐵
along the B-line as a function of 𝜃, we can see that there are bumps and valleys. Particles
with low 𝑣∥ are trapped, and those with large 𝑣∥ are transit particles. Tokamak is an average
minimum B geometry, because particles spend longer time on hills (stable region) and less
time in valleys (unstable region). This geometry is not as robust as Ioffe bar magnetic mirror,
since some particles with small 𝑣∥ are always trapped in bad curvature region.

See more in (F. F. Chen 2016), Third Edition, Chapter Application of Plasmas.

9.3 Two-Stream Instability

The general procedure of obtaining the dispersion relation for electrostatic wave is:

1. Get the linear equations from governing equations.
2. Get the relation between linearized velocity and perturbed electric field.
3. Get the relation between linearized density and perturbed electric field.
4. Get the current response to the perturbed electric field.
5. Get the dielectric tensor from Maxwell’s equation. Let |𝜖𝜖𝜖| = 0. we finally obtain the

dispersion relation. For an isotropic case, the dielectric tensor shrinks to a scalar, so we
simply have 𝜖 = 0.

Assume the simple equilibrium state in 1D (static and “cold” ions, “cold” electrons): 𝑚𝑖 =
∞,𝐸0 = 𝐵0 = 0, 𝑝𝑖 = 𝑝𝑒 = 0, 𝑛𝑖 = 𝑛0, 𝑇𝑒 = 𝑇𝑖 = 0. Whenever we say “cold” for plasma,
it does not mean that the plasma is at absolute zero degree. This only means that we are
considering a situation where the kinetic pressure plays no roles in the dispersion relation.
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This is also a non-magnetized plasma because B0 = 0. The variables including perturbations
are

𝑛𝑒 = 𝑛0 + 𝑛1 𝑛0 ≫ 𝑛1
𝑣𝑒 = 𝑣0 + 𝑣1 𝑣0 ≫ 𝑣1
𝐸 =��𝐸0 +𝐸1

𝑛1(𝑥, 𝑡) = �̃�1𝑒−𝑖𝜔𝑡+𝑖𝑘𝑥

The electron continuity and the momentum equations read

𝜕
𝜕𝑡(𝑛0 + 𝑛1) +

𝜕
𝜕𝑥[(𝑛0 + 𝑛1)(𝑣0 + 𝑣1)] = 0

𝜕
𝜕𝑡(𝑣0 + 𝑣1) + (𝑣0 + 𝑣1)

𝜕(𝑣0 + 𝑣1)
𝜕𝑥 = − 𝑒

𝑚𝑒
[(𝐸0 +𝐸1) + (v0 + v1) × (B0 + B1)𝑥]

Again, for electrostatic waves, B1 = 0. Neglecting high order terms, we get the linearized
equations

𝜕𝑛1
𝜕𝑡 + 𝜕

𝜕𝑥(𝑛0𝑣1) +
𝜕
𝜕𝑥(𝑛1𝑣0) = 0

𝜕𝑣1
𝜕𝑡 + 𝑣0

𝜕𝑣1
𝜕𝑥 = − 𝑒

𝑚𝑒
𝐸1

Assume wave-like perturbations 𝑒𝑖𝑘𝑥−𝑖𝜔𝑡 as in the Vlasov theory, from the linearized momentum
equation we have

(−𝑖𝜔 + 𝑖𝑘𝑣0)𝑣1 = − 𝑒
𝑚𝑒

𝐸1

⇒ 𝑣1 =
𝑒

𝑚𝑒
𝐸1

𝑖(𝜔 − 𝑘𝑣0)
.

Substituting into the linear continuity equation, we get

−𝑖𝜔𝑛1 + 𝑖𝑘𝑛0𝑣1 + 𝑖𝑘𝑛1𝑣0 = 0

⇒ 𝑛1 = 𝑘𝑛0𝑣1
𝜔 − 𝑘𝑣0

= 𝑘𝑛0
𝜔 − 𝑘𝑣0

𝑒
𝑚𝑒

𝐸1
𝑖(𝜔 − 𝑘𝑣0)

.

This is the density perturbation in response to electric perturbation 𝐸1 in 2-fluid theory.

Then we can use the Poisson’s equation to generate the dielectric function

∇ ⋅ (𝜖0E1) + 𝑒𝑛1 ≡ ∇ ⋅ (𝜖E1) = 0
𝑖𝑘𝜖0 ̃𝐸1 + 𝑒�̃�1 = 𝑖𝑘𝜖 ̃𝐸1

⇒ 𝜖 = 𝜖0[1 − 𝜔𝑝𝑒
2

(𝜔 − 𝑘𝑣0)2
]
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which is the same as the result given by Vlasov theory (Y.Y. Problem Set #6.2). The advantage
of using 2-fluid method is that we do not need to consider velocity space, which simplifies the
derivation.

If we have two streams of electron described by 𝑔(𝑣) as

𝑔(𝑣) = 1
2[𝛿(𝑣 − 𝑣1) + 𝛿(𝑣 − 𝑣2)]

with the oscillation frequency 𝜔𝑝1, 𝜔𝑝2 and number density 𝑛𝑝1,1, 𝑛𝑝2,1 respectively. In consid-
eration of linear superposition property, we expect the dielectric function to be

𝜖
𝜖0

= 1 − 𝜔𝑝1
2

(𝜔 − 𝑘𝑣1)2
− 𝜔𝑝2

2

(𝜔 − 𝑘𝑣2)2

If 𝑔(𝑣) is a continuous distribution in general, 𝑔(𝑣) = ∑𝑗 𝑔𝑗(𝑣), then

𝜖
𝜖0

= 1 −∫
∞

−∞
∑
𝑗

𝜔𝑝,𝑗
2𝑔𝑗(𝑣)d𝑣

(𝜔 − 𝑘𝑣)2

= 1 − 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞

𝑔(𝑣)d𝑣
(𝑣 − 𝜔/𝑘)2 .

Note that 𝛿′(𝑥) = 𝑥−1𝛿(𝑥). Here we reconstruct the result of Vlasov theory from 2-fluid
theory. The equivalence of the two approaches is explored more thoroughly in later section
Fluid Descriptions of Kinetic Modes (ADD LINK!).

Then what happens if ion motion is included? We still have “cold” ions at rest in equilibrium
but now with ion perturbations in density. The Poisson’s equation should include ion density
perturbation

∇ ⋅ (𝜖0E1) = ∑
𝑗=𝑖,𝑒

𝑞𝑗𝑛1𝑗

⇒ 𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

𝑘2 ∫
∞

−∞
d𝑣𝜕𝑔𝑒(𝑣)/𝜕𝑣𝑣 − 𝜔/𝑘 − 𝜔𝑝𝑖

2

𝑘2 ∫
∞

−∞
d𝑣𝜕𝑔𝑖(𝑣)/𝜕𝑣𝑣 − 𝜔/𝑘

In the simplest equilibrium case, 𝑔𝑒(𝑣) = 𝛿(𝑣 − 𝑣0), 𝑔𝑖(𝑣) = 𝛿(𝑣)

𝜖
𝜖0

= 1 − 𝜔𝑝𝑒
2

(𝜔 − 𝑘𝑣0)2
− 𝜔𝑝𝑖

2

𝜔2

Let 𝜖 = 0, we get the dispersion relation 𝜔 = 𝜔(𝑘). An example dispersion relation and
dielectric function property are shown in Figure 9.3 and Figure 9.4, respectively. Note that
if you have a real wave number 𝑘, you will get a pair of conjugate 𝜔, one of which that lies
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Figure 9.3: 2-stream dispersion relation.
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Figure 9.4: 2-stream dielectric function.
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Figure 9.5: 2-stream velocity space distribution.

between 0 and 𝑘𝑣0 is an unstable mode. This will exhibit 2-stream instability as shown by the
velocity space distribution in Figure 9.5.

𝜖(𝜔, 𝑘)/𝜖0 = 1 − 𝜔𝑝𝑒
2

(𝜔 − 𝑘𝑣0)2
− 𝜔𝑝𝑖

2

𝜔2 = 0

1 = 𝜔𝑝𝑒
2

(𝜔 − 𝑘𝑣0)2
+ 𝜔𝑝𝑖

2

𝜔2

Let 𝜔/𝜔𝑝𝑒 = 𝑧, 𝑘𝑣0
𝜔𝑝𝑒

= 𝜆, such that 𝑧 and 𝜆 are dimensionless numbers. Let the right-hand
side be 𝑓(𝑧), then

𝑓(𝑧) = 1
(𝑧 − 𝜆)2 + 𝜔𝑝𝑖

2/𝜔𝑝𝑒
2

𝑧2 = 𝑧2 + (𝑧 − 𝜆)2𝜔2
𝑝𝑖/𝜔𝑝𝑒

2

(𝑧 − 𝜆)2𝑧2

We can plot 𝑓 to find the threshold of 𝑘 when the instability will happen. See Y.Y’s Problem
Set 6.3 for details.
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9.4 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability is probably the most important MHD instability. It is also
called gravitational instability , flute instability or more generally, interchange instability. In
ordinary hydrodynamics, a Rayleigh-Taylor instability arises when one attempts to support a
heavy fluid on top of a light fluid: the interface becomes “rippled”, allowing the heavy fluid to
fall through the light fluid. In plasmas, a Rayleigh-Taylor instability can occur when a dense
plasma is supported against gravity by the pressure of a magnetic field.

The situation would not be of much interest or relevance in its own right, since actual gravi-
tational forces are rarely of much importance in plasmas. However, in curved magnetic fields,
the centrifugal force on the plasma due to particle motion along the curved field-lines acts like
a “gravitational” force (Section 4.1.3). For this reason, the analysis of the Rayleigh-Taylor
instability provides useful insight as to the stability properties of plasmas in curved magnetic
fields. Rayleigh-Taylor-like instabilities driven by actual field curvature are the most virulent
type of MHD instability in non-uniform plasmas.

Here we use a 2-fluid model and a so-called “diffuse boundary” model (F. F. Chen 2016) to
describe it mathematically. Recall the structure of magnetic mirror: we have curved magnetic
field lines and high density plasma at the center. From the discussion in Section 9.2.2, we know
that the central part of magnetic mirror is unstable for Rayleigh-Taylor instability because of
centrifugal force. Let us simplify the scenario and study the problem in Cartesian coordinates.
The centrifugal force is irrelevant to particle charge and proportional to particle mass, so both
ions and electrons have the same acceleration due to it. Let us replace the centrifugal force
with gravity g. In Figure 9.6, there are high density plasma on top and low density plasma
on the bottom, with a distribution 𝜕𝑛𝑜/𝜕𝑥 < 0.

9.4.1 2-Fluid Diffuse Boundary Model

This section is similar to Section 6.7 in (F. F. Chen 2016).

The continuity and momentum equations are:

𝜕𝑛𝑗
𝜕𝑡 + ∇ ⋅ (𝑛𝑗vj) = 0
𝜕vj
𝜕𝑡 + vj ⋅ ∇vj =

𝑞𝑗
𝑚𝑗

(E + vj × B) − ∇𝑃𝑗
𝑛𝑗𝑚𝑗

+ g

where 𝑗 = 𝑒−, 𝑖+ for electrons and ions.
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Figure 9.6: Simultaion of Rayleigh-Taylor instability (Rahman and San 2019).
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Assume an one-dimensional case

𝑇𝑒 = 𝑇𝑖 = 0 ⇒ 𝑃𝑒 = 𝑛𝑒𝑘𝐵𝑇𝑒 = 0, 𝑃𝑖 = 𝑛𝑖𝑘𝐵𝑇𝑖 = 0

𝑛0 = 𝑛0(𝑥),
𝜕𝑛0
𝜕𝑥 < 0 (nonuniform plasma)

g = 𝑔 ̂𝑥, 𝑔 = const. > 0
B0 = 𝐵0 ̂𝑧, 𝐵0 = const., E0 = 0 (no gradient/curvature drift)

Note that there is no diamagnetic current if 𝑃𝑒 = 𝑃𝑖 = 0 (no electric field so no current along
B0 ?):

J𝑑𝑒 × B0 = −∇𝑃𝑒 = 0
J𝑑𝑖 × B0 = −∇𝑃𝑖 = 0

⇒J𝑑𝑒 = J𝑑𝑖 = 0

Instability arises when an equilibrium state is violated. What is the force that balances the
gravity? It turns out to be the Lorentz force v×B term: the separation of electrons and ions
creates currents, and currents lead to force.

ADD FIGURE!

In equilibrium, 𝜕
𝜕𝑡 = 0, 𝜕

𝜕𝑦 [𝑛0𝑗(𝑥)𝑣0𝑗] = 0, 𝑣0𝑗 = const.,

𝜕𝑛𝑜𝑗
𝜕𝑡 + ∇ ⋅ (𝑛𝑜𝑗v𝑜𝑗) = 0
𝑞𝑗
𝑚𝑗

v𝑗 × B0 + g = 0

⇒{v𝑖 = 𝑔𝑚𝑖
𝑞𝑖𝐵0

(− ̂𝑦) = − 𝑔
Ω𝑖

̂𝑦 = − ̂𝑦𝑣0𝑖
v𝑒 = 𝑔𝑚𝑒

𝑞𝑒𝐵0
( ̂𝑦) = 𝑔

Ω𝑒
̂𝑦 = ̂𝑦𝑣0𝑒 ≈ 0(𝑣0𝑒 ≪ 𝑣0𝑖)

where Ω𝑖, Ω𝑒 are the gyro-frequency for ions and electrons respectively.

Now, we introduce an electrostatic perturbation on this equilibrium state (B1(x, 𝑡) = 0, ∇×
E1 = −𝜕B1

𝜕𝑡 = 𝑖𝜔B1 = 0, E1 can be written as a gradient of a scalar potential)

E1(x, 𝑡) = −∇Φ1 = −∇[𝜙1(𝑥)𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡]

In addition, we adopt the so-called “local approximation”, i.e. we assume 𝜕𝜙1/𝜕𝑥 = 0,
𝜕
𝜕𝑥 [𝐸1,v1, 𝑛1] = 0. This is a very drastic assumption that greatly simplifies the problem but
cannot be justified. This assumption is commonly used in many textbooks, both explicitly
and implicitly (e.g. (Bellan 2008) used this to treat universal instability. Remember in
solving the Vlasov equations, we integrate along the unperturbed orbits, which also requires
this assumption.)
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In this case,
E1 = 0 ̂𝑥 + 𝐸1𝑦 ̂𝑦 = ̂𝑦𝐸1𝑦𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡

where 𝐸1𝑦 = −𝑖𝑘𝑦𝜙1 is a constant.

Linearization:
𝜕
𝜕𝑡(𝑛0 + 𝑛1) + ∇ ⋅ [(𝑛0 + 𝑛1)(v0 + v1)] = 0
𝜕
𝜕𝑡(v0 + v1) + (v0 + v1) ⋅ ∇(v0 + v1) =

𝑞
𝑚[E0 + E1 + (v0 + v1) × (B0 + B1)] + g

Getting rid of the equilibrium and high-order terms, we have (Notice that g does not even
appear here! In MHD, it does, in a very explicit way.)

𝑖(𝑘𝑦𝑣0𝑦 − 𝜔)𝑛1 = −𝑛0𝑖𝑘𝑦𝑣1𝑦 − 𝑣1𝑥
𝜕𝑛0
𝜕𝑥

d
d𝑡v1 = 𝑖(𝑘𝑦𝑣0𝑦 − 𝜔)v1 = 𝑞

𝑚(E1 + v1 × B0)

Now, from the linearized momentum equation, we can get the x and y components of perturbed
velocity; intuitively, you can guess the expression:

𝑣1,𝑖𝑥 = 𝐸1𝑦
𝐵0

, 𝑣1,𝑒𝑥 = 𝐸1𝑦
𝐵0

𝑣1,𝑖𝑦 = 1
Ω𝑖

d
d𝑡(

𝐸1𝑦
𝐵0

) = 𝑖(𝑘𝑦𝑣0𝑖 − 𝜔)
Ω𝑖

(𝐸1𝑦
𝐵0

), 𝑣1,𝑒𝑦 = 1
Ω𝑒

d
d𝑡(

𝐸1𝑦
𝐵0

) ≈ 0

where in the x direction, it is the E × B drift, and in the y direction, it is the polarization
drift.

From the linearized continuity equation

𝑖(𝑘𝑦𝑣0,𝑦𝑖 − 𝜔)𝑛1𝑖 = −𝑛0𝑖𝑘𝑦𝑣1,𝑦𝑖 − 𝑣1,𝑥𝑖
𝜕𝑛0
𝜕𝑥

−𝑖𝜔𝑛1𝑒 = −𝑣1,𝑥𝑒
𝜕𝑛0
𝜕𝑥

Then we can get 𝑛1𝑒 = 𝑛1𝑒(𝐸1𝑦), 𝑛1𝑖 = 𝑛1𝑖(𝐸1𝑦). Setting 𝑛1𝑒 = 𝑛1𝑖, we have the dispersion
relation

𝜔(𝜔 − 𝑘𝑦𝑣0𝑖) = 𝑔 1
𝑛0

𝜕𝑛0
𝜕𝑥

When 𝑘𝑦 → 0,
𝜔2 = 𝑔 1

𝑛0

𝜕𝑛0
𝜕𝑥 < 0 ⇒ instability!

Let’s think about this 2-fluid approach for a while. Apparently, we cannot treat a sharp
boundary, namely 𝜕𝑛0

𝜕𝑥 = 𝛿(𝑥), with exactly the same equations. However, it’s quite a surprise
that MHD approach can easily do that, as we will see in the next section.
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9.4.2 Single fluid MHD method

In equilibrium, g = ̂𝑥𝑔, B0 = ̂𝑧𝐵0(𝑥), U0 = 0, E0 = 0, 𝜌0(𝑥), 𝑝0(𝑥).
𝜕𝜌0
𝜕𝑡 + ∇ ⋅ (𝜌0U0) = 0

0 = 1
𝜇0

[ − 1
2

𝜕
𝜕𝑥(𝐵0

2)] − 𝜕
𝜕𝑥𝑝0(𝑥) + 𝜌0(𝑥)𝑔

Note that there’s a difference between cases where different pressure is dominant. For example,
in z-pinch the magnetic pressure is dominant, while in a laser pulse, the thermal pressure is
usually dominant.

Assume perturbations of the form

𝑝1(x, 𝑡) = 𝑝1(𝑥)𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡

𝜌1(x, 𝑡) = 𝜌1(𝑥)𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡

U1 = 𝜕𝜉𝜉𝜉1
𝜕𝑡 = −𝑖𝜔𝜉𝜉𝜉1

where 𝜉𝜉𝜉1 is the displacement.

We can calculate each linear term:

[(B0 + B1) ⋅ ∇](B0 + B1) ≈ (B0 ⋅ ∇)B1 + (B1 ⋅ ∇)B0 = (𝐵0(𝑥)
𝜕
𝜕𝑧 )B1

𝐵2 = (B0 + B1) ⋅ (B1 + B1) ≈ 2B0 ⋅ B1
U = U0 + U1 = U1

The tension term has no x or y component, so we can just ignore it. Then the linearized
momentum equation can be written as

𝜌0
𝜕u1
𝜕𝑡 = 𝜌0

𝜕2𝜉𝜉𝜉1
𝜕𝑡2 = −∇(B0 ⋅ B1

𝜇0
) −∇𝑝1 + 𝜌1g

which can be separated into two scalar equations

−𝜌0𝜔2𝜉1𝑥 = − 𝜕
𝜕𝑥(

B1 ⋅ B1
𝜇0

+ 𝑝1) + 𝜌1𝑔

−𝜌0𝜔2𝜉1𝑦 = −𝑖𝑘𝑦(
B1 ⋅ B1

𝜇0
+ 𝑝1)

Assume incompressibility

∇ ⋅ u = 0 ⇒ ∇ ⋅ u1 = 0, ∇ ⋅ 𝜉𝜉𝜉1 = 𝜕𝜉1𝑥
𝜕𝑥 + 𝑖𝑘𝑦𝜉1𝑦 = 0
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The linearized continuity equation (Section 7.14) yields

𝜌1 = −∇ ⋅ (𝜌0𝜉𝜉𝜉1) = 𝜉1𝑥
𝜕
𝜕𝑥𝜌0

Combining the last four equations, we have

−𝜌0𝜔2𝜉1𝑥 = − 𝜕
𝜕𝑥[𝜌0𝜔

2 1
𝑘𝑦2

𝜕𝜉1𝑥
𝜕𝑥 ] − 𝑔𝜉1𝑥

𝜕𝜌0
𝜕𝑥 (9.1)

This is the governing equation for the Rayleigh-Taylor instability, which is the same as
Eq.(10.15) in (Bellan 2008). Note that here we have no assumption on the x-dependence;
if we simply use the local approximation as before, this immediately gives you the identical
result.

To treat the sharp boundary problem, we assume

𝜌0 = { const. if 𝑥 < 0
0 if 𝑥 > 0

Then for 𝑥 < 0,
𝜕2𝜉1𝑥
𝜕𝑥2 − 𝑘𝑦2𝜉1𝑥 = 0

⇒ 𝜉1𝑥 = 𝐴𝑒𝑘𝑦𝑥 +𝐵𝑒−𝑘𝑦𝑥

and for 𝑥 > 0,
𝜕2𝜉1𝑥
𝜕𝑥2 − 𝑘𝑦2𝜉1𝑥 = 0

⇒ 𝜉1𝑥 = 𝐶𝑒𝑘𝑦𝑥 +𝐷𝑒−𝑘𝑦𝑥

The coefficient 𝐵 and 𝐶 must be zero because of infinite field requirement. Due to continuity
at 𝑥 = 0, we set

𝐴 = 𝐷 = 𝜉0

The density profile obeys
𝜕𝜌0
𝜕𝑥 = −𝜌0𝛿(𝑥)

Integrating the governing Equation 9.1 from 𝑥 = 0− to 𝑥 = 0+ yields

− 𝜌0𝜔2

𝑘𝑦2
𝜉1𝑥
𝜕𝑥 ∣

𝑥=0+

𝑥=0−
− 𝑔𝜉1𝑥(−𝜌0) = 0

⇒𝜔2 = 𝑘𝑦𝑔

Therefore the growth rate is 𝛾 = ℑ(𝜔) = √𝑘𝑦𝑔. You may realize that k ⋅ B0 = 0 here, so this
magnetic stablizing term vanishes in the dispersion relation.
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9.4.3 2-fluid sharp boundary model

Now let’s go back and see if we can treat the sharp boundary problem with 2-fluid model. This
is actually not easy: it is first solved by S.Chandraserkhar in the view of particle orbit theory.
I believe there is a more ‘modern’ way of doing exactly the same thing, but here I just list the
original derivation.

We consider a plasma at uniform temperature lying above a horizontal plane in a uniform
gravitational field directed vertically downwards. There is a horizontal magnetic field in x
direction uniform in each half volumn with a jump in field strength produced by a uniform
horizontal current sheet at the boundary plane 𝑧 = 0. The gravitational force is balanced by
a pressure gradient in the plasma and by the jump in the magnetic pressure at 𝑧 = 0.
We now suppose the boundary of the plasam at 𝑧 = 0 to be rippled by a sinusoidal distur-
bance as shown in fig-RT_perturb. We may write for the displacement of the interface (ADD
FIGURE!)

Δ𝑧 = 𝑎 sin 𝑘𝑦 (9.2)
where 𝑎, the amplitude of the disturbance, is considered small and 𝑘(= 2𝜋/𝜆) is the wave
number of the disturbance in the y-direction. The drift resulting from gravity is given by

V𝑔 = 𝑚
𝑞

g × B
𝐵2

Since the magnetic field is in the x-direction, the electrons will drift to the right and the
positive ions will drift to the left. The gravity drift, therefore, causes a charge separation in
the plasma and the resulting boundary has the form shown in ?@fig-RT-displacement. The
surface charge 𝛿𝜎 due to the separation (𝛿Δ𝑧) of ions and electrons is given by

𝛿𝜎 = 𝑁𝑒𝛿Δ𝑧

= 𝑁𝑒𝜕Δ𝑧
𝜕𝑦 𝛿𝑦

= 𝑒𝜕Δ𝑧
𝜕𝑦 𝑉𝑔𝛿𝑡

Therefore, the time rate of change of the surface charge density is given by

𝜕𝜎
𝜕𝑡 = 𝑁𝑒𝑉𝑔

𝜕
𝜕𝑦Δ𝑧

= −𝑁𝑒𝑀𝑔
𝑒𝐵 𝑎𝑘 cos 𝑘𝑦

= −𝑁𝑀𝑒𝑔
𝐵 𝑎𝑘 cos 𝑘𝑦

(9.3)

where in writing these expressions, we have neglected the electron drift, as being small in the
ratio 𝑚/𝑀 compared to the ion drift. The electric field resulting from the surface charge can
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be computed in a straight-forward manner. In the region away from the boundary, we must
have

∇ ⋅ (𝜖E) = 0 (9.4)

where 𝜖 = 𝜖0(1 + 𝜔𝑝𝑖
2

Ω𝑖
2 ) = ... is the dielectric constant of the plasma. At the interface the

electric field is determined by
∇ ⋅ (𝜖E) = 1

𝜇0

𝜎
𝑑𝑧

where 𝜎 is the surface charge density and d𝑧 is the infinitesimal thickness of the layer. We now
integrate this equation over an element of volumn d𝑆d𝑧. The right-hand side gives the charge
within the column element (𝜎d𝑆). Making use of Gauss‘s theorem to transform the left-hand
side, we obtain

𝜖𝐸𝑧𝑑𝑆 = 1
𝜇0

𝜎𝑑𝑆 = 1
𝜇0

𝜎0 cos 𝑘𝑦𝑑𝑆

Thus the electric field at the interface is given by

𝜖𝐸𝑧 = 𝜎0
𝜇0

cos 𝑘𝑦 (9.5)

The electric field which satisfies Equation 9.4 within the plasma and the boundary condition
Equation 9.5 at 𝑧 = 0 has the components

𝐸𝑦 = 𝜎0
𝜇0𝜖

sin 𝑘𝑦 𝑒−𝑘𝑧

𝐸𝑧 = 𝜎0
𝜇0𝜖

cos 𝑘𝑦 𝑒−𝑘𝑧

with 𝐸𝑥 = 0. These electric fields give rise to the drifts which can be computed from the
equation

V = E × B
𝐵2

Remembering that B is in the x-direction, we obtain

𝑉𝑦 = 𝐸𝑧
𝐵 , 𝑉𝑧 = −𝐸𝑦

𝐵

From the foregoing equations we obtain

𝑉𝑦 = 𝜎0
𝜇0𝐵

cos 𝑘𝑦 𝑒−𝑘𝑧

𝑉𝑧 = − 𝜎0
𝜇0𝐵

sin 𝑘𝑦 𝑒−𝑘𝑧
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It is clear from the solutions that the velocity field is divergence free and, therefore, does not
cause any change in the density of the plasma except at the boundary. We have

𝜕
𝜕𝑡Δ𝑧(𝑧 = 0) = 𝑉𝑧(𝑧 = 0) = − 𝜎

𝜇0𝐵
sin 𝑘𝑦 (9.6)

From Equation 9.2 and Equation 9.6, we obtain the equation of motion for the amplitude 𝑎:
d𝑎
d𝑡 = − 𝜎0

𝜇0𝐵

Equation 9.3 and Equation 9.5 yield

d𝜎0
d𝑡 = −𝑁𝑀𝑔

𝜇0𝐵
𝑎𝑘

From the above two equations, we obtain

d2𝑎
d𝑡2 = 1

𝜇0𝜖𝐵
𝑁𝑀𝑔
𝐵 𝑘𝑎

≈ 𝑔𝑘𝑎, (for 𝜖 ≫ 1)

(𝑔 = ... from equilibrium). The solution of this equation is given by

𝑎(𝑡) = 𝑎0𝑒±
√𝑔𝑘𝑡

It is interesting to note that the rate of growth of the instability is exactly the same as in
the Rayleigh-Taylor instability of a fluid supported against gravity by a second fluid which is
weightless. The charge separation is able to overcome exactly the restraining influence of the
magnetic field. This exact compensation occurs only in the limit of 𝜖 ≫ 1.
The same result can also be obtained using the rigorous formulation of the Boltzmann transport
equation. However, in more complicated cases, the first order orbit theory gives results which
agree with those obtained from the Boltzmann equation only in some special cases.

The essential mechanism which gives rise to the instability is the charge separation resulting
from the gravity drift — drift arising from a force which does not depend upon the sign of
the charge. If we consider a plasma configuration in a torus, the particles experience the
centrifugal force 𝑚𝑣∥2/𝑅 and the gradient B force 𝑚𝑣⟂2/𝑅 which are both independent of the
sign of the charge. Therefore, we should expect instabilities in a plasma confined to a torus.
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9.5 Kelvin-Helmholtz instability

Kelvin-Helmholtz (KH) instability happens due to a velocity shear and produces surface waves
at the shear layer that eventually roll up into nonlinear vortices. Typical examples are:

• plane crash
• flapping of flags
• diocotron instability in an electron sheet
• water wave, nonlinear phase
• laser ablation of metal
• low-latitude flanks of the magnetopause during periods of northward interplanetary mag-

netic field
• accretion discs
• pulsar winds
• jets

It presents a key mechanism for mediating mass, momentum and energy transport at bound-
ary layers with a velocity shear via processes such as viscous interaction, turbulence, mode
conversion and magnetic reconnection.

To understand why shear flow can lead to instability, we’ll first introduce the Bernoulli theorem
in fluid mechanics. From the MHD momentum equation, take 𝜕/𝜕𝑡 = 0, J = 0, g = 0, we
obtain

𝜌v ⋅ ∇v = −∇𝑝

Using the natural coordinates, let ̂𝑡 be the unit tangent vector on a streamline, �̂� be the unit
normal vector pointing from concave to convex side, and 𝑑𝑠 be the infinitisimal distance along
streamline, we have

𝜌v ⋅ ∇v = (𝜌𝑣 𝜕
𝜕𝑠)v = 𝜌𝑣𝑠

𝜕
𝜕𝑠(

̂𝑡𝑣) = 𝜌𝑣(𝜕𝑣𝜕𝑠
̂𝑡 + 𝜕 ̂𝑡

𝜕𝑠𝑣)

= −𝜕𝑝
𝜕𝑠

̂𝑡 − ∇⟂𝑝

⇒ ̂𝑡 ∶ 𝑝𝑣𝜕𝑣𝜕𝑠 + 𝜕𝑝
𝜕𝑠 = 𝜕

𝜕𝑠(
1
2𝜌𝑣

2 + 𝑝) = 0

Therefore, 1
2𝜌𝑣2+𝑝 = const. along a streamline for an incompressible flow. This is the classical

Bernoulli equation.

Now, consider two flow layer with velocity shear at the plane interface in fig-two-layer (ADD
FIGURE!). Imaging there’s a ripple on the layer interface pointing upward at 𝑄. If we examine
the cross section at 𝑃 and 𝑄 for the lower layer respectively, we find

flux at P = 𝜌𝑣𝐴|𝑃 = flux at Q = 𝜌𝑣𝐴|𝑄
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Since density along field lines are constant (incompressible) and area 𝐴𝑃 < 𝐴𝑄, we have
𝑣𝑃 > 𝑣𝑄. From the Bernoulli equation, 𝑝𝑃 < 𝑝𝑄. Similar for the upper layer, we get the
pressure at 𝑃 is larger than that at 𝑄. Therefore, the total pressure is pointing away from
interface, which let the ripple grow.

Now we are ready to do more careful derivations. The governing equations are

∇ ⋅ v = 0

𝜌(𝜕v
𝜕𝑡 + v ⋅ ∇v) = −∇𝑝

In equilibrium, suppose there is a velocity shear in the x direction, and the interface lies along
the y direction,

𝜌0 = const.
𝑝0 = const.
v0 = ̂𝑦𝑣0𝑦(𝑥)

Assume linear perturbations of the form

𝑣1𝑥(x, 𝑡) = 𝑣1𝑥(𝑥)𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡

𝑝1(x, 𝑡) = 𝑝1(𝑥)𝑒𝑖𝑘𝑦𝑦−𝑖𝜔𝑡

so the linearized momentum equation is

𝜌0(
𝜕v1
𝜕𝑡 + v0 ⋅ ∇v1 + v1 ⋅ ∇v0) = −∇𝑝1

where
v0 ⋅ ∇v1 = 𝑖𝑘𝑦𝑣0𝑦v1

v1 ⋅ ∇v0 = 𝑣1𝑥
𝜕
𝜕𝑥𝑣0𝑦(𝑥) ̂𝑦

Then the x and y components of the linearized momentum equation give

−𝑖𝜔𝜌0𝑣1𝑥 + 𝜌0𝑖𝑘𝑦𝑣0𝑦𝑣1𝑥 = −𝜕𝑝1
𝜕𝑥

−𝑖𝜔𝜌0𝑣1𝑦 + 𝜌0𝑖𝑘𝑦𝑣0𝑦𝑣1𝑦 + 𝜌0𝑣1𝑥
𝜕
𝜕𝑥𝑣0𝑦(𝑥) = −𝑖𝑘𝑦𝑝1

Together with the linearized incompressibility condition

𝜕𝑣1𝑥
𝜕𝑥 + 𝑖𝑘𝑦𝑣1𝑦 = 0

by eliminating 𝑝1 and 𝑣1𝑦 we get

𝜕2𝑣1𝑥
𝜕𝑥2 − [𝑘𝑦2 −

𝑘𝑦𝑣0𝑦′′(𝑥)
𝜔 − 𝑘𝑦𝑣0𝑦(𝑥)

]𝑣1𝑥 = 0 (9.7)
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Now we are half way from obtaining the dispersion relation. For simplicity, let us assume
three layer regions with Region I on the left (𝑥 < 0), Region II in the middle (𝑥 ∈ (0, 𝜏)), and
Region III on the right (𝑥 > 𝜏). Let the shear layer II thickness be 𝜏 . Set the velocity on the
two sides 𝑣1 = 0, 𝑣2 = 𝑣1 +Δ𝑣 ≡ 𝑣, and 𝑘𝑦 = 𝑘. Then

𝑣′′0𝑦(𝑥) = (𝑣
𝜏 )[𝛿(𝑥) − 𝛿(𝑥 − 𝜏)]

except at 𝑥 = 0 and 𝑥 = 𝜏 . Equation 9.7 can be simplified to

d2𝑣1𝑥
d𝑥2 − 𝑘2𝑣1𝑥 = 0

In region I (𝑥 < 0),
𝑣1𝑥 = 𝜉0𝑒𝑘𝑥, 𝑥 < 0

𝜕𝑣1𝑥
𝜕𝑥 ∣𝑥=0−

= 𝑘𝜉0

In region III (𝑥 > 𝜏),
𝑣1𝑥 = 𝜉𝜏𝑒−𝑘(𝑥−𝜏), 𝑥 > 𝜏

𝜕𝑣1𝑥
𝜕𝑥 ∣𝑥=𝜏+ = −𝑘𝜉𝜏

In region II (𝑥 ∈ (0, 𝜏)), we are looking for a solution which is a superposition of the solutions
from both sides and is continuous at the boundaries

𝑣1𝑥 = 𝜉𝜏
sinh 𝑘𝑥
sinh 𝑘𝜏 + 𝜉0

sinh 𝑘(𝑥 − 𝜏)
sinh−𝑘𝜏 , 0 < 𝑥 < 𝜏

𝜕𝑣1𝑥
𝜕𝑥 ∣𝑥=𝜏− = 𝑘𝜉𝜏

cosh 𝑘𝜏
sinh 𝑘𝜏 − 𝑘𝜉0

1
sinh 𝑘𝜏

𝜕𝑣1𝑥
𝜕𝑥 ∣𝑥=0+ = 𝑘𝜉𝜏

1
sinh 𝑘𝜏 − 𝑘𝜉0

cosh 𝑘𝜏
sinh 𝑘𝜏

The continuity at 𝑥 = 0 requires 𝑉0𝑦 = 0, 𝑉1𝑥 = 𝜉0. Integrating the governing Equation 9.7
from 𝑥 = 0− to 𝑥 = 0+ yields

−𝜉0𝑘
cosh 𝑘𝜏
sinh 𝑘𝜏 + 𝜉𝜏𝑘

1
sinh 𝑘𝜏 − 𝑘𝜉0 +

𝑘𝑣
𝜔𝜏 𝜉0 = 0

Integrating the governing Equation 9.7 from 𝑥 = 𝜏− to 𝑥 = 𝜏+ yields

−𝜉𝜏𝑘 + 𝜉0𝑘
1

sinh 𝑘𝜏 − 𝜉𝜏𝑘
cosh 𝑘𝜏
sinh 𝑘𝜏 − 𝑘𝑣

𝜔𝜏 𝜉𝜏 = 0

Combining the last two equations, we obtain

1 = [ sinh 𝑘𝜏 + cosh 𝑘𝜏 + 𝑘𝑣
𝜔 − 𝑘𝑣

sinh 𝑘𝜏
𝑘𝜏 ][ cosh 𝑘𝜏 + sinh 𝑘𝜏 − 𝑘𝑣

𝜔
sinh 𝑘𝜏

𝑘𝜏 ]
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which is the dispersion relation for the KH instability.

With the identity sinh 𝑘𝜏 + cosh 𝑘𝜏 = 𝑒𝑘𝜏 , the dispersion relation can be simplified to

1 = [𝑒𝑘𝜏 + 𝑘𝑣
𝜔 − 𝑘𝑣

sinh 𝑘𝜏
𝑘𝜏 ][𝑒𝑘𝜏 − 𝑘𝑣

𝜔
sinh 𝑘𝜏

𝑘𝜏 ]

1 = 𝑒2𝑘𝜏 + 𝑒𝑘𝜏 (𝑘𝜏)2
𝜔(𝜔 − 𝑘𝑣)

sinh 𝑘𝜏
𝑘𝜏 − (𝑘𝜏)2

𝜔(𝜔 − 𝑘𝜏)(
sinh 𝑘𝜏

𝑘𝜏 )
2

1 = 𝑒2𝑘𝜏 + (𝑘𝜏)2
𝜔(𝜔 − 𝑘𝑣)

sinh 𝑘𝜏
𝑘𝜏 [𝑒𝑘𝜏 − sinh 𝑘𝜏

𝑘𝜏 ]

Multiplying both sides by 𝜔(𝜔 − 𝑘𝑣), we get

𝜔(𝜔 − 𝑘𝜏)(1 − 𝑒2𝑘𝜏) = (𝑘𝑣)2 sinh 𝑘𝜏
𝑘𝜏 [𝑒𝑘𝜏 − sinh 𝑘𝜏

𝑘𝜏 ]

Assuming 𝑘𝜏 ≪ 1 (long wavelength approximation), 𝑒𝑘𝜏 ≈ 1 + 𝑘𝜏 , we obtain

𝜔(𝜔 − 𝑘𝑣) + (𝑘𝑣)2
2 ≈ 0

the solution of which is
𝜔 = 1

2𝑘𝑣(1 ± 𝑖), 𝑘𝜏 ≪ 1

In general, the growth rate of KH is

𝜔𝑖 =
1
2|𝑘𝑦Δ𝑣|, 𝑘𝑦𝜏 ≪ 1

9.5.1 Diocotron instability on electron sheet

HAVEN’T CHECKED!

A diocotron instability is a plasma instability created by two sheets of charge slipping past each
other. Energy is dissipated in the form of two surface waves propagating in opposite directions,
with one flowing over the other. This instability is the plasma analog of the Kelvin-Helmholtz
instability in fluid mechanics.

For the simplest case, we have a uniform electron sheet and a parallel constant magnetic field in
the plane of the sheet, as illustrated in fig-electron-sheet. Due to space charge of electron sheet,
there is electric field pointing towards the sheet in the upper and lower region. Consider a
small perturbation (sinusoidal ripple) on an electron sheet. The coulomb force expels electrons
outward, so the electrons will drift, according to the right-hand rule, to the left. The deficit of
electrons is equivalent to some positive charge distribution, and thus created an electric field.
The E × B drift is pointing outward, so the perturbation is growing. Note that even though
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this problem looks innocent, but it is actually not easy. People, even the giants in plasma
physics, made a lot of mistakes in the derivation!

If there is also a magnetic field inside the sheet, the E × B drift will form a velocity gradient
within the sheet, and lead to K-H instability. Denote 𝜎0 as the surface charge density and 𝜌0
as charge density, we have

𝜎0 = 𝜌0𝜏 = 𝑒𝑛0𝜏,
and the velocity shear across the sheet

Δ𝑣 = 𝐸2
𝐵0

+ 𝐸1
𝐵0

= − 1
𝐵0

𝜎0
𝜖0

= −𝑒𝑛0𝜏
𝐵0𝜖0

.

Then from the dispersion relation of K-H mode, we have the growth rate

𝜔𝑖 =
1
2𝑘𝑦|Δ𝑣| = 1

2𝑘𝑦∣
𝑒𝑛0𝜏
𝐵0𝜖0

∣ = 1
2𝑘𝑦𝜏

𝜔𝑝𝑒
2

|Ω𝑒|
,

which is valid as long as 𝑘𝑦𝜏 ≪ 1,i.e., long wave length limit.

(Bellan 2008) P537.

FIGURE NEEDED from H.W.3.4 Consider the diocotron instabity on a MELBA-like annular
electron beam which propagates inside a metallic drift tube. Let $V = $ beam voltage, 𝐼 =
beam current, 𝑎 = beam radius, 𝜏 = annular beam thickness (𝜏 ≪ 1)m 𝐿 = length of drift tube,
$T = $ beam’s pulselength, 𝐵 = axial magnetic field. Note that the combined self-electric
and self-magnetic field of the beam produces a slow rotational E × B drift in the 𝜃−direction.
This azimuthal drift velocity, 𝑣0𝜃, is much less than the axial velocity of the beam, but it is
sheared.

In equilibrium,
0 = 𝑞(v × B + E)
v = 𝑣0𝜃 ̂𝜃 + 𝑣0𝑧 ̂𝑧
B = 𝐵0𝜃 ̂𝜃 + 𝐵0𝑧 ̂𝑧
⇒𝑣𝜃 − 𝑣𝑧𝐵𝜃 +𝐸𝑟 = 0

From Ampère’s law,
𝐵0𝜃 ⋅ 2𝜋(𝑎 + 𝜏) ≈ 𝐵𝜃 ⋅ 2𝜋𝑎 = 𝜇02𝜋𝑎𝜏𝐽𝑧

⇒ 𝐽𝑧 = 1
𝜇0𝜏

𝐵0𝜃 = −𝑒𝑛0𝑉0𝑧

From Gauss’s law,
∇ ⋅ E = 𝜌

𝜖0
= −𝑒𝑛0

𝜖0
𝐸𝑟 ⋅ 2𝜋𝑎Δ = −𝑒𝑛0

𝜖0
⋅ 2𝜋𝑎𝜏Δ

⇒ 𝐸𝑟 = 1
𝜖0

𝜏(−𝑒)𝑛0
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Substituing 𝐸𝑟 and 𝐽𝑧 into the radial force balance equation, we obtain

𝑉𝜃∣𝑟=𝑎+𝜏 = 1
𝐵𝑧

[𝑉0𝑧𝐵𝜃 −𝐸𝑟]∣𝑟=𝑎+𝜏

= 1
𝛾2

𝐸𝑟
𝐵𝑧

where 𝛾 = (1 − 𝛽)−1/2 = 1 + 𝑉 /(511 keV), and 𝛽 = 𝑉0𝑧/𝑐.
Let 𝜈 = 𝐼

𝛽𝐼𝐴 be the Budker parameter, 𝐼𝐴 = 4𝜋𝜖0𝑚𝑐2/𝑒 = 17 kA be the Alfvén-Lawson current,
and Ω = 𝑒𝐵0𝑧

𝑚𝑒
be the nonrelativistic cyclotron frequency associated with the axial B field, we

have
𝑉𝜃∣𝑟=𝑎+𝜏 = 2𝑐2𝜈

Ω𝑎𝛾2

At 𝑟 = 𝑎, 𝑉𝜃 = 0 because there’s no E field. Therefore the velocity shear in ̂𝜃 is

Δ𝑉𝜃 = 𝑉𝜃∣𝑟=𝑎+𝜏 − 𝑉𝜃∣𝑟=𝑎 = 2𝑐2𝜈
Ω𝑎𝛾2

Then from the analysis of K-H instability, the temporal growth rate 𝜔𝑖 is given by

𝜔𝑖 =
1
2|𝑘𝜃Δ𝑉0𝜃|

= 1
2
𝑚
𝑎

2𝑐2𝜈
Ω𝑎𝛾2

For long wavelength limit, let 𝑚 = 1.
For MELBA-like beam with the following parameters, 𝑉 = 700keV, 𝐼 = 1kA, 𝑎 = 5cm, 𝜏 =
0.5cm, 𝑇 = 500ns, 𝐿 = 1m, 𝐵 = 2kG,

𝜔𝑖 = 1.18 × 107s−1

The total number of e-folds of the instability growth during the pulse time T is

𝜔𝑖𝑇 ≈ 5.9

Even though this is large, K-H instability will not stay at the initial position and grow in
time; instead it will be transported. It is more meaningful to estimate the spatial growth
by evaluating the total number of e-folds experienced by a signal of some frequency as it
propagates along the machine length L:

𝑘𝑖𝐿 = 𝜔𝑖
𝑉0𝑧

𝐿 = 𝜔𝑖
𝐿
𝛽𝑐 ≈ 0.04

Therefore we don’t need to worry too much about this instability.
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9.6 MHD Stability

J × B = ∇𝑝

J⟂ = B ×∇𝑝
𝐵2

The current is often called the diamagnetic current. It arises from the plasma pressure gradi-
ent.

Using Ampère’s law we can write the magnetic force in the form

J × B = −∇( 𝐵2

2𝜇0
) + 1

𝜇0
(B ⋅ ∇)B (9.8)

which separates into the magnetic pressure term and the magnetic tension term.

If we use an anisotropic description of the thermal pressure term, Equation 9.8 can be written
as

J × B = −∇⟂ (𝑝⟂ + 𝐵2

2𝜇0
)+(1 +

𝑝⟂ − 𝑝∥
𝐵2/𝜇0

)B ⋅ ∇B (9.9)

9.6.1 Harris Current Sheet

An example of a MHD equilibrium configuration is the Harris current sheet, in which the
variations in the magnetic field and plasma pressure over the current sheet balance each other
In a 1D Harris current sheet the magnetic field (assumed here to be in the 𝑧-direction) is given
by

B = 𝐵0 tanh(𝑧
𝜆) ̂𝑦

The pressure is given by

𝑝 = 𝑝0 cosh−2 𝑧
𝜆

where 𝑝0 = 𝐵2
0/(2𝜇0). The current density is then

𝐽𝑦(𝑧) =
𝐵0
𝜇0𝜆

sech2(𝑧
𝜆)
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Harris current sheet can be taken as the first approximation of the Earth’s magnetotail that
can stay stable for long time periods.

9.6.2 �-Pinch and Z-Pinch

�-pinch and Z-Pinch are both 1D equilibrium configurations expressed in cylindrical coordinates.
In a �-pinch cylindrical coils drive an elecric current and the magnetic field is axial, while in a
Z-pinch the electric current is axial and the magnetic field is toroidal.

9.6.3 Force-Free Field

If 𝛽 ≪ 1 in MHD equilibrium, the pressure gradient is negligible and thus

J × B = 0 (9.10)

Such configurations are called force-free fields because the magnetic force on the plasma is zero.
According to Equation 9.8 in a force-free field the magnetic pressure gradient ∇(𝐵2/2𝜇0) is
balanced by the magnetic tension force 𝜇−1

0 (B ⋅ ∇)B. In reality the force-free equilibrium is
often a very good approximation of the momentum equation. It is also evident from Equa-
tion 9.10 that in a force-free field the electric current flows along the magnetic field. Such
currents are commonly called field-aligned currents (FAC).

Using Ampère’s law we can write Equation 9.10 as

(∇ × B) × B = 0

From this we see that the innocent-looking equation J × B = 0 is in fact nonlinear and thus
difficult to solve.

The field-alignment of the electric crrent can be expressed as

∇× B = 𝜇0J = 𝛼(r)B

where 𝛼 is a function of position. Taking divergence of this we get

B ⋅ ∇𝛼 = 0

i.e. 𝛼 is constant along the magnetic field.

In the case 𝛼 is a constant in all directions, the equation
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∇× B = 𝛼B (9.11)

is linear. Taking a curl Equation 9.11 we get the Helmholtz equation:

∇2B + 𝛼2B = 0

Solution to the Helmoltz with helical equation in cylindrical symmetry was presented by
Lundquist in 1950 in terms of Bessel functions 𝐽0 and 𝐽1:

𝐵𝑅 = 0
𝐵𝐴 = 𝐵0𝐽0(

𝛼0𝑟
𝑟0

)

𝐵𝑇 = ±𝐵0𝐽1(
𝛼0𝑟
𝑟0

)

where 𝐵𝑟, 𝐵𝐴, and 𝐵𝑇 are radial, axial and tangential magnetic field components, respectively.
The solution is a magnetic flux rope where magnetic field lines form helixes whose pitch angle
increases from the axis (?@fig-flux-rope). 𝑟 is the radial distance from the flux rope axis, 𝑟0
is the radius of the flux rope and 𝐵0 is the maximum magnetic field magnitude at the center
of the flux rope 𝑟 = 0.
A special case of a force-free magnetic field is the current-free configuration ∇× B = 0. Now
the magnetic field can be expressed as the gradient of a scalar potential B = ∇Ψ, and since
∇ ⋅ B = 0 it can be found via the Laplace equation

∇2Ψ = 0

with appropriate boundary conditions and using the methods of potential theory.

For example, the Sun’s magnetic field structure is often modeled by the so-called Potential Field
Source Surface (PFSS) model (?@fig-PFSS). The magnetic field is computed from the Laplace
equation using spherical coordinates from the photosphere to the “source surface”, nominally
chosen to be at 2.5 Solar radii. At the source surface the Sun’s magnetic field is assumed to be
purely radial. The inner boundary conditions are obtained from solar magnetograms. Thus,
PFSS assumes that there is no electric current in the corona.
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9.7 MHD Modes

A simple but representative dispersion relation writes

𝜔2 = (k ⋅ V𝐴)2 − k ⋅ g, where V𝐴 = B0
𝐵0

⋅ 𝑉𝐴

If we treat plasma as a single magnetized fluid,

𝜌(𝜕u
𝜕𝑡 + u ⋅ ∇u⏟

K-H inst.
) = −∇𝑝⏟

ballooning inst.

+ j × B⏟
kink, sausage inst.

+ 𝜌g⏟
R-T inst.

Qualitatively, we can identify the source for each kind of instability in plasma. We will discuss
them separately and in a set of combination below.

9.7.1 Kink Mode

A kink instability, is a current-driven plasma instability characterized by transverse displace-
ments of a plasma column’s cross-section from its center of mass without any change in the char-
acteristics of the plasma. It typically develops in a thin plasma column carrying a strong axial
current which exceeds the Kruskal–Shafranov limit and is sometimes known as the Kruskal–
Shafranov (kink) instability.

The kink instability was first widely explored in fusion power machines with Z-pinch configu-
rations in the 1950s. It is one of the common magnetohydrodynamic instability modes which
can develop in a pinch plasma and is sometimes referred to as the 𝑚 = 1 mode.

If a “kink” begins to develop in a column the magnetic forces on the inside of the kink become
larger than those on the outside, which leads to growth of the perturbation. As it develops
at fixed areas in the plasma, kinks belong to the class of “absolute plasma instabilities”, as
opposed to convective processes.

KeyNotes.plot_kink()

The kink instability is the most dangerous instability in Tokamak. We have discussed this
kind of microinstability from the view of single particle motion in Section 9.2; here, we will
explore this a little bit further.

String model

First, image a current-carrying plasma column, shown in the x-z plane in fig-kink-column. The
metallic wire carries current under tension 𝑇 , and 𝜇 =mass/length is the mass per length. From
the basic mechanics, 𝐶𝑠 = √𝑇/𝜇 is the acoustic velocity in the system. Let the background
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field B0 = ̂𝑧𝐵0 and the displacement 𝜉𝜉𝜉 = 𝜉𝜉𝜉(x, 𝑡). We can show that, if the current I is
sufficiently strong, there will be kink instability.

ADD PLASMA KINK COLUMN FIGURE!

Assume the displacement in x-y plane has the form

𝜉𝜉𝜉 = (𝜉𝑥, 𝜉𝑦)𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡

The force law gives (i.e. the basic string model in mechanics textbooks)

𝜇𝜕2𝜉𝜉𝜉
𝜕𝑡2 = 𝑇 𝜕2𝜉𝜉𝜉

𝜕𝑧2 + force per unit length

Here, the external force per length is the Lorentz force (which is why we say the R-T instability
is current-driven),

I × B = ( ̂𝑥𝐼 𝜕𝜉𝑥𝜕𝑧 + ̂𝑦𝐼 𝜕𝜉𝑦𝜕𝑧 + ̂𝑧0) × 𝐵0 ̂𝑧

= 𝐼𝐵0( ̂𝑥𝜕𝜉𝑦𝜕𝑧 − ̂𝑦𝜕𝜉𝑥𝜕𝑧 )

In scalar forms, the force law gives

̂𝑥 ∶ −𝜇𝜔2𝜉𝑥 = 𝑇(−𝑘𝑧2)𝜉𝑥 + 𝐼𝐵0
𝜕𝜉𝑦
𝜕𝑧

̂𝑦 ∶ −𝜇𝜔2𝜉𝑦 = 𝑇(−𝑘𝑧2)𝜉𝑦 − 𝐼𝐵0
𝜕𝜉𝑥
𝜕𝑧

Combining these two equations, we can easily get the dispersion relation

𝜔2 = 𝑘𝑧2𝐶𝑠
2 ± 𝐼𝐵0

𝜇0𝜇
𝑘𝑧

The dispersion relation is a representation of the force-law. The first term on the right-hand
side is a stabilizing term due to tension; the second term with a minus sign is a destabilizing
term due to Lorentz force. Note that the expression is very similar to R-T instability. (Which
one?)

We can immediately estimate the scenario in a Tokamak. Take the radius of the column cut as
𝑎, wave number 𝑘𝑧 ∼ 1/𝑅 (i.e. wave length is on the order of tokamak radius), 𝐶𝑠

2 = 𝑉𝐴
2 =

𝐵0𝑧
2/(𝜇0𝜌0) (i.e. tension in plasma give rises to Alfvén wave), then the current is

339



𝐼 = 𝐽𝑧(𝜋𝑎2) =
𝐵𝜃2𝜋𝑎
𝜇0

∼ 𝐵𝜃𝑎
𝜇0

and the mass per unit length is

𝜇 = 𝜌0(𝜋𝑎2) ∼ 𝜌0𝑎2

The criterion for stability then becomes

𝑘𝑧2𝐶𝑠
2 > 𝐼𝐵0

𝜇0
𝑘𝑧 ⇒ 1

𝑅
𝐵0𝑧2
𝜇0𝜌0

> 𝐵𝜃𝑎
𝜇0

𝐵0𝑧
𝜌0𝑎2

⇒ 𝑎
𝑅

𝐵0𝑧
𝐵0𝜃

> 1

which is called the Kruskal-Shafranov stability criterion. Usually we define

𝑞 ≡ 𝑎
𝑅

𝐵0𝑧
𝐵0𝜃

= 𝑎
𝑅

𝐵𝑡
𝐵𝑝

as the safety factor. A real value for 𝑞 is about 2 to 3.

Ideal MHD Approach

Now we use a more standard way to treat the kink mode. (Section 10.9 (Bellan 2008)) Assume
we have a plasma column with radius 𝑎. Inside the column, we assume infinite conductivity,
𝜎 = ∞; outside the column, we assume vacuum so that we can only have current flow on
surface 𝑟 = 𝑎. Thus, besides the universal background magnetic field in the z direction, we
also have an azimuthal field due to surface current. (You will see later that the decay in 𝜃
actually drives the kink instability.)

In equilibrium,

𝑟 < 𝑎 ∶ B0 = ̂𝑧𝐵0 = const.
𝑝0 = const., v0 = const., J0 = 0, 𝜌0 = const.

𝑟 > 𝑎 ∶ B0 = 𝐵0 ̂𝑧 + 𝐵0𝜃
𝑎
𝑟

̂𝜃
𝑝0 = 0, 𝜌0 = 0

The force equation in equilibrium

∇𝑝0 = J × B0
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is satisfied automatically both for 𝑟 > 𝑎 and 𝑟 < 𝑎.
Let us introduce a small perturbation

𝜉𝜉𝜉1𝑟(x, 𝑡) = ̃𝜉1𝑟(𝑟)𝑒𝑖𝑘𝑧+𝑖𝑚𝜃−𝑖𝜔𝑡

such that at 𝑟 = 𝑎,

𝜉𝜉𝜉1𝑟(x, 𝑡)∣𝑟=𝑎 = ̃𝜉1𝑎(𝑟)𝑒𝑖𝑘𝑧+𝑖𝑚𝜃−𝑖𝜔𝑡

Before running into linearized equations, we can first take a look at different wave modes. That
is, what will the perturbation looks like at a fixed time 𝑡 with different 𝑚? For simplicity, let
us assume 𝑡 = 0. (You can always make a time shift.) The actual displacement is the real part
of 𝜉𝜉𝜉,

𝜉1𝑟 = 𝜉1𝑎 cos(𝑘𝑧𝑧 +𝑚𝜃)

For 𝑚 = 0,

𝜉1𝑟 = 𝜉1𝑎 cos(𝑘𝑧𝑧)

which is the sausage mode.

For 𝑚 = 1,

𝜉1𝑟 = 𝜉1𝑎 cos(𝑘𝑧𝑧 + 𝜃)

If we draw the displacement down for 𝑘𝑧𝑧 = 0, 𝜋
2 , 𝜋, 3

2𝜋, you can see one rotation in a 2𝜋 period,
which indicates a shape of helix. This is often called the kink mode.

For higher 𝑚,

𝜉1𝑟 = 𝜉1𝑎 cos(𝑘𝑧𝑧 +𝑚𝜃)

which looks like 𝑚 intertwine helixes in one axial wavelength.

Now let’s return to the perturbed equations. Here we will assume incompressibility as the
equation of state,

∇ ⋅ v = 0

The procedure to get the dispersion relation goes as follows:
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1. Express the perturbed magnetic field as a function of displacement inside and outside
the surface.

2. Relate the two regions by total force balance.

(I) 𝑟 < 𝑎

v1 = 𝜕𝜉𝜉𝜉1
𝜕𝑡 ⇒ ∇ ⋅ 𝜉1𝜉1𝜉1 = 0

The linearized continuity equation gives

𝜌1 = −∇ ⋅ (𝜌0𝜉𝜉𝜉1) = −𝜉𝜉𝜉1 ⋅ ∇𝜌0 − 𝜌0∇ ⋅ 𝜉𝜉𝜉1 = 0

The linearized force law gives

𝜌0
𝜕2𝜉𝜉𝜉1
𝜕𝑡2 = −∇𝑝1 +

(∇× B1) × B0
𝜇0

+��J0 × B1

And the Ohm’s law gives

−𝜕B1
𝜕𝑡 = ∇× E1 = ∇× (−v1 × B0)
B1 = ∇× (𝜉𝜉𝜉1 × B0) = 𝐵0∇× (𝜉𝜉𝜉1 × ̂𝑧) = 𝑖𝑘𝑧𝐵0𝜉𝜉𝜉1

The last equivalence is obtained from the expansion of the second term into four terms and
cancellation of zero terms.

In cylindrical coordinates,

(∇ × B1) × B0 = 𝑖𝑘𝐵0
2(∇ × 𝜉𝜉𝜉1) × ̂𝑧

and

∇×𝜉𝜉𝜉1 = 1
𝑟
⎡⎢
⎣

̂𝑟 𝑟 ̂𝜃 ̂𝑧
𝜕𝑟 𝜕𝜃 𝜕𝑧
𝜉1𝜃 𝑟𝜉1𝜃 𝜉1𝑧

⎤⎥
⎦

so the linearized force law gives
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−𝜔2𝜉1𝑟 = − 1
𝜌0

𝜕𝑝1
𝜕𝑟 + 𝑖𝑘𝑣𝐴2[𝑖𝑘𝜉1𝑟 −

𝜕𝜉1𝑧
𝜕𝑟 ]

−𝜔2𝜉1𝜃 = − 𝑖𝑚
𝜌0𝑟

𝑝1 + 𝑘𝑣𝐴2[ − 𝑖𝑚
𝑟 𝜉1𝑧 + 𝑖𝑘𝜉1𝜃]

−𝜔2𝜉1𝑧 = −𝑖𝑘𝑧𝑝0/𝜌0

Substituting the expression of 𝜉1𝑧 into the other two equations, we can get

𝜉𝜉𝜉1 = 1
𝜔2∇(𝑝1𝜌0

)

From the incompressibility condition, we have

∇ ⋅ 𝜉𝜉𝜉1 = 0 ⇒ ∇2𝑝1 = 0

or in cylindrical coordinates,

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝑝1
𝜕𝑟 ) − 𝑚2𝑝1

𝑟2 − 𝑘2𝑝1 = 0

Assume long wavelength limit and 𝑚 = 1 (kink mode),

𝑘𝑟 < 𝑘𝑎 ≪ 1

we have

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝑝1
𝜕𝑟 ) − 𝑝1

𝑟2 = 0

the solution of which from Legendre polynomials (I need to check) is

𝑝1 = 𝐴𝑟 + 𝐵
𝑟 = 𝐴𝑟

because 𝑝1 is finite at 𝑟 = 0.
So we have

𝜉𝜉𝜉1 = 1
𝜔2∇(𝑝1𝜌0

) = ̂𝑟 𝐴
𝜌0𝜔

𝑒−𝑖𝜔𝑡+𝑖𝜃+𝑖𝑘𝑧

⇒ 𝜉1𝑟𝑎 = 𝐴
𝜌0𝜔2

343



Then the perturbed kinetic pressure on the surface is

𝑝1(𝑟 = 𝑎−) = 𝐴𝑎 = 𝜌0𝜔2𝜉1𝑟𝑎𝑎,

and the perturbed magnetic field is

B1 = 𝑖𝑘𝐵0𝜉𝜉𝜉1 ⇒ 𝐵1𝑧(𝑟 = 𝑎−) = 𝑖𝑘𝐵0𝜉1𝑧 = −𝑘2𝐵0𝜉1𝑟𝑎
(II) 𝑟 > 𝑎

∇ ⋅ B1 = 0, ∇ × B1 = 0 ⇒ B1 = ∇Ψ1, ∇2Ψ1 = 0

The solution of Laplace equation in cylindrical coordinates is

Ψ = (𝐶𝑟 +��𝐷𝑟)𝑒−𝑖𝜔𝑡+𝑖𝜃+𝑖𝑘𝑧

where 𝐷 = 0 because Ψ < ∞ when 𝑟 → ∞.

The perturbed magnetic field is then

B1 = B1𝑒∇Ψ = 𝐶[ − ̂𝑟
𝑟2 + 𝑖

̂𝜃
𝑟2 + 𝑖𝑘 ̂𝑧

𝑟 ]𝑒
−𝑖𝜔𝑡+𝑖𝜃+𝑖𝑘𝑧

and at 𝑟 = 𝑎,

B1𝑒(𝑟 = 𝑎) = 𝐵1𝑟𝑎[ ̂𝑟 − 𝑖 ̂𝜃 − 𝑖𝑘𝑎 ̂𝑧]𝑒𝑖𝜃+𝑖𝑘𝑧.

Now, we want to relate 𝜉1𝑟𝑎 and 𝐵1𝑟𝑎 by the “frozen-in” law. To first-order approximation, let
�̂� be the direction normal to the perturbed boundary, we have

(�̂� ⋅ B)1 = 0

The equation for the perturbed boundary (Eq.(10.146) of (Bellan 2008)) gives

𝑟 − 𝜉𝑟 − 𝑎 = 0

so
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�̂� = ∇(𝑟 − 𝜉𝑟 − 𝑎)
|∇(𝑟 − 𝜉𝑟 − 𝑎)|

= ̂𝑟 − 𝑖
𝑟𝜉1𝑟𝑎 ̂𝜃 − 𝑖𝑘𝜉1𝑟𝑎 ̂𝑧

| ̂𝑟 − 𝑖
𝑟𝜉1𝑟𝑎 ̂𝜃 − 𝑖𝑘𝜉1𝑟𝑎 ̂𝑧|

= ̂𝑟 − 𝑖
𝑟𝜉1𝑟𝑎

̂𝜃 − 𝑖𝑘𝜉1𝑟𝑎 ̂𝑧

where the last equivalence holds because 𝜉1𝑟𝑎/𝑟 and 𝑘𝜉1𝑟𝑎 are both second-order in magni-
tude.

Therefore we get

(�̂� ⋅ B)1 = ( ̂𝑟 − 𝑖
𝑟𝜉1𝑟𝑎

̂𝜃 − 𝑖𝑘𝜉1𝑟𝑎 ̂𝑧) ⋅ (𝐵1𝑟 ̂𝑟 + 𝐵0𝜃 ̂𝜃 + 𝐵0𝑧 ̂𝑧) = 0

𝐵1𝑟 = 𝐵0𝜃
𝑖𝜉1𝑟𝑎
𝑎 + 𝑖𝑘𝑧𝜉1𝑟𝑎𝐵0𝑧 = 𝐵1𝑟𝑎 = 𝑖𝜉1𝑟𝑎

𝑎 [𝐵0𝜃 + 𝑘𝑧𝑎𝐵0𝑧] = 𝑖𝜉1𝑟𝑎(k ⋅ B)

where k = 𝑘𝜃 ̂𝜃 + 𝑘𝑧 ̂𝑧 = 𝑚
𝑟

̂𝜃 + 𝑘𝑧 ̂𝑧 = 𝑚
𝑎

̂𝜃 + 𝑘𝑧 ̂𝑧.
Finally, 𝑝 + 𝐵2/2𝜇0 is continuous across perturbed boundary,

(𝑝 + 𝐵2

2𝜇0
)
1,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

= 𝑝1𝑖 +
2B𝑜𝑖 ⋅ B1𝑖

2𝜇0
= 𝜌0𝜔2𝑎𝜉1𝑟𝑎 − 1

𝜇0
𝑘2𝐵0

2𝑎𝜉1𝑟𝑎 = 𝑎𝜌0𝜉1𝑟𝑎(𝜔2 − 𝑘2𝑣𝐴2)

(𝑝 + 𝐵2

2𝜇0
)
1,𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

= 0 + 1
2𝜇0

[𝐵0𝑒
2 + 2B𝑜𝑒 ⋅ B1𝑒]1,𝑟=𝑎+𝜉𝑟

= 1
2𝜇0

[���𝐵0𝑧𝑒
2 +𝐵0𝜃𝑎

2( 𝑎
𝑎 + 𝜉1𝑟

)2 + 2(𝐵0𝜃𝐵1𝑒𝜃 +𝐵0𝑧𝐵1𝑒𝑧)]1

= 1
2𝜇0

[ − 2𝜉1𝑟𝑎𝐵0𝜃𝑎
2

𝑎 + 2[𝐵0𝜃(−𝑖𝐵1𝑟𝑎) + 𝐵0𝑧(−𝑖𝑘𝑎𝐵1𝑟𝑎)]]

= 1
2𝜇0

[ − 2𝜉1𝑟𝑎𝐵0𝜃𝑎
2

𝑎 + 2𝜉1𝑟𝑎
𝑎 [𝐵0𝜃 + 𝑘𝑎𝐵0𝑧]

2]

where in one of the equivalence 𝜉1𝑟𝑎
𝑎 → 0,

( 1
1 + 𝜉1𝑟

𝑎
)
2
≈ −2𝜉1𝑟𝑎𝑎
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(𝑝 + 𝐵2

2𝜇0
)
1,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

= (𝑝 + 𝐵2

2𝜇0
)
1,𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟

𝜔2 = 𝑘2𝑣𝐴2 + 1
𝑎𝜇0𝑎2𝜌0

[𝑘2𝑎2𝐵0𝑧
2 + 2𝑘𝑎𝐵0𝜃𝐵0𝑧]

𝜔2 = 1
𝑎𝜇0𝑎2𝜌0

[2𝑘2𝑎2𝐵0𝑧
2 + 2𝑘𝑎𝐵0𝜃𝐵0𝑧] =

2𝑘2𝐵0𝑧
2

𝜇0𝜌0
[1 + 𝐵0𝜃

𝑘𝑎𝐵0𝑧
]

For stability, 1 > ∣ 𝐵0𝜃
𝑘𝑎𝐵0𝑧

∣ ⇒ |𝑘𝑎| > 𝐵0𝜃
𝐵0𝑧

. Take |𝑘| = 𝑅−1, where 𝑅 is the major radius, the
stability condition becomes

𝑞 ≡ 𝑎
𝑅

𝐵0𝑧
𝐵0𝜃

> 1

and the 𝑞 the called the safety factor. This is again the Kruskal-Shafranov limit for 𝑚 = 1
kink mode. For sausage mode 𝑚 = 0, the same approach as above can get

𝐵0𝜃 <
√
2𝐵0𝑧

for stability.

Note:

1. This 2-region model can be generalized to 3-region model, which is more realistic com-
pared to experiments. In the liner inertial fusion experiment, there is a mixture of R-T,
sausage, kink and many high order modes.

2. In general, the dispersion relation can be written as

𝜔2 = (k ⋅ vA)2 − destablizing term

where the destablizing term can be gravity k⋅g, current 𝐼/𝐼𝑐𝑟𝑖𝑡, tearing mode due to resistivity,
etc.

3. If we do the same analysis in Cartesian coordinates (x,y,z), there will be no sausage or
kink mode! See HW3.

3-Region Problem

In 572 HW3.1, we have shown that a Cartesian liner is always stable for kink and sausage
mode while a cylindrical liner isn’t. However, if you also consider the gravity (or equivalently,
centrifugal forc, etc.) then you can have magnetic Rayleigh-Taylor (MRT) instability.

Here we show the derivation of dispersion relation in a 3-region problem in Cartesian liner.
This method can be found in Chandrasekhar‘s book on instability, P429. Consider Fig.1 shown
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in Prof.Lau’s paper “Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability”. The
interface of the regions are 𝑥 = 𝛼, 𝑥 = 𝛽. The governing equation including gravity is

d
d𝑥{𝜌0[𝜔

2 − (k ⋅ v𝐴)2]
𝜕𝜉1𝑥
𝜕𝑥 } − 𝑘2[𝜌0(𝜔2 − (k ⋅ v𝐴)2) + 𝑔𝜕𝜌0𝜕𝑥 ]𝜉1𝑥 = 0

If 𝜌0 = const. ⇒ 𝑔 𝜕𝜌0
𝜕𝑥 = 0. Within region I, II, and III, the governing equation can be

simplified to

d2𝜉1𝑥
d𝑥2 − 𝑘2𝜉1𝑥 = 0

the general solution of which reads

𝜉1𝑥 = 𝐴𝑒−𝑘𝑥 +𝐵𝑒𝑘𝑥 = 𝐶 sinh 𝑘(𝑥 − 𝛼) + 𝐷 sinh 𝑘(𝑥 − 𝛽)

where 𝐴,𝐵,𝐶,𝐷 are coefficients. Cancelling out the unphysical solutions in each region, we
have

I: 𝜉1𝑥 = 𝜉𝛽𝑒𝑘(𝑥−𝛽)

II: 𝜉1𝑥 = 𝜉𝛼
sinh 𝑘(𝑥 − 𝛽)
sinh 𝑘(𝛼 − 𝛽) + 𝜉𝛽

sinh 𝑘(𝑥 − 𝛼)
sinh 𝑘(𝛽 − 𝛼)

III: 𝜉1𝑥 = 𝜉𝛼𝑒−𝑘(𝑥−𝛼)

Note that there’s a jump for 𝜌0(𝑥) at 𝑥 = 𝛼, 𝛽. Now we can integrate the governing equation
across the boundaries,

∫
𝑥=𝛼+

𝑥=𝛼−
d𝑥[ d

d𝑥{𝜌0[𝜔
2 − (k ⋅ v𝐴)2]

𝜕𝜉1𝑥
𝜕𝑥 } − 𝑘2[𝜌0(𝜔2 − (k ⋅ v𝐴)2) + 𝑔𝜕𝜌0𝜕𝑥 ]𝜉1𝑥] = 0

⇒ 𝐹1(𝜉𝛼, 𝜉𝛽) = 0

∫
𝑥=𝛽+

𝑥=𝛽−
d𝑥[ d

d𝑥{𝜌0[𝜔
2 − (k ⋅ v𝐴)2]

𝜕𝜉1𝑥
𝜕𝑥 } − 𝑘2[𝜌0(𝜔2 − (k ⋅ v𝐴)2) + 𝑔𝜕𝜌0𝜕𝑥 ]𝜉1𝑥] = 0

⇒ 𝐹2(𝜉𝛼, 𝜉𝛽) = 0

Finally, from 𝐹1 and 𝐹2, we can get the dispersion relation

𝜔4 −𝑅𝜔2 + 𝑆 = 0

where 𝑅 and 𝑆 are functions of 𝐵01, 𝐵02, 𝐵03, 𝜌01, 𝜌02, 𝜌03, 𝑔,Δ, 𝑘𝑦 and 𝑘𝑧.

347



Next, we can examine the temporal evolution of sinusoidal ripples at interfaces in the form

𝜉𝛼,𝛽(𝑡) = 𝐴1𝑒𝑖𝜔1𝑡 +𝐴2𝑒−𝑖𝜔3𝑡 +𝐴3𝑒𝑖𝜔3𝑡 +𝐴4𝑒−𝑖𝜔3𝑡

where 𝜔1 and 𝜔3 are two eigen mode from the dispersion relation. See the details in the paper.
The details of dispersion relation is given in M.Weis, et. al., Phys. Plasmas 21, 122708 (2014),
and the coulping of MRT, sausage and kink mode in a cyclindrical liner is given by M.Weis,
et. al., Phys. Plasma 22, 032706 (2015).

Note: for RT/MRT,

𝜉𝑅𝑇 (𝑡) ∼ 𝜉0𝑒𝛾𝑡 < 𝜉0𝑒
√𝑔𝑘𝑡

the growth rate

𝛾max = √𝑔𝑘

If we use 𝑠 = 1
2𝑔𝑡2 ⇒

√
2𝑠 = √|𝑔|𝑡,

𝜉𝑅𝑇 (𝑡) < 𝜉0𝑒
√
2𝑘𝑠

which only depends on wavenumber and distance.

9.7.2 Sausage Mode

The 𝑚 = 0 mode is known as the sausage instability. There is no 𝐵𝑧 so we have purely toroidal
field. The initial equilibrium is established with radially inward Lorentz force and outward
pressure gradient. But it is unstable to interchange due to curvature. When a perturbation
that causes the rings to shrink, magnetic field in the plasma increases so that the J×B Lorentz
force increases. There is nothing to counter this radially inward force increase, which leads to
instability.

The dispersion relation is

𝜔2 = −2𝑝0𝜌0
𝑘
𝑅2𝑐

Adding 𝐵𝑧 to the interior plasma stabilizes sausage instability: the magnetic pressure caused
by 𝐵𝑧 pushes back to oppose squeezing. The pressure balance at the interface gives
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𝑝0 +
𝐵2

0𝑧
2𝜇0

=
𝐵2

𝜙
2𝜇0

With the modified dispersion relation

𝜔2 = −2 𝑝0
𝜌0𝑎2

+ 𝐵2
0𝑧

𝜇0𝜌0𝑎2

we have the condition for stability

𝐵2
0𝑧 > 1

2𝐵
2
𝜙

THIS IS PROBABLY DUPLICATE WITH THE PREVIOUS SECTION.

9.7.3 Kink Mode

However, even when the sausage mode is suppressed, the configuration is still unstable to the
kink mode. This 𝑚 = 1 mode retains circular cross-section of the tube and the perturbation
is a kink of the tube into a helix. Without 𝐵𝑧, the system is unstable for all 𝑘; with 𝐵𝑧, it is
unstable for wavelengths long enough such that the pitch of the perturbation follows the pitch
of the helix, i.e. the crests/troughs of the perturbations follow the fieldlines of tube

𝐵𝜙/𝑅 + 𝑘𝐵𝑍 ≥ 0

In terms of a twist Φ = 2𝐿𝐵𝜙/𝑅𝐵𝑧, this criterion is equivalent to

𝑘 ≥ − Φ
2𝐿

The perturbation Lorentz force j1 × B0 is zero. (???)
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9.7.4 Ballooning Mode

The ballooning instability is a type of internal pressure-driven plasma instability usually seen
in tokamak fusion power reactors or in space plasmas (Hameiri, Laurence, and Mond 1991).
It is important in fusion research as it determines a set of criteria for the maximum achievable
plasma beta. The name refers to the shape and action of the instability, which acts like the
elongations formed in a long balloon when it is squeezed. In literature, the structure of these
elongations are commonly referred to as “fingers”.

The narrow fingers of plasma produced by the instability are capable of accelerating and
pushing aside the surrounding magnetic field in order to cause a sudden, explosive release of
energy. Thus, the instability is also known as the explosive instability.

The interchange instability can be derived from the equations of the ballooning instability
as a special case in which the ballooning mode does not perturb the equilibrium magnetic
field.(Hameiri, Laurence, and Mond 1991) This special limit is known as the Mercier crite-
rion.

KeyNotes.plot_balloon()

9.7.5 Tearing Mode

KeyNotes.plot_tearing()

Tearing mode is closely related to magnetic reconnection (Section 9.8). The reconnection
process is very important because it is one of the main way of burst energy transformation. It
is known that in collisionless systems current sheets are unstable against tearing instability, a
process where the current tends to collapse into filaments. The tearing instability produces
magnetic islands that then interact and merge together giving rise to a nonlinear instability
phase, where the reconnection process is enhanced. See (Bellan 2008) P413 for more.

Linear Tearing Mode

Consider the interface between two plasmas containing magnetic fields of different orienta-
tions. The simplest imaginable field configuration is that illustrated in ?@fig-tearing-config-
simple. Here, the field varies only in the 𝑥-direction, and points only in the 𝑦-direction. The
field is directed in the −𝑦-direction for 𝑥 < 0, and in the +𝑦−direction for 𝑥 > 0. The interface
is situated at 𝑥 = 0. The sudden reversal of the field direction across the interface gives rise
to a 𝑧-directional current sheet at 𝑥 = 0.
With the neglect of plasma resistivity, the field configuration shown in ?@fig-tearing-config-
simple represents a stable equilibrium state, assuming, of course, that we have normal pressure
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balance across the interface. But, does the field configuration remain stable when we take resis-
tivity into account? If not, we expect an instability to develop which relaxes the configuration
to one possessing lower magnetic energy. As we shall see, this type of relaxation process in-
evitably entails the breaking and reconnection of magnetic field lines, and is, therefore, termed
magnetic reconnection. The magnetic energy releases during the reconnection process even-
tually appears as plasma thermal energy. Thus, magnetic reconnection also involves plasma
heating.

In the following, we shall outline the standard method for determining the linear stability of
the type of magnetic field configuration shown in ?@fig-tearing-config-simple, taking into
account the effect of plasma resistivity. We are particularly interested in plasma instabilities
which are stable in the absence of resistivity, and only grow when the resistivity is non-zero.
Such instabilities are conventionally termed tearing modes. Since magnetic reconnection is, in
fact, a nonlinear process, we shall then proceed to investigate the nonlinear development of
tearing modes.

The equilibrium magnetic field is written

B0 = 𝐵0𝑦(𝑥) ̂𝑦

where 𝐵0𝑦(−𝑥) = −𝐵0𝑦(𝑥). There is assumed to be non-equilibrium plasma flow. The lin-
earized equations of resistive-MHD, assuming incompressible flow, take the form

𝜕B
𝜕𝑡 = ∇× (v × B0) +

𝜂
𝜇0

∇2B (9.12)

𝜌0
𝜕v
𝜕𝑡 = −∇𝑝 + (∇ × B) × B0

𝜇0
+ (∇× B0) × B

𝜇0
(9.13)

∇ ⋅ B = 0 (9.14)

∇ ⋅ v = 0 (9.15)

Here, 𝜌0 is the equilibrium plasma density, B is the perturbed magnetic field, v the perturbed
plasma velocity, and 𝑝 the perturbed plasma pressure. The assumption of incompressible
plasma flow is valid provided that the plasma velocity associated with the instability remains
significantly smaller than both the Alfvén velocity and the sonic velocity.

Suppose that all perturbed quantities vary like

𝐴(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴(𝑥)𝑒𝑖𝑘𝑦+𝛾𝑡 (9.16)
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where 𝛾 is the instability growth rate. The 𝑥-component of Equation 9.12 and the 𝑧-component
of the curl of Equation 9.13 reduce to ???

𝛾𝐵𝑥 = 𝑖𝑘𝐵0𝑦𝑣𝑥 + 𝜂
𝜇0

( d2

d𝑥2 − 𝑘2)𝐵𝑥 (9.17)

𝛾𝜌0(
d2

d𝑥2 − 𝑘2)𝑣𝑥 = 𝑖𝑘𝐵0𝑦
𝜇0

( d2

d𝑥2 − 𝑘2 − 𝐵′′
0𝑦

𝐵0𝑦
)𝐵𝑥 (9.18)

respectively, where use has been made of Equation 9.14 and Equation 9.15. Here, ′ denotes
d/d𝑥.

It is convenient to normalize Equation 9.17 and Equation 9.18 using a typical magnetic field-
strength, 𝐵0, and a typical scale-length, 𝑎. Let us define the Alfvén time-scale

𝜏𝐴 = 𝑎
𝑉𝐴

where 𝑉𝐴 = 𝐵0/
√𝜇0𝜌0 is the Alfvén velocity, and the resistive diffusion time-scale

𝜏𝑅 = 𝜇0𝑎2
𝜂

The ratio of these two time-scale is the Lundquist number:

𝑆 = 𝜏𝑅
𝜏𝐴

Let 𝜓 = 𝐵𝑥/𝐵0, 𝜙 = 𝑖 𝑘 𝑉𝑦/𝛾, ̄𝑥 = 𝑥/𝑎, 𝐹 = 𝐵0𝑦/𝐵0, 𝐹 ′ ≡ 𝑑𝐹/d ̄𝑥, ̄𝛾 = 𝛾 𝜏𝐴, and �̄� = 𝑘 𝑎. It
follows that

̄𝛾 (𝜓 − 𝐹 𝜙) = 𝑆−1 ( d2

d ̄𝑥2 − �̄�2)𝜓 (9.19)

̄𝛾2 ( d2

d ̄𝑥2 − �̄�2)𝜙 = −�̄�2 𝐹 ( d2

d ̄𝑥2 − �̄�2 − 𝐹″

𝐹 )𝜓 (9.20)

The term on the right-hand side of Equation 9.19 represents plasma resistivty, whilst the term
on the left-hand side of Equation 9.20 represents plasma inertia.

It is assumed that the tearing instability grows on a hybrid time-scale which is much less than
𝜏𝑅 but much greater than 𝜏𝐴. It follows that

𝜏𝐴 ≪ 𝛾−1 ≪ 𝜏𝑅
𝛾𝜏𝐴 ≪ 1 ≪ 𝛾𝜏𝑅

̄𝛾 ≪ 1 ≪ 𝑆 ̄𝛾
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Thus, throughout most of the plasma we can neglect the right-hand side of Equation 9.19 and
the left-hand side of Equation 9.20, which is equivalent to the neglect of plasma resistivity and
inertia. In this case, the two equations reduce to

𝜙 = 𝜓
𝐹 (9.21)

d2𝜓
d ̄𝑥2 − �̄�2𝜓 − 𝐹″

𝐹 𝜓 = 0 (9.22)

Equation 9.21 is simply the flux freezing constraint, which requires the plasma to move with the
magnetic field. Equation 9.22 is the linearized, static force balance criterion ∇× (j × B) = 0.
These two equations are known collectively as the equations of ideal-MHD, and are valid
throughout virtually the whole plasma. However, it is clear that these equations break down
in the immediate vicinity of the interface, where 𝐹 = 0 (i.e. where the magnetic field reverses
direction). Witness, for instance, the fact that the normalized “radial” velocity, 𝜙, becomes
infinite as 𝐹 → 0, according to Equation 9.21.

The ideal-MHD equations break down close to the interface because the neglect of plasma
resistivity and inertia becomes untenable as 𝐹 → 0. Thus, there is a thin layer, in the
immediate vicinity of the interface, ̄𝑥 = 0, where the behaviour of the plasma is governed by
the full MHD equations, Equation 9.19 and Equation 9.20. We can simplify these equations,
making use of the fact that ̄𝑥 ≪ 1 and d/d ̄𝑥 ≫ 1 in a thin layer, to obtain the following layer
equations:

̄𝛾 (𝜓 − ̄𝑥 𝜙) = 𝑆−1d2𝜓
d ̄𝑥2 (9.23)

̄𝛾2 d2𝜙
d ̄𝑥2 = − ̄𝑥 d2𝜓

d ̄𝑥2 (9.24)

Note that we have redefined the variables 𝜙, ̄𝛾, and 𝑆, such that 𝜙 → 𝐹 ′(0) 𝜙, ̄𝛾 → 𝛾 𝜏𝐻, and
𝑆 → 𝜏𝑅/𝜏𝐻. Here,

𝜏𝐻 = 𝜏𝐴
𝑘 𝑎𝐹 ′(0)

is the hydromagnetic time-scale.

The tearing mode stability problem reduces to solving the non-ideal-MHD layer equations,
Equation 9.23 and Equation 9.24, in the immediate vicinity of the interface, ̄𝑥 = 0, solving
the ideal-MHD equations, @Equation 9.21 and Equation 9.22, everywhere else in the plasma,
matching the two solutions at the edge of the layer, and applying physical boundary conditions
as | ̄𝑥| → ∞. This method of solution was first described in a classic paper (Furth, Killeen,
and Rosenbluth 1963). The steps are listed in the farside note. The procedure is similar to
the 3 layer solution of the K-H instability. After some maths, tearing mode dispersion relation
is given as

𝛾 = [ Γ(1/4)
2𝜋 Γ(3/4)]

4/5 (Δ′)4/5
𝜏2/5
𝐻 𝜏3/5

𝑅
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where
Δ = 2𝜋 Γ(3/4)

Γ(1/4) 𝑆
1/3 𝑄5/4

𝑄 = 𝛾 𝜏2/3
𝐻 𝜏1/3

𝑅

The tearing mode is unstable whenever Δ′ > 0, and grows on the hybrid time-scale 𝜏2/5
𝐻 𝜏3/5

𝑅 .

9.8 Magnetic Reconnection

Magnetic reconnection is one of the most complex processes known for converting energy from
magnetic fields to particle motion. One of the key components in magnetic reconnection is the
collision of two magnetic field regions with opposite-directed field lines, embedded in a plasma.
The field and plasma combination forms an X-shaped configuration at their closest, and most
intense point. Visualization of reconnections can be done from a field perspective or a particle
perspective.

There are several key elements for understanding the physics of reconnection at a deeper level
(Ji et al. 2022). First, the frozen-in properties in an electron-ion plasma are associated with
the electron fluid due to its light weight. This is expressed in terms of the time changing rate
of magnetic flux (Equation 4.47) through an arbitrary area, S (enclosed by loop 𝑙), convecting
with the electron flow as dΦ/d𝑡 = ∮(E + u𝑒 × B) ⋅ d𝑙 = 0. Thus, the frozen-in condition is
regulated by the electron momentum equation (i.e. the generalized Ohm’s law)

E + V𝑒 × B⏟⏟⏟⏟⏟
Ideal

= Rcol⏟
Collisional

− ∇ ⋅ P𝑒
𝑒𝑛 − 𝑚𝑒

𝑒
du𝑒
d𝑡⏟⏟⏟⏟⏟⏟⏟

Kinetic

(9.25)

where Rcol is the collisional force per electron charge. In a fully ionized collisional plasma,
Rcol ≈ 𝜂j where 𝜂 is the resistivity due to Coulomb collisions. If the terms on the right-hand
side of Equation 9.25 are negligible, then dΦ/d𝑡 ≈ 0 and the magnetic flux is “frozen-in” to
the electron flow. For the generic reconnection layer illustrated in the middle panel of ?@fig-
reconnection-configurations, deviations from ideal evolution occur within the “diffusion
region” (blue), where either finite resistivity or kinetic effects (electron inertia and pressure
tensor) are important. Within the diffusion region, field lines converging from opposite sides
of the layer can change connectivity.

The next key element for understanding the physics of magnetic reconnection is to grasp the
remarkable global consequences of changing field line connectivity within a localized region.
In particular, the newly reconnected field lines have a large curvature B ⋅ ∇B which produces
a tension force — closely analogous to a stretched rubber band. Allowing for the possibility
of pressure anisotropy, the MHD momentum equation perpendicular to magnetic field is

𝜌du⟂
d𝑡 = −∇⟂ (𝑝⟂ + 𝐵2

2𝜇0
)+(1 +

𝑝⟂ − 𝑝∥
𝐵2/𝜇0

)B ⋅ ∇B − Fcol⟂ (9.26)
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where Fcol is due to collisions between ions (viscous force) and between ions and neutral parti-
cles (frictional force). For newly reconnected field lines, the magnetic tension in Equation 9.26
drives an outflow jet approaching the Alfvén speed 𝑉out ≈ 𝑉𝐴 ≡ 𝐵0/

√𝜇0𝜌 (𝐵0 is the reconnect-
ing field component). The resulting deficit in magnetic pressure pushes new field lines into the
diffusion region with a maximum inflow velocity 𝑉in ∼ (0.01 → 0.1)𝑉𝐴. As this process contin-
ues, the larger stressed region is relaxed, leading to a reconfiguration of the global magnetic
field on fast Alfvénic time scales ∼ 𝐿/𝑉𝐴. Assuming the diffusion regions remain small in com-
parison to the global scales, most plasma enters the flow jet across the magnetic separatrices as
illustrated in ?@fig-reconnection-configurations. This inflow is a consequence of changing
the field line connectivity within the diffusion region, which causes the entire extent of the
reconnected field lines to join the outflow. In this limit, the majority of the energy release
is associated with the relaxation of field-line tension within outflow jets over long distances.
Since the spatial extent of these jets is limited only by the macroscopic configuration, they
are one of the most prominent signatures of reconnection in both in-situ and remote-sensing
observations. Our primary focus is on situations where the available magnetic energy to drive
reconnection is comparable or larger than the initial plasma thermal energy, corresponding
to 𝛽 ≡ 𝑝/(𝐵2

0/2𝜇0) ≲ 1. In these regimes, global relaxation of field-line tension is the ulti-
mate “engine” for reconnection and is essentially “ideal”, thus operating in a similar manner
for most applications, but with a few important exceptions. Plasma heating preferentially
along the magnetic field (𝑝∥ ≫ 𝑝⟂) can weaken the magnetic tension force in Equation 9.26,
whereas in partially ionized regimes the jet formation is more complicated due to interactions
with neutrals. In addition, non-ideal kinetic physics may persist along magnetic separatrices
(see red lines in ?@fig-reconnection-configurations) to larger distances, while in very large
systems shocks may form along these boundaries and play a role in the energy conversion.

In contrast to the ideal physics driving the jet, the non-ideal terms within the diffusion region
are intimately dependent upon the plasma conditions and spatial scales, and thus, a variety
of different regimes are possible, as illustrated in the various panels of ?@fig-reconnection-
configurations. Since the outflow is always energetically limited to 𝑉𝐴 in a quasi-steady
state, mass conservation implies that the geometry of the diffusion region determines the
dimensionless reconnection rate, 𝑅 ≡ 𝑢in/𝑉𝐴 ≈ Δ/𝐿 where Δ is the diffusion region thickness.
The current understanding of the diffusion region physics has evolved over more than 60 years
in three main stages, yet a full understanding remains elusive for large space and astrophysical
problems.

9.8.1 Reconnection Rate

Reconnection rate quantifies the amount of magnetic flux transportation through the X-line.
There are two kinds of reconnection rate (Nakamura et al. 2018):

1. The dimensional reconnection rate, defined as the out-of-plane electric (usually denoted
as 𝐸𝑟 or 𝐸𝑦 for a 2D X-Z plane configuration, with a unit of [V/m]) at the X-line for
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steady state reconnection:

𝐸𝑟 ≡ 𝐸𝑦 ∼ 𝑈in𝐵in ∼ 𝑈out𝐵out (9.27)

Steady state is necessary for balancing the inflowing and outflowing flux and a uniform 𝐸𝑟.
𝐸𝑟 defines the rate at which the magnetic flux is transferred from the inflow region into the
diffusion region to change the field line connectivity. Therefore, the reconnection electric field
is also referred to as the dimensional reconnection rate.

2. The dimensionless reconnection rate, defined as the ratio between the inflow speed and
the ion Alfvén speed based on the background reconnecting field strength 𝐵𝑏 and the
upstream density:

𝑅 ≡ 𝑈in
𝑉𝐴𝑖𝑏

(9.28)

Because of the magnetic flux conservation in ideal MHD, 𝐵in𝑈in = 𝐵out𝑈out. Assuming 𝐵in ∼
𝐵𝑏 and 𝑈out ∼ 𝑉𝐴𝑖𝑏, the normalized reconnection rate can be approximately written by using
the unnormalized rate 𝐸𝑟 ∼ 𝑈in𝐵in as

𝑅 = 𝑈in
𝑉𝐴𝑖𝑏

∼ 𝐸𝑟
𝑉𝐴𝑖𝑏𝐵𝑏

∼ 𝐸𝑟
𝑉out𝐵𝑏

The inflow speed shall be taken near the reconnection site. Observationally, this ratio is on
the order of 𝒪(0.1). There has been some theoretical arguments based on geometry to explain
this universal ratio in recent years. We shall also note that magnetic flux is not conserved
close to the center of X-line, in regions typically known as the ion diffusion region and electron
diffusion region.

For global magnetosphere studies, a useful concept called reconnection efficiency 𝜖 is defined
as ratio of the imposed potential drop to the full possible potential drop across the width of
the magnetosphere. The potential drop is calculated from integrating 𝐸𝑟 along the X-line. As
an example, Ganymede has been observed to possess an unusually high reconnection efficiency
about 60% (Zhou et al. 2020), compared to about 10% measured by cross polar cap potential
(CPCP) over the full possible potential drop at Earth. High 𝜖 means more plasmas penetrating
inside the magnetosphere instead of diverting around the magnetopause.1

It is important to note that high reconnection efficiency does not indicate high dimensionless
reconnection rate. For instance, in a 2D steady state magnetosphere reconnection, the global
reconnection efficiency must be 1, otherwise the system cannot be steady. However, the local
dimensionless reconnection rate can still be 0.1, measured from either the speed ratio or the
ratio of 𝐵𝑁 in the LMN coordinate system to the total magnetic field strength right inside the
magnetopause (B. Ö. Sonnerup 1974).

1I have a question here. If 𝜖 = 1, does it mean that all the plasmas hitting the magnetopause will penetrate
inside via reconnection? How should I demonstrate this, e.g. using a test particle model?
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9.8.2 Hall Field

Let X be the inflow direction, Z the outflow direction, and Y the out-of-plane direction. During
magnetic reconnection,

• a quadrupolar out-of-plane or Hall magnetic field 𝐵𝑦 is formed by the field aligned
currents 𝑗∥ that flow in the vicinity of the magnetic separatrices when ion and electrons
decouple on the length scales less than the ion inertial length (B. U. Ö. Sonnerup 1979).
The quadruple Hall magnetic field was analyzed as a tearing mode eigenmode of the
current layer (Terasawa 1983). The Hall effect introduces a coupling between the tearing
mode perturbations (2D configuration in-plane B components) and shear Alfvén mode
perturbations (out-of-plane B component).

• In the context of collisionless plasmas, ion-electron collisions are absent so that ions and
electrons behave differently at micro-scale. On the ion scale, ions start to become de-
magnetized whereas electrons are still coupled to the magnetic field. The difference in
the ion and electron motion produces charge separation, Hall electric fields and the asso-
ciated electric current. (On the even smaller electron-scale, electrons are demagnetized
and correspond to the “breaking” of the field line.) The spatial variation of Hall electric
fields is mostly in X, normal to and pointing towards the current layer. Relevance of
Hall effects in reconnection is considered important at the ion inertial scale, providing
a source for non-ideal reconnection electric field. (In observations, the perpendicular
scale of the Hall fields and current layer can be as small as electron scales as well?) The
parallel scale of the Hall fields are much larger. Equivalently, Hall fields are associated
with a wave vector k so that 𝑘𝑥 ≫ 𝑘𝑧 and 1/𝑘𝑥 on the ion-scale.

The Hall fields are continuously produced quasi-steady structures accompanied with a
timescale much longer than the ion gyroperiod. Their associated kinetic and magnetic
energies propagate away from the reconnection layers carried by Alfvén waves. Numerical
simulations suggest that it is primarily kinetic Alfvén waves (KAW, Section 7.9.4) which are
excited in the vicinity of reconnection regions (Rogers+, 2001; Shay+, 2011), but further
downstream in the exhaust it is primarily shear Alfvén waves (Gurram, Egedal, and Daughton
2021).

In observations, signatures of Hall magnetic fields are used as a working definition of col-
lisionless magnetic reconnection in the Earth’s and planetary magnetosphere. The bipo-
lar/quadrupolar Hall magnetic field 𝐵𝑦 can coexist with a guide field (i.e. constant 𝐵𝑦) (for
an example at Mars, see (J. Wang et al. 2023)).

(Dai and Wang 2023) emphasized that the physics underlying the Hall effect is similar to that
in KAW:

• Both can be described by the two-fluid equations.
• The temporal and spatial scales of Hall fields are exactly the same as those of KAW.
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• The polarity of the Hall electric field (in X) and the Hall magnetic field (in Y) is also
consistent with that of KAW.

• The ratio 𝐸𝑥/𝐵𝑦 of Hall fields is on the order of 𝑉𝐴, similar to KAW.
• The current system of Hall fields are in the XZ-plane.

As the perpendicular wavelength of Alfvén wave becomes comparable to the ion gyroradius, the
ions cannot follow the E × B drift. This is because the wave electric field now is non-uniform
in the trajectory of ion gyromotion. As a consequence, the ion transverse motion is modified
by the finite-Larmor-radius (FLR) effect. Considering the kinetic correction, the ion actually
follows E = V𝑖 ×B+ 1

𝑛𝑖𝑞𝑖∇⋅P𝑖 in the transverse motion. The FLR effect is manifested in the
ion pressure gradient term: the FLR effect is equivalent to a finite temperature for the ions
on the fluid level. At the wavelength of ion-scale wavelength, electrons cannot follow ions in
the transverse motion. The difference in the transverse motion of ions and electrons produces
a charge separation and coupling to the electrostatic mode, and a quasi-electrostatic electric
field is formed in the transverse direction. To remain quasi-neutral, electrons quickly move in
the direction parallel to the magnetic field. In the parallel direction, these electrons undergo
a force balance between a small parallel electric field and the electron pressure gradient in
the case of KAW. The parallel motion of electrons created a field-aligned current (FAC) that
is a distinct nature of Alfvén mode. The FAC induces a wave magnetic field perpendicular
to the DC (background) magnetic field. A new physical scale length 𝑟𝑖𝐿, the ion gyroradius
based on the electron temperature, for the current layer and outflow layer in fast reconnection.
Through the diffusion region near the X-line, intense KAW turbulence is observed, suggesting
that magnetic reconnection is a source of KAW. Thus KAW has been invoked as ingredients
for fast reconnection.

In the direction parallel to the magnetic field ( ̂𝑧), 𝐵𝑦 reverses but 𝐸𝑥 remains its sign. This
feature is related to the superposition of two KAW mode waves that propagate in the opposite
direction and outward from the reconnection region. In the perpendicular direction, the Hall
fields appears to exist only for one wavelength along ̂𝑥. This is related to the eigenmode
(standing mode) structure of KAW in the current layer.

In the literature, the Hall electric field is usually considered to arise from the j × B/𝑛𝑒𝑞 term
in the context of the generalized Ohm’s law Equation 5.27. The Hall term starts to become
important at the ion inertial scale, contributing to the Hall electric field. Interestingly, the
j × B also represents a major force term in the one-fluid MHD momentum equation. The
j×B force could be important on the large MHD-scale and the argument for the origin of Hall
electric field becomes ambiguous; from the MHD momentum equation, j×B term is equivalent
to the ion inertial effect, ion pressure effect and the electron pressure effect:

𝜌𝑑u
𝑑𝑡 + ∇ ⋅ ( ⃡⃡⃡ ⃡⃡𝑃𝑖 + ⃡⃡⃡ ⃡⃡𝑃𝑒) = J × B (9.29)

which is derived from the sum of the two-fluid momentum equations multiplied by the mass of
each species. The one-fluid MHD momentum equation Equation 9.29 together with the general
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Ohm’s law is nearly equivalent (with some extent of reduction?) to the two-fluid momentum
for two species. The Hall electric field is equivalently described by either set of equations.

From the ion momentum equation

E + u𝑖 × B = 1
𝑛𝑖𝑞𝑖

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑖 +
𝑚𝑖
𝑞𝑖

dv𝑖
d𝑡 (9.30)

The perpendicular component of the non-ideal electric field E + u𝑖 × B is the Hall electric
field at the ion kinetic scale; as seen on the RHS, two sources of Hall electric fields are the ion
inertial term and the ion pressure gradient. From the KAW perspective, the Hall electric field
is supported by the ion pressure gradient. In the regime of the temporal and spatial scale of
KAW, the ion inertial term is small and on the order of 𝒪(𝜔2/Ω2

𝑖 ).
If the ion inertial term is neglected, Equation 9.30 becomes

E + u𝑖 × B = 1
𝑛𝑖𝑞𝑖

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑖

The u𝑖 × B term is kept since the ion flow may not be neglected near the X-line.

9.8.3 Kinetic Signatures of Diffusion Region

(The following part is from [Kinetic signatures of the region surrounding the X-line in asym-
metric (magnetopause) reconnection] and [Fluid and kinetics signatures of reconnection at the
dawn tail magnetopause-Wind observations].)

Electron diffusion region (EDR) is defined to be the electron-scale region surrounding the X-line
in which magnetic connectivity is ultimately broken. Note that this definition is fundamentally
non-local in nature.

1. enhanced dissipation [e.g., Zenitani+, 2012]
2. non-gyrotropic particle behavior [e.g., Scudder+, 2008; Aunai+, 2013; Swisdak 2016]
3. electron distribution functions [e.g., Chen+, 2008, Ng+, 2011]
4. In the two inflow regions, we expect a reduction in total pressure, magnetic field 𝐵𝐿 and

the plasma density 𝑛𝑖 relative to ambient upstream conditions.

Some signatures also exist downstream of the diffusion region and along the separatrices. In
practice people use a complementary approach for the identification.

Specifically for EDR, it should exhibit a number of properties:

1. the violation of the electron frozen-in condition
2. non-gyrotropic electron distributions [e.g., Scudder+, 2008; Aunai+, 2013; Swisdak 2016]
3. enhanced dissipation [Zenitani+, 2011]
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A simple and practical indicator of EDR is the presence of a sunward pointing 𝐸𝑁 at the
midplane (called the “shoulder”) as this signature coincides with the region of enhanced dis-
sipation, non-gyrotropic electrons at midplane, and counterstreaming electron beams due to
electron meandering orbits around the X-line. This EN signature is straightforward to measure
experimentally because it is the largest component of the electric field at the magnetopause.

The crescent shape distribution is not as localized as the 𝐸𝑁 shoulder especially for ion.

Figure 9.7: Ion crescent shape distribution at Earth’s magnetopause revealed by ISEE satellite
at 1981.

At the dayside magnetopause, reconnection between magnetosheath and geomagnetic field
lines is expected to produce

1. a finite magnetic field component normal to the magnetopause, 𝐵𝑁 ;
2. Alfvénic plasma flow acceleration associated with a rotational discontinuity at the mag-

netopause;
3. ion distributions on reconnected field lines consisting of a mixture of magnetosheath

and magnetosphere populations where the transmitted magnetosheath population has
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a “D-shaped” distribution, with a low-energy cutoff at the deHoffmann-Teller velocity
[Cowley, 1982];

4. reflected ions in the layers adjacent to the magnetopause;
5. opposite streaming along reconnected field lines of outgoing magnetospheric electrons

and incoming magnetosheath electrons, resulting in large parallel electron heat flux;
6. an offset between the ion and electron edges at the inner boundary of the low-latitude

boundary layer (LLBL) due to a time-of-flight effect resulting from the fact that en-
tering magnetosheath electrons have much higher parallel speeds than ions while their
transverse motions are the same.

9.8.4 D-shape Distribution

The kinetic description of reconnection can also be quantitatively verified. An important ki-
netic signature is the “D-shaped” ion distribution. Magnetosheath particles can either be
reflected at or cross the magnetopause. In the deHoffmann-Teller frame of reference in which
the electric field vanishes, only ions traveling toward the magnetopause will cross the magne-
topause. Thus, when viewed in the spacecraft frame, only magnetosheath ions with parallel
velocity greater than the deHoffmann-Teller velocity can be seen earthward of the magne-
topause, resulting in a “D-shaped” distribution. [Cowley, 1982]

The existence of a finite BN at the MP requires field lines on both sides of the MP to move
together. In this scenario there must be a reference frame (the HT frame) which slides along
the MP with the field-line velocity. In this frame, the convective electric field vanishes (E𝑐 =
−v × B = 0), i.e. the flows are field aligned on the two sides of the MP.

In practice, the HT frame for a set of plasma and field measurements across the MP can
be found as the reference frame in which the mean square of the convective electric field,
𝐷 = ⟨|(v − V𝐻𝑇 ) × B|2⟩, is as small as possible. The angle bracket < ... > denotes an average
of an enclosed quantity over a set of measurements. The velocity v for which 𝐷(v) is a
minimum is the deHoffmann-Teller velocity, V𝐻𝑇 . The ratio 𝐷/𝐷0, where 𝐷0 = ⟨|(v × B|2⟩,
is used as a measure of the quality of the HT frame. For a good HT frame 𝐷/𝐷0 should be
small (≪ 1).
In another paper [Characteristics of the flank magnetopause: Cluster observations], V𝐻𝑇 is
defined by minimizing E′ = E + V𝐻𝑇 × B, and the correlation between E𝑐 = −v × B and
E𝐻𝑇 = −V𝐻𝑇 × B describes how well the frame is determined.

9.8.5 Classification of Discontinuity Types

In a fluid description, the magnetopause can be described either as a tangential discontinuity
(TD) or as a rotational discontinuity (RD). A TD implies a complete separation of two plasma
regimes (in this case the magnetosheath on one side and the magnetosphere on the other side).
The boundary as a whole may move, but there is no transport of plasma across the discontinuity,
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and there is no magnetic field along the boundary normal. An RD-like magnetopause, on the
other hand, implies transport across the boundary and a normal magnetic field, and indicates
the presence of reconnection. In the vicinity of the X-line, the plasma flow is Alfvénic, i.e., the
Walén relation is satisfied:

v − V𝐻𝑇 = ±V𝐴

where v is the plasma velocity, V𝐻𝑇 is the deHoffmann-Teller frame velocity, and V𝐴 is the
local Alfvén velocity.

In some other literature, a more complete form is written as

v − V𝐻𝑇 = ±(1 − 𝛼)1/2V𝐴

which takes the pressure anisotropy factor 𝛼 = (𝑝∥ − 𝑝⟂)𝜇0/𝐵2 into account.

This is often used to classify the discontinuity type of the magnetopause. For an RD, the flow
across the boundary is proportional to the normal magnetic field, i.e., 𝑣𝑛 ∝ 𝐵𝑛. A positive
(negative) slope of the regression means that normal magnetic field and flow have the same
(opposite) signs. At the magnetopause, we can assume that the flow is inward, i.e., from the
magnetosheath into the magnetosphere.

9.8.6 Reconnection Efficiency

This is very confusing. From [Kivelson+ 1997]:

There is an interesting link between flow speeds over the polar cap and reconnection
efficiency at the nose of its magnetopause. This follows from the fact that the
voltage drop across the magnetosphere is a fraction of the voltage drop across the
same distance in the corotating flow upstream. Thus, the convection electric field
within the magnetosphere is a fraction of the corotation electric field determined
by the efficiency of reconnection. The model allows us to estimate the convective
flow speeds of plasma over the polar cap if the reconnection efficiency is known,
and conversely allows us to estimate the reconnection efficiency if the flow speed
over the polar cap is known.

Let me think in this way: the convective electric field in the upstream, E = −v×B, describes
how many magnetic field lines are moving into the reconnection site at a given point. The
integral of electric field along the X-line describes how many magnetic field lines are getting
reconnected into the magnetosphere. This is not the same as electric potential drop, where in
the simplest cases requires a static EM field. Because of the difficulty of finding the separatrices,
we use an indirect approach assuming equi-potential field lines to calculate the electric field
along the magnetosphere boundary curve away from the reconnection site.

Be careful for the word “cross polar cap potential” here. This may be a misleading term, since
how can one define an electric potential in a EM field?
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9.8.7 Dissipation Mechanisms

Perhaps the most import problem associated with reconnection is the understanding of the
mechanisms by which the magnetic field can dissipate its energy, and subsequently produce
particle heating and acceleration [Huba 1979]. Since many field reversed plasmas are essentially
collisionless, instabilities are likely to play an important role in the dissipation process.

A macroinstability (MHD type), like the tearing mode can dissipate magnetic energy even
in a collisionless plasma via electron inertia, electron or ion Landau damping. However, the
collisionless tearing mode saturates at a very small amplitude. Microinstabilities can also
dissipate magnetic energy by producing an anomalous resistivity which can either dissipate
the magnetic energy directly or enhance the growth of the tearing mode.

In any case, the kinetic physics corresponding to the fast rate of collisionless reconnection is
a long-standing question. Non-gyrotropy particle distributions and the associated off-diagonal
term of the pressure tensor have been considered to provide the reconnection electric field at
electron-scale and ion-scale.

The lower-hybrid-drift instability (LHDI, Section 9.9) is often considered to be an important
microinstability for dissipation near the diffusion region.

9.8.8 Sweet-Parker Solution

From Yi-Hsin Liu’s presentation of space weather.

mass conservation:
∇ ⋅ (𝑛V) = 0 ⇒ 𝑉𝑖𝑛𝐿 ≃ 𝑉𝑜𝑢𝑡𝛿

momentum conservation:

B ⋅ ∇B
4𝜋 = 𝑛𝑚𝑖V ⋅ ∇V ⇒ 𝑉𝑜𝑢𝑡 ≃

𝐵
√4𝜋𝑛𝑚𝑖

= 𝑉𝐴

normalized reconnection rate
𝑅 ≡ 𝑉𝑖𝑛

𝑉𝐴
∼ 𝛿

𝐿

However, this model has a small 𝛿/𝐿, the rate is too small to explain the time-scales in solar
flare. To explain the flares, it requires 𝑅 ∼ 0.1.
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9.8.9 Petschek Solution

Reconnection in this model is much larger because 𝑅 ∼ 𝛿/𝐿 goes up. However, this is not a
self-consistent solution.

In PIC simulations, the diffusion region is localized like the Petschek solution. The reason
we use PIC instead of MHD is that PIC captures the key physics that breaks the frozen-
in condition in nature. In the GEM challenge study, PIC, hybrid, Hall-MHD, MHD with a
localized artificial resistivity all give similar 𝑅 ∼ 0.1 fast reconnection rate in disparate systems.
In terms of the pressure descriptions from the moment equations, it has been found that 6-
moment cannot trigger fast reconnection while 10-moment can, which essentially indicates that
the off-diagonal terms in the pressure tensor is critical in getting the right physics.

One possible explanation for this 0.1 rate comes from geometrical consideration. In the small
𝛿/𝐿 limit, 𝑅 ∼ 𝛿/𝐿 ∼ 0. In the large 𝛿/𝐿 limit, 𝛿/𝐿 → 1, 𝑅 → 0. It turns out that there
should be an optimized 𝑅max in between. In the large 𝛿/𝐿 limit,

B ⋅ ∇B
4𝜋 ≃ ∇(𝐵2)

8𝜋 + 𝑛𝑚𝑖V ⋅ ∇V

At the inflow region, the large angle decrease the reconecting magnetic field. At the outlfow
region, it decrease the outflow speed. Both of them cause 𝑅 to decrease. Constraints imposed
at the inflow and outflow region (upper) bound the rate! In [Liu+, PRL 2017], an analytical
expression of 𝑅 is given by

𝑅 ≡ 𝑉𝑖𝑛
𝑉𝐴

≃ 𝛿
𝐿 ⋅ [1 − (𝛿/𝐿)2

1 + (𝛿/𝐿)2 ]⏟⏟⏟⏟⏟
reduction of reconnection B

⋅ √1 − ( 𝛿
𝐿)

2

⏟⏟⏟⏟⏟
reduction of 𝑉𝑜𝑢𝑡

Reconnection tends to proceed near the most efficient state with 𝑅 ∼ 𝒪(0.1). Nicely, the rate
is insensitive to 𝛿/𝐿 near this state (BECAUSE THE SLOPE IS SMALL???).

Amitava Bhattacharjee argued that scaling is a controversial subject:

1. How does it scale with ion/electron skin depth, resistivity, plasma beta, and system size?
2. Is the reconnection rate insensitive to the details of the electron layer (current sheet

layer), and controlled by ions?

• The whistler waves generate an out-of-plane quadrupolar magnetic field.
• The ratio of the horizontal electron outflow to the horizontal magnetic perturbation

scales as 𝑘 for the dispersive whistler (or kinetic Alfvén) wave. (WHICH WAVE IS IT? I
have been confused by the relation between whistler waves ann KAWs. Both contains a
region with super-Alfvénic phase speed for large 𝑘 and especially with frequency between
Ω𝑖 and Ω𝑒; whister wave involves electrons whereas KAW can only rely on ions.)
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From the GEM Challenge perspective:

• Reconnection is insensitive to the mechanism that breaks field lines (electron inertia or
resistivity). The length of the reconnection layer Δ𝑖 ∼ 10𝑑𝑖. Reconnection rate is a
“universal constant”, 𝑉𝑖𝑛 ≈ 0.1𝑉𝐴.

• In the presence of Hall currents, whistler waves mediate reconnection. The characteristic
outflow speed is the whistler phase speed (based on the upstream magnetic field).

• The inflow velocity 𝑣in = Ω𝑒𝛿2𝑒/Δ𝑖 where Δ𝑖 ∼ 𝑘−1 ≪ 𝐿 (system size). This rate is
independent of 𝑚𝑒.

The GEM perspective is not universally accepted. An alternate point of view provides evidence
that:

• Reconnection is not a universal constant, and depends on system parameters (such as
ion/electron skin depth, plasma beta, boundary conditions).

• Reconnection rate is not independent of the system size, and in fact, often decreases as
the system size increases.

He provided three examples:

1. Forced reconnection without guide field
2. Undriven reconnection with guide field
3. Undriven reconnection with open boundaries

9.8.10 3D Nature of Reconnection

How about the freedom coming from the extra dimension?

Distinct 3D features, including

• flux ropes
• kink instability
• turbulence

3D diffusion region can be fundamentally different. For example, you may find bifurcation of
electron diffusion region in 3D reconnection simulations. Clue: bifurcated layer is located in
between these intertwined flux ropes, and tearing modes give rise to these flux ropes! 2D only
allows the parallel tearing mode, i.e., no bifurcation. 3D allows a spectrum of oblique tearing
modes, unlike 2D.

3D reconnection has always been a mystery to me. People have the concepts of 2D reconnection
for so long (guide field on v.s. guide field off) which makes it hard for us to understand the
3D nature of reconnection. A fair question to ask is: what differentiate a guide field from the
reconnecting field?
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9.9 Lower Hybrid Drift Instability

The lower-hybrid-drift instability (LHDI) is a microinstability which has thought to be an
anomalous transport mechanism in both laboratory and space plasmas. The local linear theory
of this instability is well understood. The mode is driven by the diamagnetic current produced
by pressure inhomogeneities and is characterized at maximum growth by

𝜔 ∼ 𝑘𝑉𝑑 ≲ 𝜔𝑙ℎ
𝛾 ≲ 𝜔

𝑘 ∼ 𝜔𝑙ℎ/𝑣𝑖
k ⋅ B = 0

where 𝑉𝑑 is the diamagnetic drift velocity, 𝜔𝑙ℎ is the lower hybrid frequency, and 𝑣𝑖 is the ion
thermal velocity.

𝜔𝑙ℎ = [(Ω𝑖Ω𝑒)−1 + 𝜔−2
𝑝𝑖 ]−1/2

where Ω𝑖 is the ion cyclotron frequency, Ω𝑒 is the electron cyclotron frequency, and 𝜔𝑝𝑖 is the
ion plasma frequency. It is so called “hybrid” because it is a mixture of two frequencies. It is
unusual in that the ion and electron masses play an equally important role.

The drift velocity is
𝑉𝑑 = ∇𝑝 × B

𝑛𝑒𝐵2

Physically, the instability is reactive (fluid-like) in the strong drift velocity regime (𝑉𝑑 > 𝑣𝑖) and
dissipative (kinetic) in the weak drift velocity regime (𝑉𝑑 < 𝑣𝑖). The pressure inhomogeneities
can be caused by either temperature or density inhomogeneities, or both.

The corresponding lower hybrid (LH) waves are electrostatic emissions near the LH resonant
frequency. They propagate perpendicularly with a small wavelength comparable to Larmor
radius of thermal particles and can be capable of heating both ions and electrons. In the cold
plasma regime (Section 7.7), the LH waves (with the frequency above LH resonance frequency)
and whistler-mode waves belong to the same wave mode branch.

9.10 Kinetic Mode

9.11 Pressure Anisotropy Instabilities

When we shift to the MHD with anisotropic pressure tensor

𝑃𝑖𝑗 = 𝑝⟂𝛿𝑖𝑗 + (𝑝∥ − 𝑝⟂)𝐵𝑖𝐵𝑗/𝐵2
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where 𝑝⟂ and 𝑝∥ are the pressures perpendicular and parallel w.r.t. the magnetic field, re-
spectively. For the strong magnetic field approximation, the two pressures are related to the
plasma density and the magnetic field strength by two adiabatic equations,

d
d𝑡 (

𝑝∥𝐵2

𝜌3 ) = 0

d
d𝑡 (

𝑝⟂
𝜌𝐵) = 0

This is also known as the double adiabatic theory, which is also what many people remember to
be the key conclusion from the CGL theory ((Chew, Goldberger, and Low 1956), Equation 5.43
and Equation 5.45). Here I want to emphasize the meaning of adiabatic again: this assumes
zero heat flux. If the system is not adiabatic, the conservation of these two quantities related
to the parallel and perpendicular pressure is no longer valid, and additional terms may come
into play such as the stochastic heating.

Now imagine an increasing magnetic field 𝐵. For an initially Maxwellian distributed plasma
like a circle in the phase space, it will get stretched in the perpendicular direction and become
an oval; conversely, if the magnetic field is decreasing, it will get stretched in the parallel
direction.

9.11.1 Firehose Instability

The firehose mode is the result of a pressure (or temperature) anisotropy in plasma with the
parallel pressure 𝑃∥ exceeding the perpendicular 𝑃⟂ and magnetic 𝐵2/2𝜇0 pressures. Sagdeev
[1966] gave a simple intuitive explanation of this instability based on the insight that the
parallel thermal motion of the adiabatic magnetised ions along the magnetic field exerts a
centrifugal force on the field lines. When this force exceeds the restoring forces of the magnetic
pressure and perpendicular plasma pressure, the centrifugal force wins and a small excursion
of the magnetic field starts growing and propagates as a wave along the magnetic flux tube
like on a string. The condition for instability is

𝑃∥ − 𝑃⟂ > 𝐵2/𝜇0

Since the pressure anisotropy on the left means that there is an excess in parallel energy in the
plasma, the plasma possesses free energy which by the instability is fed into the excitation of
Alfvén waves with frequencies 𝜔𝐴 ≪ 𝜔𝑐𝑖, transported away with Alfvén speed and ultimately
dissipated in some way. The waves excited are ordinary Alfvén waves.

If a wave growth is associated with small groups of resonant particles, then the corresponding
instability is known a resonant mode. The firehose mode is non-resonant since all particles
contribute to it. Generally most non-resonant instabilities can only be found by solving the
full dispersion relation numerically.

See more in Section 10.1.
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9.11.2 Mirror Instability

Southwood & Kivelson had a nice paper explaining the physics of mirror instability. See also
Section 10.2 for a more thorough mathematical description of the instability.

The mirror instability is prevalent in planetary and cometary magnetosheaths and other high 𝛽
environment. It is recognized as one of the two magnetohydrodynamic instabilities that occur
in the presence of extreme velocity space (pitch angle) anisotropy in a uniform plasma, the
other instability being the firehose. The mirror mode has gained increasing interest following
its identification in spacecraft data from the magnetosheath and solar wind. Although the
instability was originally derived from magnetohydrodynamic fluid theory, later work showed
that there were significant differences between the fluid theory and a more rigorous kinetic
approach, as we will see in Section 10.2.

The instability occurs when 𝛽, the ratio of plasma to magnetic pressure. The anisotropy (𝑝⟂−
𝑝∥)/𝑝∥ required for instability ∝ 𝛽−1. In planetary magnetosheaths the source of anisotropy is
likely to be the planetary bow shock and in cometary environments the ion pickup process is
a natural source of anisotropy. Both types of environment tend to have relatively large values
of 𝛽.

Any nonlinear saturation mechanism of the mirror instability is likely to leave the plasma spa-
tially structured, as is also strongly suggested by the many observations. In practice, in almost
any experimental detection of a plasma instability, the wave fields and the plasma population
will have evolved to some quasi-steady condition that represents a nonlinear saturated state of
the instability. In the spatially structured magnetic field associated with the minor instability
in both its linear and nonlinear phase, different parts of the ion distribution will resonate with
an ion cyclotron wave as the wave propagates along the inhomogeneous field. This effect is
likely to inhibit the growth of the ion cyclotron mode, which theoretically also exists in the
same frequency band.

The mirror instability is referred to as a “fluid” instability, alluding to the fact that the phase
space (pitch angle) anisotropy of the bulk of the hot plasma distribution serves as the source
of energy. The instability grows because of a subtle coupling between a group of particles with
small velocity parallel to the field and the rest of the population. The mirror instability has
zero parallel phase velocity in the plasma frame of reference. It follows, by analogy with other
uses of the term that we can call particles with near zero parallel velocity resonant.

(Song+ 1994) presented a set of identification criteria for distinguishing among various forms
of high 𝛽 MHD waves, with mirror modes having the properties:

• Compressional fluctuations:
(𝛿B2 − 𝛿B2

∥)/𝛿B2
∥ < 1

• Anti-correlated 𝛿𝑃 𝑖 and 𝛿𝑃𝐵:
𝛿𝑃𝑖/𝛿𝑃𝐵 < 0
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Figure 9.8: Illustration of mirror instability.

• Linear magnetic field polarization

• Stationary in plasma rest frame (i.e. zero phase speed):

(𝛿v2/v2
0)/(𝛿B2/B2

0) ≈ 0

The last criterion is referred to as the Doppler ratio and is used to distinguish between slow
mode waves (value ≥ 1) and mirror modes (value near zero).

Note that mirror mode is not really a MHD mode, but from observation in the Earth’s magne-
tosheath we often see mirror modes on large MHD scales. However, in the solar wind, mirror
mode structures seem to be much smaller than those observed in the magnetosheath. From
Equation 10.20, electron physics may be involved on the electron scales.

It is still an unknown mystery from MMS observation that downstream of an interplanetary
shock, very few mirror modes were observed. This is surprising, because usually the shock is
a source of pressure anisotropy. Another explained fact is that typically mirror modes are not
observed during fast solar wind (as of 2022).

9.11.3 Weibel Instability

The Weibel instability is a plasma instability present in homogeneous or nearly homogeneous
electromagnetic plasmas which possess an anisotropy in velocity space. This anisotropy is
most generally understood as two temperatures in different directions, and the generalization
extends to superposition of many counter-streaming beams. In this sense, it is like the two-
stream instability except that the perturbations are electromagnetic and result in filamentation
as opposed to electrostatic perturbations which would result in charge bunching. In the linear
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limit the instability causes exponential growth of electromagnetic fields in the plasma which
help restore momentum space isotropy.

Check Wiki for an illustration of Weibel instability in a simple configuration. F. F. Chen
(2016) also has a section on this.

Weibel instability is common in astrophysical plasmas, such as collisionless shock formation in
supernova remnants and 𝛾-ray bursts.

9.12 Cyclotron Instability

I still don’t see the dispersion relations for these types of instabilities…

9.12.1 Ion Cyclotron Instability

There is another instability (besides mirror instability) that occurs at frequencies below the ion
gyrofrequency in the presence of ion pitch angle anisotropy, the electromagnetic ion cyclotron
instability (EMIC). This is a resonant instability in which the energy for the instability is fed
from a subset of the particle population that are in gyroresonance with the unstable wave.

From Earth’s magnetosheath observations, mirror modes dominates even though the linear
dispersion relation predicts a smaller growth rate compared with EMIC waves. Gary argued in
the 1990s that this is because of a small portion of heavier species (e.g. helium) that modifies
the growth rate. Local hybrid simulations (e.g. the example from hybrid VPIC in ISSS14)
supports this. However, researchers have not reached a consensus on whether ion cyclotron
instability suppress mirror instability or vice versa.
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10 Kinetic MHD

This is taken from the hand-written lecture notes from Prof. Alexander Schekochihin. Theo-
retical physicists love CGS units, but I tend to use SI units here. In later part of the note,
there may be mixed units, so be careful.

We start by showing how for magnetized, weakly collisional plasmas (𝜈colli ≪ Ω𝑠, 𝑟𝐿 ≪ 𝜆mfp,
where 𝜆mfp is the mean free path), low-frequency (𝜔 ≪ Ω𝑠), long-wavelength (𝑘𝑟𝐿 ≪ 1)
dynamics can be decided by a set of equations that look almost like the familiar MHD. We
will see later on that the ways in which they are not MHD will profoundly affact the dynamics
— indeed we do not fully understand the full implication of this in high-𝛽 plasmas. This is
consequently one of the frontier topics in theoretical plasma astrophysics.

Let us start from first principles. Any plasma that is going to be of interest to us is described
by the Vlasov-Maxwell-Landau system of equations:

𝜕𝑓𝑠
𝜕𝑡 + v ⋅ ∇𝑓𝑠 +

𝑞𝑠
𝑚𝑠

[E + v × B]𝜕𝑓𝑠𝜕v = 𝐶(𝑓𝑠) (10.1)

The Maxwell’s equation can be simplified based on our assumptions.

∇ ⋅ E = 𝜖0 ∑
𝑠

𝑞𝑠𝑛𝑠, 𝑛𝑠 = ∫ dv𝑓𝑠

∇ ⋅ E is small when 𝑘2𝜆𝐷𝑒 ≪ 1, and this simply gives the quasineutrality condition.

∇ ⋅ B = 0

𝜕B
𝜕𝑡 = −∇× E

∇× B = 𝜇0j +
�
�
�
�

𝜖0𝜇0
𝜕E
𝜕𝑡 , j = ∑

𝑠
𝑛𝑠𝑞𝑠u𝑠,u𝑠 = 1

𝑛𝑠
∫dvv𝑓𝑠

The displacement current can be neglected since 𝜔 ≪ 𝑘𝑐 for low frequency waves and non-
relativistic motions.
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Intuitively, we tend to think of the plasma as a fluid (or a multi-fluid of several species) with
some density 𝑛𝑠, velocity u𝑠 and perhaps pressure, temperature, etc. This is rooted in our
experience with collisional gases (𝜈 ≫ 𝜔), which are in local Maxwellian equilibrium:

𝑓𝑠 = 𝑛𝑠
(𝜋𝑣2th,𝑠)3/2

𝑒
− (v−v𝑠)2

𝑣2
th,𝑠 , 𝑣th,𝑠 = √2𝑘𝐵𝑇𝑠

𝑚𝑠

where 𝑛𝑠,u𝑠 and 𝑇𝑠 are governed by fluid equations.

With this desire to think of plasmas as fluid, let us break the motion of the particles into two
parts:

v = u𝑠(𝑡, r) + w

where u𝑠 represents the mean velocity of species 𝑠 (fluid-like description) and w represents the
“peculiar” velocity or internal motion (kinetic description). This amounts to a transformation
of variables

(𝑡, r,v) → (𝑡, r,w), w = v − u𝑠(𝑡, r)
under which the derivatives in the new basis shall be written as

𝜕
𝜕𝑡 → 𝜕

𝜕𝑡 −
𝜕u𝑠
𝜕𝑡 ⋅ 𝜕

𝜕w
∇ → ∇− (∇u𝑠) ⋅

𝜕
𝜕w

𝜕
𝜕v → 𝜕

𝜕w

(10.2)

This can be derived from the chain rule with

𝑡′ = 𝑡
r′ = r
w = v − u𝑠(𝑡, r)

Note that the three variables are independent, for any quantity 𝑓 , we have

𝜕𝑓
𝜕𝑡 = 𝜕𝑓

𝜕𝑡′ ⋅
𝜕𝑡′
𝜕𝑡 + 𝜕𝑓

𝜕r′ ⋅
𝜕r′
𝜕𝑡 + 𝜕𝑓

𝜕w ⋅ 𝜕w
𝜕𝑡

= 𝜕𝑓
𝜕𝑡 − 𝜕u𝑠

𝜕𝑡 ⋅ �f
𝜕w

Similarly we can derive the other two relations in Equation 10.2. Then the Boltzmann equation
becomes

( 𝜕
𝜕𝑡 + u𝑠 ⋅ ∇)𝑓𝑠 + (w ⋅ ∇)𝑓𝑠 + ( 𝑞𝑠

𝑚𝑠
w × B + a𝑠 − w ⋅ ∇u𝑠) ⋅

𝜕𝑓𝑠
𝜕w = 𝐶(𝑓𝑠) (10.3)
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where
a𝑠 = 𝑞𝑠

𝑚𝑠
(E + u𝑠 × B) − du𝑠

d𝑡
and now we always have ∫dww𝑓𝑠 = 0 by definition. The strategy now is to take moments of
Equation 10.3. The zeroth-order moment (∫dw) gives

∫ 𝑑𝑓𝑠
d𝑡 dw +∫(w ⋅ ∇)𝑓𝑠dw +∫[...] ⋅ 𝜕𝑓𝑠𝜕wdw = 0

d
d𝑡 ∫𝑓𝑠dw +�������∇ ⋅∫w𝑓𝑠dw −∫(w ⋅ ∇u𝑠) ⋅

𝜕𝑓𝑠
𝜕wdw = 0

𝑑𝑛𝑠
d𝑡 +∫𝑓𝑠

𝜕
𝜕w(w ⋅ ∇u𝑠)dw = 0

𝑑𝑛𝑠
d𝑡 +∫𝑓𝑠

𝜕
𝜕𝑤𝑗

(𝑤𝑖
𝜕
𝜕𝑥𝑖

𝑢𝑠𝑗)𝑑𝑤𝑗 = 0

𝑑𝑛𝑠
d𝑡 +∫𝑓𝑠𝛿𝑖𝑗

𝜕
𝜕𝑥𝑖

𝑢𝑠𝑗𝑑𝑤𝑗 +∫𝑓𝑠𝑤𝑖
�

�
�
�𝜕2𝑢𝑠𝑗

𝜕𝑥𝑖𝜕𝑤𝑗
𝑑𝑤𝑗 = 0

𝑑𝑛𝑠
d𝑡 +∫𝑓𝑠

𝜕
𝜕𝑥𝑖

𝑢𝑠𝑖𝑑𝑤𝑖 = 0
𝑑𝑛𝑠
d𝑡 + ∇ ⋅ u𝑠 ∫𝑓𝑠dw = 0

𝑑𝑛𝑠
d𝑡 + (∇ ⋅ u𝑠)𝑛𝑠 = 0

or
𝜕𝑛𝑠
𝜕𝑡 + ∇ ⋅ (𝑛𝑠u𝑠) = 0 (10.4)

The first-order moment (∫dw𝑚𝑠w) gives

∇ ⋅∫ dw𝑚𝑠ww𝑓𝑠 −𝑚𝑠𝑛𝑠a𝑠 = ∫ dw𝑚𝑠w𝐶(𝑓𝑠) ≡ R𝑠

where ∫dw𝑚𝑠ww𝑓𝑠 = P𝑠 is the pressure tensor and R𝑠 is the collisional friction. Unpacking
a𝑠, we have the momentum equation for each species 𝑠

𝑚𝑠𝑛𝑠
du𝑠
d𝑡 = −∇ ⋅ P𝑠 + 𝑞𝑠𝑛𝑠(E + u𝑠 × B) + R𝑠 (10.5)
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Summing over all the species,

∑
𝑠

𝑚𝑠𝑛𝑠
du𝑠
d𝑡 = −∇ ⋅∑

𝑠
P𝑠 +

�����∑
𝑠

𝑞𝑠𝑛𝑠E +∑
𝑠

𝑞𝑠𝑛𝑠u𝑠 × B +
�
�

��∑
𝑠

R𝑠

𝜌du
d𝑡 = −∇ ⋅ P + j × B

𝜌du
d𝑡 = −∇ ⋅ P + 𝜇−1

0 (∇ × B) × B

𝜌du
d𝑡 = −∇ ⋅ [P + 𝐵2

2𝜇0
I − BB]

It is useful to emphasize that d/d𝑡 = 𝜕/𝜕𝑡 + u ⋅ ∇. Later we will see the notation of 𝐷/𝐷𝑡,
which is used to remind us of the fact that w is involved.

We also need an equation for the magnetic field. It is Faraday’s law:

𝜕B
𝜕𝑡 = −∇× E

From Equation 10.5,
E = −u𝑠 × B + ∇ ⋅ P𝑠

𝑞𝑠𝑛𝑠
− R𝑠

𝑞𝑠𝑛𝑠
+ 𝑚𝑠

𝑞𝑠
du𝑠
d𝑡

Based on the following arguments:

• ∇ ⋅ P𝑠/(𝑞𝑠𝑛𝑠) is small since 𝑘𝑟𝑠/𝑀𝐴 ≪ 1(long wave + incompressible plasma???),
• R𝑠/(𝑞𝑠𝑛𝑠) is small since 𝜈𝑠/Ω𝑠 ≪ 1,
• (𝑚𝑠/𝑞𝑠)du𝑠/d𝑡 is small since 𝜔/Ω𝑠 ≪ 1

we have the simplest Ohm’s law and in turn u𝑠 = E × B/𝐵2 = u⟂, the perpendicular com-
ponent of the velocity is the same for all species. Then we get the induction equation from
Faraday’s law:

𝜕B
𝜕𝑡 = ∇× (u × B) (10.6)

or
dB
d𝑡 = B ⋅ ∇u − B∇ ⋅ u (10.7)

The three equations we have so far are very similar to MHD, except for the pressure tensor.
Obviously, all the kinetic magic is hidden in P.

Going back to Equation 10.3, it is key to notice that

𝑞𝑠
𝑚𝑠

w × B ⋅ 𝜕𝑓𝑠𝜕w = −Ω𝑠(
𝜕𝑓𝑠
𝜕� )

𝑤⟂,𝑤∥
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where 𝜃 is the gyroangle in the perpendicular plane. This can be proved by changing to
cylindrical coordinates

w = (𝑤⟂ cos 𝜃, 𝑤⟂ sin 𝜃, 𝑤∥)
with changing of variables:

𝜕𝑓𝑠
𝜕𝜃 = 𝜕𝑓𝑠

𝜕𝑤⟂1

𝜕𝑤⟂1
𝜕𝜃 + 𝜕𝑓𝑠

𝜕𝑤⟂1

𝜕𝑤⟂1
𝜕𝜃 + 𝜕𝑓𝑠

𝜕𝑤∥ �
�
�𝜕𝑤∥

𝜕𝜃

= 𝜕𝑓𝑠
𝜕𝑤⟂1

𝜕𝑤⟂ cos 𝜃
𝜕𝜃 + 𝜕𝑓𝑠

𝜕𝑤⟂2

𝜕𝑤⟂ sin 𝜃
𝜕𝜃

= − 𝜕𝑓𝑠
𝜕𝑤⟂1

𝑤⟂ sin 𝜃 + 𝜕𝑓𝑠
𝜕𝑤⟂2

𝑤⟂ cos 𝜃

= −𝑤⟂2
𝜕𝑓𝑠
𝜕𝑤⟂1

+𝑤⟂1
𝜕𝑓𝑠
𝜕𝑤⟂2

= w × �̂� ⋅ 𝜕𝑓𝑠𝜕w

(10.8)

This is why we say the third term in Equation 10.1 represents a rotation in the velocity space,
or more exactly, in the perpendicular velocity plane.

From Equation 10.3, if we apply the lowest order of approximation,

Ω𝑠(
𝜕𝑓𝑠
𝜕� )

𝑤⟂,𝑤∥
= d𝑓𝑠

d𝑡⏟
𝜔/Ω𝑠≪1

𝑘𝑟𝑠𝑢𝑠/𝑣𝑡ℎ,𝑠≪1

+w ⋅ ∇𝑓𝑠⏟
𝑘𝑟𝑠≪1

+( a𝑠⏟
𝑘𝑟𝑠≪1

− w ⋅ ∇u𝑠⏟
𝑘𝑟𝑠𝑀𝐴≪1

) ⋅ 𝜕𝑓𝑠𝜕w −𝐶(𝑓𝑠)⏟
𝜈𝑠≪Ω𝑠

= 0 (10.9)

which essentially tells us that 𝑓𝑠 = 𝑓𝑠(𝑤⟂, 𝑤∥, 𝜃) = 𝑓𝑠(𝑤⟂, 𝑤∥) is gyrotropic. Let us use <> to
denote averaging over a gyroperiod:

⟨𝐴⟩ = ∫
2𝜋

0
𝐴d𝜃

We can use gyrotropy to simplify the pressure tensor:

P𝑠 = ∫ dw𝑚𝑠 ⟨ww⟩ 𝑓𝑠(r, 𝑤⟂, 𝑤∥, 𝑡)

= ∫ dw𝑚𝑠[
𝑤2

⟂
2 (I − ̂𝑏 ̂𝑏) + 𝑤2

∥
̂𝑏 ̂𝑏]𝑓𝑠(r, 𝑤⟂, 𝑤∥, 𝑡)

= (I − �̂��̂�)∫ dw𝑚𝑠𝑤2
⟂

2 𝑓𝑠 + ̂𝑏 ̂𝑏∫ dw𝑚𝑠𝑤2
∥𝑓𝑠

= ⎛⎜
⎝

𝑝⟂𝑠 0 0
0 𝑝⟂𝑠 0
0 0 𝑝∥𝑠

⎞⎟
⎠
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where
𝑝⟂ = ∫ dw𝑚𝑠𝑤2

⟂
2 𝑓𝑠

𝑝∥ = ∫ dw𝑚𝑠𝑤2
∥𝑓𝑠

Equation 10.5 becomes

𝜌du
d𝑡 = −∇( 𝑝⟂ + 𝐵2

2𝜇0⏟⏟⏟⏟⏟
total scalar pressure

) +∇ ⋅ [ ̂𝑏�̂�( 𝑝⟂ − 𝑝∥⏟
pressure anisotropy stress

+ 𝐵2

𝜇0⏟
Maxwell stress

)] (10.10)

The pressure anisotropy stress is the key new feature compared to usual MHD. It should be
important provided 𝑝⟂ − 𝑝∥ ≳ 𝐵2/𝜇0, or (𝑝⟂ − 𝑝∥)/𝑝 ≳ 2/𝛽. Therefore this is more likely to
matter in high-𝛽 plasmas.

To summarize what we have gotten so far: to work out motions and magnetic fields in a plasma,
solve Equation 10.10 for u and Equation 10.6 for B, where

𝜌 = ∑
𝑠

𝑚𝑠 ∫dw𝑓𝑠

𝑝⟂ = ∑
𝑠

∫dw𝑚𝑠𝑤2
⟂

2 𝑓𝑠

𝑝∥ = ∑
𝑠

∫dw𝑚𝑠𝑤2
∥𝑓𝑠

We still need the kinetic equation to calculate 𝑓𝑠 — this kinetic equation will need to be
somewhat reduced to solve for the lowest-order, gyrotropic 𝑓𝑠(𝑤⟂, 𝑤∥). In pursuit of instant
justification, we can postpone doing this and first derive some results that do not need the 𝑓𝑠
equation (i.e. the Firehose instability) as in Section 10.1. For mirror modes, let us continue
from the kinetic Equation 10.9 for higher orders. We have already known that the lowest order
approximation gives gyrotropic distributions.

To the first order,

Ω𝑠(
𝜕𝑓1

𝑠
𝜕𝜃 )

𝑤⟂,𝑤∥
= d𝑓0

𝑠
d𝑡 + w ⋅ ∇𝑓0

𝑠 + (a𝑠 − w ⋅ ∇u𝑠) ⋅
𝜕𝑓0

𝑠
𝜕w −𝐶(𝑓0

𝑠 )

The left-hand side can be eliminated by integrating over 𝜃, so we have

⟨d𝑓𝑠
d𝑡 + w ⋅ ∇𝑓𝑠 + (a𝑠 − w ⋅ ∇u𝑠) ⋅

𝜕𝑓𝑠
𝜕w −𝐶(𝑓𝑠)⟩ = 0
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where 𝑓𝑠 = 𝑓𝑠(𝑤⟂, 𝑤∥). To do this averaging, we tranform variables from (𝑡, r,w) →
(𝑡, r, 𝑤⟂, 𝑤∥, 𝜃). With

𝑤∥ = w ⋅ �̂�(𝑡, r)
𝑤⟂ = |w −𝑤∥ ̂𝑏|

and some algebras (??? Check online notes.), we have

𝐷𝑓𝑠
𝐷𝑡 + 1

𝐵
𝐷𝐵
𝐷𝑡

𝑤⟂
2

𝜕𝑓𝑠
𝜕𝑤⟂

+ ( 𝑞𝑠
𝑚𝑠

𝐸∥ −
𝐷u𝑠
𝐷𝑡 ⋅ ̂𝑏 − 𝑤2

⟂
2

∇∥𝐵
𝐵 ) 𝜕𝑓𝑠

𝜕𝑤∥
= 𝐶(𝑓𝑠) (10.11)

where
𝐷/𝐷𝑡 = d/d𝑡 + 𝑤∥ ̂𝑏 ⋅ ∇ = 𝜕/𝜕𝑡 + u𝑠 ⋅ ∇ + 𝑤∥ ̂𝑏 ⋅ ∇

This is not terribly transparent and it is perhaps better to write this equation in different,
“more physical” variables. Let

𝑓𝑠(𝑤⟂, 𝑤∥) = 𝐹𝑠(𝜇, 𝜖)
where 𝜇 = 𝑚𝑠𝑤2

⟂/2𝐵 is the magnetic moment of a gyrating particle and 𝜖 = 𝑚𝑠𝑤2/2 =
𝑚𝑠(𝑤2

⟂ +𝑤2
∥)/2. Since 𝜇 is conserved when 𝜔 ≪ Ω𝑠, 𝐹𝑠 satisfies (???)

𝐷𝐹𝑠
𝐷𝑡 + [𝑚𝑠𝑤∥(

𝑞𝑠
𝑚𝑠

𝐸∥ −
𝐷u𝑠
𝐷𝑡 ⋅ �̂�) + 𝜇d𝐵

d𝑡 ]
𝜕𝐹𝑠
𝜕𝜖 = 𝐶(𝐹𝑠) (10.12)

• The first term is the convective derivative in the guiding center coordinates.
• The second term is the acceleration by parallel electric field, where 𝐸∥ is determined by

imposing ∑𝑠 𝑞𝑠𝑛𝑠 = 0.
• The third term takes account of the fact that 𝜖 does not include the bulk velocity.
• The fourth term is the betatron acceleration due to 𝜇 conservation:

𝜖 = 𝜇𝐵 +
𝑚𝑠𝑤2

∥
2

̇𝜖 = 𝜇�̇� (𝑤∥ constant???)

Betatron acceleration refers to situations in which the magnetic field strength increases slowly
in time (compared with a gyroperiod), so that 𝜇 remains constant, but the particle kinetic
energy is not constant due to the presence of electric fields (associated with the time-varying
magnetic field). Then, the perpendicular energy is increased due to constancy of 𝜇. As we
will see soon in Section 10.2, this is the key for explaining mirror modes.
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10.1 Firehose Instability: Linear Theory

Suppose we have some “macroscopic” solution of our (yet to be fully derived) equilibrium. We
allow low-frequency, short-wavelength perturbations (𝜔 ≪ 𝑢/𝑙, 𝑘𝑙 ≫ 1) of this solution, and
seek solutions in the form X + 𝛿X with infinitesimal perturbations ∝ 𝑒𝑖(k⋅r−𝜔𝑡). Note that the
velocity u is treated as a perturbation term (background velocity is simply a drift).

From Equation 10.6
−𝜔𝛿B = B ⋅ k𝛿u − Bk ⋅ 𝛿u

= 𝐵(𝑘∥𝛿u⟂ − ̂𝑏k⟂ ⋅ 𝛿u⟂)
(10.13)

Inserting Equation 3.9 into Equation 10.10, we have

−𝜔𝜌𝛿u = −k(𝛿𝑝⟂ + 𝐵𝛿𝐵
𝜇0

) + k ⋅ [(𝛿�̂��̂� + �̂�𝛿 ̂𝑏)(𝑝⟂ − 𝑝∥ +
𝐵2

𝜇0
) + ̂𝑏 ̂𝑏(𝛿𝑝⟂ − 𝛿𝑝∥ +

2𝐵𝛿𝐵
𝜇0

)]

= −k⟂(𝛿𝑝⟂ + 𝐵𝛿𝐵
𝜇0

) − �̂�𝑘∥[𝛿𝑝∥ + (𝑝⟂ − 𝑝∥)
𝛿𝐵
𝐵 ] + 𝛿 ̂𝑏𝑘∥(𝑝⟂ − 𝑝∥ +

𝐵2

𝜇0
)

(10.14)

𝛿 ̂𝑏 has two parts: the Alfvénic part 𝛿B⟂/𝐵 and the compressional part 𝛿B∥/𝐵. From Equa-
tion 10.13, the Alfvénic perturbation of ̂𝑏 can be written as

𝛿�̂� = 𝛿B⟂
𝐵 = −

𝑘∥
𝜔 𝛿u⟂

Isolate the Alfvénic response in Equation 10.14 by cross-producting with k⟂:

−𝜔𝜌k⟂ × 𝛿u⟂ = 𝑘∥(𝑝⟂ − 𝑝∥ +
𝐵2

𝜇0
)k⟂ × 𝛿 ̂𝑏

𝜔𝜌k⟂ × 𝛿u⟂ = 𝑘∥(𝑝⟂ − 𝑝∥ +
𝐵2

𝜇0
)k⟂ ×

𝑘∥
𝜔 𝛿u⟂

𝜔2 = 𝑘2
∥(

𝐵2

𝜇0𝜌
+

𝑝⟂ − 𝑝∥
𝜌 ) = 𝑘2

∥𝑣2𝑡ℎ∥(
𝑝⟂ − 𝑝∥

𝑝∥
+ 2

𝛽∥
)

Let 𝐴 = (𝑝⟂ − 𝑝∥)/𝑝∥. The system will be unstable if 𝐴 < −2/𝛽∥, i.e.

𝑝⟂ − 𝑝∥ > 2𝑝𝐵 (10.15)

which leads to a growth rate

𝛾 = 𝑘∥𝑣𝑡ℎ∥√∣𝐴 + 2
𝛽∥

∣ (10.16)
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Figure 10.1: Along a flux tube, 𝑝∥ is the destabilizing force, the curvature force is the stabilizing
force.

Thus, negative 𝐴 (𝑝∥ > 𝑝⟂) locally weakens tention, i.e. slows down Alfvén waves, and makes
it energetically easier to bend the field lines. When 𝐴 < −2/𝛽∥, the elasticity of field lines is
lost and we have the firehose instability.

Key points:

• Nothing surprising that 𝑝∥ > 𝑝⟂ leads to an instability: it is a non-equilibrium situation,
so a source of free energy.

• 𝛾 ∝ 𝑘∥ leads to UV catastrophe: within KMHD (𝜔 ≪ Ω𝑖, 𝑘𝑟𝑖 ≪ 1), the wavenumber of
peak 𝛾 is not captured. Including finite larmor radius gives (Oxford MNRAS 405, 291?
ARE THE EXPRESSIONS CORRECT?)

𝛾peak ∼ ∣𝐴 + 2
𝛽∥

∣Ω𝑖

𝑘∥peak𝑟𝑖 ∼ ∣𝐴 + 2
𝛽∥

∣
1/2

so the instability is very fast (𝛾 ∝ Ω𝑖 very large with strong B field) at microscale. Any
high-𝛽 macroscopic solution with 𝑝∥ > 𝑝⟂ will blow up instantly. What happens next
is decided by the nonlinear saturation of the firehose. It was a transformative moment
when Justin Kasper in 2002 discovered that the firehose stability boundary constrains
most observed solar wind states, followed by Hellinger in 2006. Bale in 2009 showed that
there is an increased fluctuation level at the boundary.

ADD FIGURE ABOUT THE FIREHOSE STABILITY REGIME FIGURE!
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10.2 Mirror Instability: Linear Theory

Let us go back to Equation 10.13 and Equation 10.14 and get apart from Alfvénic what other
perturbations there are and when they are stable. We have already looked at the Alfvénic
perturbation 𝛿 ̂𝑏 = 𝛿B⟂/𝐵. Now consider

𝛿𝐵
𝐵 =

𝛿𝐵∥
𝐵 (10.17)

From Equation 10.13, we have the perpendicular compression increases B:

𝜔𝛿𝐵
𝐵 = k⟂ ⋅ 𝛿u⟂

Take k⟂⋅ Equation 10.14:

𝜔𝜌k⟂ ⋅ 𝛿u⟂ = 𝜌𝜔2 𝛿𝐵
𝐵 = 𝑘2

⟂(𝛿𝑝⟂ + 𝐵𝛿𝐵
𝜇0

) + 𝑘2
∥(𝑝⟂ − 𝑝∥ +

𝐵2

𝜇0
)𝛿𝐵𝐵 (10.18)

Note the 𝑝⟂ term here: we need kinetic theory to calculate this! Fortunately we have Equa-
tion 10.12 ready for calculating

𝛿𝑝⟂ = ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝑓𝑠(𝑤⟂, 𝑤∥)

𝛿𝑓𝑠(𝑤⟂, 𝑤∥) can be obtained by calculating 𝐹𝑠(𝜇, 𝜖) and transforming back to 𝑤⟂, 𝑤∥.

Here is a cute subtlety: our macroscopic equilibrium, around which we are expanding the
distribution is

𝐹0𝑠(𝜇, 𝜖) = 𝑓0𝑠(𝑤⟂, 𝑤∥) = 𝑓0𝑠(√
2𝐵0𝜇
𝑚𝑠

,√2(𝜖 − 𝜇𝐵0)
𝑚𝑠

)

which contains 𝐵0 the unperturbed magnetic field. 𝜇 in 𝐹0 contains 𝐵0 + 𝛿𝐵, and this has to
be taken into account when transforming to 𝑤⟂, 𝑤∥. Now when we perturb everything:

𝐹𝑠(𝜇, 𝜖) = 𝐹0𝑠(𝜇, 𝜖) + 𝛿𝐹𝑠
= 𝑓0𝑠(𝑤⟂, 𝑤∥) + 𝛿𝑓𝑠

= 𝑓0𝑠(√
2𝜇(𝐵0 + 𝛿𝐵)

𝑚𝑠
,√2[𝜖 − 𝜇(𝐵0 + 𝛿𝐵)]

𝑚𝑠
) + 𝛿𝑓𝑠

= 𝑓0𝑠(√
2𝜇𝐵0
𝑚𝑠

√1+ 𝛿𝐵
𝐵0

,√2(𝜖 − 𝜇𝐵0)
𝑚𝑠

√1− 𝑚𝑠𝜇𝛿𝐵
(𝜖 − 𝜇𝐵0)

) + 𝛿𝑓𝑠

≈ 𝑓0𝑠(√
2𝜇𝐵0
𝑚𝑠

,√2(𝜖 − 𝜇𝐵0)
𝑚𝑠

) + 2𝜇
𝑚𝑠

𝛿𝐵(𝜕𝑓0𝑠𝜕𝑤2
⟂
− 𝜕𝑓0𝑠

𝜕𝑤2
∥
) + 𝛿𝑓𝑠
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Thus
𝛿𝑓𝑠 = 𝛿𝐹𝑠 −𝑤2

⟂
𝛿𝐵
𝐵 (𝜕𝑓0𝑠𝜕𝑤2

⟂
− 𝜕𝑓0𝑠

𝜕𝑤2
∥
)

If 𝑓0𝑠 is a bi-Maxwellian,

𝑓0𝑠 = 𝑛𝑠
𝜋3/2𝑣2th⟂𝑠𝑣th∥𝑠

exp( − 𝑤2
⟂

𝑣2th⟂𝑠
−

𝑤2
∥

𝑣2th∥𝑠
)

then this can be further written as

𝛿𝑓𝑠 = 𝛿𝐹𝑠 +𝑤2
⟂
𝛿𝐵
𝐵 ( 1

𝑣2th⟂𝑠
− 1

𝑣2th∥𝑠
)𝑓0𝑠 = 𝛿𝐹𝑠 +𝑤2

⟂
𝛿𝐵
𝐵

𝑚𝑠𝑛𝑠
2 ( 1

𝑝⟂𝑠
− 1

𝑝∥𝑠
)𝑓0𝑠

We can eliminate the partial derivatives via integration by parts:

∫dw𝜕𝑓0𝑠
𝜕𝑤2

∥
= ∫

2𝜋

0
d𝜃∫𝑑𝑤⟂ ∫ 1

2𝑤∥

𝜕𝑓0𝑠
𝜕𝑤∥

𝑑𝑤∥

= ∫
2𝜋

0
d𝜃∫𝑑𝑤⟂ ∫ 1

2𝑤∥
d𝑓0𝑠

= ∫
2𝜋

0
d𝜃∫𝑑𝑤⟂[

�
�

�
��𝑓0𝑠

2𝑤∥
∣
∞

−∞
−∫𝑓0𝑠d

1
2𝑤∥

]

= ∫
2𝜋

0
d𝜃∫𝑑𝑤⟂ ∫ 1

2𝑤2
∥
𝑓0𝑠𝑑𝑤∥

= ∫ dw 1
2𝑤2

∥
𝑓0𝑠

∫dw𝑤⟂𝑤4
⟂
𝜕𝑓0𝑠
𝜕𝑤2

⟂
= 2𝜋∫𝑑𝑤∥[

������1
2𝑤

4
⟂𝑓0𝑠∣

+∞

−∞
− 1

2 ∫𝑓0𝑠𝑑𝑤4
⟂]

= −2𝜋∫𝑑𝑤∥2𝑤2
⟂𝑓0𝑠𝑤⟂𝑑𝑤⟂

= −2∫ dw𝑤2
⟂𝑓0𝑠
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This then gives us

𝛿𝑝⟂𝑠 = ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝑓𝑠

= ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝐹𝑠 −∫ dw𝑚𝑠𝑤4
⟂

2 (𝜕𝑓0𝑠𝜕𝑤2
⟂
− 𝜕𝑓0𝑠

𝜕𝑤2
∥
)𝛿𝐵𝐵

= ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝐹𝑠 −∫
2𝜋

0
d𝜃∫𝑑𝑤⟂𝑤⟂ ∫d𝑤∥

𝑚𝑠𝑤4
⟂

2 (𝜕𝑓0𝑠𝜕𝑤2
⟂
− 𝜕𝑓0𝑠

𝜕𝑤2
∥
)𝛿𝐵𝐵

= ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝐹𝑠 + 2∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝑓0𝑠
𝛿𝐵
𝐵 +∫ dw

2(12𝑚𝑠𝑤2
⟂)2

𝑚𝑠𝑤2
∥

𝑓0𝑠
𝛿𝐵
𝐵

= ∫ dw𝑚𝑠𝑤2
⟂

2 𝛿𝐹𝑠 +
𝛿𝐵
𝐵 (2𝑝⟂𝑠 −

2𝑝2⟂𝑠
𝑝∥𝑠

𝛼𝑠)

(10.19)

where 𝛼𝑠 is some coefficients of order 1 if 𝑓0𝑠 is not bi-Maxwellian.

𝛿𝐹𝑠 can be obtained by ignoring collisions and linearizing and Fourier-transforming Equa-
tion 10.12 (u𝑠 = 0):

−𝑖(𝜔 − 𝑘∥𝑤∥)𝛿𝐹𝑠 = −[𝑚𝑠𝑤∥(
𝑞𝑠
𝑚𝑠

𝐸∥ − 𝑖(𝜔 − 𝑘∥𝑤∥)𝛿𝑢∥𝑠) − 𝑖𝜔𝜇𝛿𝐵]𝜕𝐹0𝑠
𝜕𝜖

𝛿𝐹𝑠 = −𝑖
𝑤∥𝑞𝑠𝐸∥
𝜔 − 𝑘∥𝑤∥

𝜕𝐹0𝑠
𝜕𝜖 − 𝛿𝑢∥𝑠𝑚𝑠𝑤∥

𝜕𝐹0𝑠
𝜕𝜖 − 𝜔

𝜔 − 𝑘∥𝑤∥
𝜇𝛿𝐵𝜕𝐹0𝑠

𝜕𝜖

The first term can be ignored if 𝛽 ≫ 1 (??? See the complete calculation in another note!);
otherwise 𝐸∥ can be got by imposing ∑𝑠 𝑞𝑠𝑛𝑠 = 0. The second term can be shown to be
equivalent to 𝛿𝑢∥𝑠𝜕𝑓0𝑠/𝜕𝑤∥:

𝜕𝑓0𝑠
𝜕𝑤∥

= 𝜕𝑓0𝑠
𝜕𝜖

𝜕𝜖
𝜕𝑤∥

+ 𝜕𝑓0𝑠
𝜕𝜇 �

�
�𝜕𝜇

𝜕𝑤∥

= 𝜕𝐹0𝑠
𝜕𝜖 𝑚𝑠𝑤∥

so this will not contribute to 𝛿𝑝⟂ because it integrates to 0.

The third term can be written as

𝜔
𝜔 − 𝑘∥𝑤∥

𝜇𝛿𝐵𝜕𝐹0𝑠
𝜕𝜖 = 𝜔

𝜔 − 𝑘∥𝑤∥

𝑚𝑠𝑤2
⟂

2
𝛿𝐵
𝐵

1
𝑤∥

𝜕𝑓0𝑠
𝜕𝑤∥

= 𝜔
𝜔 − 𝑘∥𝑤∥

𝑚𝑠𝑤2
⟂
𝛿𝐵
𝐵

𝜕𝑓0𝑠
𝜕𝑤2

∥

Thus, the “relevant” part of 𝛿𝐹𝑠 is

𝛿𝐹𝑠 = − 𝜔
𝜔 − 𝑘∥𝑤∥

𝑚𝑠𝑤2
⟂
𝛿𝐵
𝐵

𝜕𝑓0𝑠
𝜕𝑤2

∥
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and its contribution to 𝛿𝑝⟂𝑠 is

∫dw𝑚𝑠𝑤2
⟂

2 𝛿𝐹𝑠 = 𝛿𝐵
𝐵

𝜔
|𝑘∥|

∫ 𝑑𝑤∥
𝑤∥ − 𝜔

|𝑘∥|
[ 𝜕
𝜕𝑤2

∥
∫dw⟂

𝑚2
𝑠𝑤4

⟂
2 𝑓0𝑠]

Here we have |𝑘∥| because if 𝑘∥ < 0, we can change the variable 𝑤∥ → −𝑤∥. This involves
the Landau integral, which can be evaluated with the residual theorem Equation 3.3 when
integrate in the complex plane mostly along the real axis and the large semicircle in the upper
half plane except for a small semicircle just below the pole (ADD FIGURE!):

1
𝑤∥ − 𝜔

|𝑘∥|
= 𝑃 1

𝑤∥ − 𝜔
|𝑘∥|

+ 𝑖𝜋𝛿(𝑤∥ −
𝜔
|𝑘∥|

)

so
∫dw𝑚𝑠𝑤2

⟂
2 𝛿𝐹𝑠 = 𝛿𝐵

𝐵 [
�����������𝜔
|𝑘∥|

𝑃 ∫ 𝑑𝑤∥
𝑤∥ − 𝜔

|𝑘∥|
[...] + 𝑖𝜋 𝜔

|𝑘∥|
[...]𝑤∥

= 𝜔/|𝑘∥|]

The first term is small when we assume 𝜔 ≪ 𝑘∥𝑣th𝑠∥; the second term must be kept because it
is the lowest-order imaginary part which will lead to instability.

For a bi-Maxwellian,

[ 𝜕
𝜕𝑤2

∥
∫dw⟂

𝑚2
𝑠𝑤4

⟂
2 𝑓0𝑠]𝑤∥=𝜔/|𝑘∥|

= −2𝑝2⟂𝑠
𝑝∥𝑠

𝑒
− 𝜔2

𝑘2
∥ 𝑣2

th∥𝑠
√𝜋𝑣th∥𝑠

The exponential term is nearly 1. If it is not a bi-Maxwellian, then we need to multiply by a
coefficient 𝛼𝑠 ∼ 1.
Equation 10.19 becomes

𝛿𝑝⟂𝑠 = 𝛿𝐵
𝐵 [2𝑝⟂𝑠 −

2𝑝2⟂𝑠
𝑝∥𝑠

(𝛼𝑠 + 𝑖√𝜋 𝜔
|𝑘∥|𝑣th∥𝑠

𝜎𝑠)]

This goes into Equation 10.18:

𝜌𝜔2 = 𝑘2
⟂
𝐵2

𝜇0
[∑

𝑠
(1−𝑝⟂𝑠

𝑝∥𝑠
𝛼𝑠)𝛽⟂𝑠−𝑖∑

𝑠
𝜎𝑠

𝑝⟂𝑠
𝑝∥𝑠

𝛽⟂𝑠
√𝜋 𝜔

|𝑘∥|𝑣th∥𝑠
+1]+𝑘2

∥
𝐵2

𝜇0
[∑

𝑠

𝛽⟂𝑠
2 (1−

𝑝∥𝑠
𝑝⟂𝑠

)+1]

The left-hand side can be neglected because 𝜔 ≪ 𝑘∥𝑣th∥𝑠. The electron thermal velocity 𝑣th∥𝑒
in the denominator can be neglected because 𝑣th∥𝑒 ≫ 𝑣th∥𝑖. The growth rate 𝛾 is the imaginary
part of 𝜔. Reorganize the last equation:

𝜎𝑖
𝑝⟂𝑖
𝑝∥𝑖

𝛽⟂𝑖
√𝜋 𝛾

|𝑘∥|𝑣th∥𝑖
= ∑

𝑠
(𝑝⟂𝑠𝑝∥𝑠

𝛼𝑠 − 1)𝛽⟂𝑠 − 1 −
𝑘2
∥

𝑘2
⟂
[∑

𝑠

𝛽⟂𝑠
2 (1 −

𝑝∥𝑠
𝑝⟂𝑠

) + 1] (10.20)
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where Λ ≡ 𝑘2
∥

𝑘2
⟂
∑𝑠 (

𝑝⟂𝑠
𝑝∥𝑠𝛼𝑠 − 1)𝛽⟂𝑠 − 1 triggers instability if this is positive:

∑
𝑠

(𝑝⟂𝑠𝑝∥𝑠
𝛼𝑠 − 1)𝛽⟂𝑠 > 1

Examining where this comes from, we see that this amounts to 𝛿𝑝⟂ modifying the magnetic
pressure force and turning it from positive to negative:

𝛿𝑝⟂ + 𝐵𝛿𝐵
𝜇0

= 𝐵𝛿𝐵
𝜇0

[ 1⏟
B pressure

− ∑
𝑠

(𝑝⟂𝑠
𝑝∥𝑠

𝛼𝑠 − 1)𝛽⟂𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟

non-resonant
particle pressure

+ ...⏟
resonant particle

pressure

]

Thus, fundamentally, pressure anisotropy makes it easier to compress or rarefy magnetic field
— and things become unstable when the sign of the pressure flips and it becomes energetically
profitable to create compressions and rarefications. (ADD FIGURE!) The dispersion relation
Equation 10.20 is basically a statement of pressure balance between the magnetic pressure, the
non-resonant particle pressure 𝛿𝑝⟂ and the resonant particle pressure ∝ 𝛾, which came from
the betatron acceleration 𝜇d𝐵/d𝑡 in Equation 10.12.

The betatron acceleration term refers to what happens in the stable case. When magnetic
pressure opposes formation of 𝛿𝐵 perturbations (say, troughs), to compensate it, we must
have 𝛾 < 0 and energy goes from 𝛿𝐵 to resonant particles, which are accelerated by the mirror
force. The corresponding decaying of 𝛿𝐵 is the well-known Barnes damping (landau damping
of “mirror field”, Barnes 1966, also known as transit-time damping from Stix’s book. See more
discussion on the physics in Southwood & Kivelson 1993.)

To finish the job, note that, from Equation 10.20 (ADD FIGURE!) for a given 𝑘⟂

𝜕𝛾
𝜕𝑘∥

∣
𝑘⟂

∝ Λ−
𝑘2
∥

𝑘2
⟂
[∑

𝑠

𝛽⟂𝑠
2 (1 −

𝑝∥𝑠
𝑝⟂𝑠

) + 1]

The maximum growth rate is reached when the right-hand side goes to 0, which is equivalent
to 2

3Λ, so the maximum growth rate

𝛾max =
|𝑘∥|𝑣th∥𝑖√𝜋

2
3Λ

𝑝∥𝑖
𝑝⟂𝑖

1
𝜎𝑖𝛽⟂𝑖

We have assumed 𝛾 ≪ 𝑘∥𝑣th∥𝑠, which is indeed true if

Λ 1
𝛽⟂𝑖

= (∑
𝑠

𝐴𝑠𝛽⟂𝑠 − 1) 1
𝛽⟂𝑖

≪ 1

so our approximations are consistent.
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If we are close to marginal instablity,

𝑘∥
𝑘⟂

∼
√
Λ ≪ 1

so mirror modes are highly oblique near the threshold.

Another important point is that again we encounter the UV catastrophe since 𝛾 ∝ 𝑘∥. The
mirror mode is a fast, microscale instability whose peak growth rate is outside KMHD regime.
Including finite larmor radius gives (Hellinger 2007 PoP 14, 082105?)

𝛾peak ∼ (𝐴− 1
𝛽)

2
𝛽Ω𝑖, 𝑘peak𝑟𝑖 ∼ (𝐴− 1

𝛽)𝛽

Thus, any high-𝛽 macroscopic solution of KMHD with 𝑝⟂ > 𝑝∥ will blow up, just like the case
for 𝑝∥ > 𝑝⟂, and again what happens next depends on how mirror instability saturates. Note
that 𝐴𝑒 is ignored since 𝐴𝑒 ≪ 𝐴𝑖 (?). The mirror instability condition is

𝑝⟂𝑖
𝑝∥𝑖

− 1 > 1
𝛽⟂𝑖

= 1
𝛽∥𝑖

𝑝∥𝑖
𝑝⟂𝑖

𝑝⟂𝑖
𝑝∥𝑖

(𝑝⟂𝑖
𝑝∥𝑖

− 1) > 1
𝛽∥𝑖

Figure 10.2 shows observation from Wind spacecraft. The solar wind indeed seems to stay
within these boundaries. (ADD REFS!)

10.3 Origin of Pressure Anisotropy

So far we have seen that the bottom line is that any macroscopic, high-𝛽 KMHD solution that
has 𝑝⟂ ≠ 𝑝∥ (more precisely, |𝑝⟂ − 𝑝∥|/𝑝 ≳ 1/𝛽) will be voilently unstable to either firehose or
mirror — both of which are fast and micro-scale modes giving rise to fluctuations outside the
KMHD regime (and, by the way, also outside gyrokinetics — too close to cyclotron frequency,
𝑘∥/𝑘⟂ not small enough, 𝛿B/𝐵 also not small enough). How worried should this make us
about the applicability of KMHD to high-𝛽 plasmas that are not collisional enough to be fully
fluid (i.e. 𝜈 ≪ Ω𝑠)?

The answer is, very worried! A key property of low-frequency, weakly collisional dynamics is
that the magnetic moment 𝜇 = 𝑚𝑠𝑤2

⟂/2𝐵 is conserved by particles. The mean 𝜇 of particles
of species 𝑠 is

< 𝜇 >𝑤=
1
𝑛𝑠

∫dw𝜇𝑓𝑠 = 𝑝⟂𝑠
𝑛𝑠𝐵

= const.

For the purpose of a qualitative discussion, let us pretend for a moment that 𝑛𝑠 = const
(incompressible plasmas, 𝛽 ≫ 1). Then the above conservation relation says that, locally
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Figure 10.2: Collective solar wind observation data (∼ 1𝑒6) from Wind spacecraft. The lines
represent the instability thresholds for mirror and firehose instability, respectively.
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in a fluid element (w is peculari velocity), every time you change B, you must change 𝑝⟂𝑠
proportionally (but not 𝑝∥𝑠). Thus we expect (?)

1
𝑝⟂𝑠

d𝑝⟂𝑠
d𝑡 ∼ 1

𝐵
d𝐵
d𝑡⏟

𝜇 conservation

− 𝜈𝑠
𝑝⟂𝑠 − 𝑝∥𝑠

𝑝⟂𝑠⏟⏟⏟⏟⏟
relaxation of pressure

anisotropy by collisions

(10.21)

It is useful to remind ourselves that d/d𝑡 is in the u𝑠 frame. Balancing the two effects on the
right-hand side,

Δ𝑠 =
𝑝⟂𝑠 − 𝑝∥𝑠

𝑝⟂𝑠
∼ 1

𝜈𝑠
1
𝐵

d𝐵
d𝑡 (10.22)

This expression is valid only if Δ𝑠 ≪ 1, i.e. 𝜈𝑠 ≫ 1
𝐵

d𝐵
d𝑡 , otherwise Δ𝑠 will grow with time as B

is changed. Thus

• B increases locally → Δ𝑠 > 0 → mirror
• B decreases locally → Δ𝑠 < 0 → firehose

As nealy any large-scale dynamics involves local changes in B, this means that nearly any
macroscopic solution of KMHD in the high-𝛽 regime will be unstable. A very good example
is the dynamo problem: when magnetic field is randomly stretched by turbulence, leading
(in MHD) to exponential growth of magnetic energy (and, eventually, to saturated fields we
observe), locally one find structures of this sort: (ADD FIGURE!)

Generally speaking, in order to understand long-time evolution, we need some sort of mean-field
theory for the large-scale effect of the microscale instabilities on the dynamics. Presumably,
this is to keep preserve anisotropy, marginal out (?) the instabilities (as indeed appears to be
confirmed by the solar wind measurements — see Bale + 2009).

There are two ways in which this can happen — firehose and mirror fluctuations might scatter
particles, leading to higher effective collisionality and ? control the pressure anisotropy

−2
𝛽 ≲

𝑝⟂ − 𝑝∥
𝑝 ≲ 1

𝛽

They might inhibit changes of B, which is another way of keeping Δ under control. Which of
these matters for dynamics, see the speculative overview of the possible consequences of either
mechanisim in MNRAS 440, 3226 (2014).

• nonlinear firehose: Rosin+ MNRAS 413 2011
• nonlinear mirror: Rincon+ MNRAS 447, 2015
• PIC simulations: Kunz+ PRL, 2014
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10.4 Remarks

10.4.1 Remark I

If we assume incompressibility, the magnetic induction Equation 10.7 becomes

dB
d𝑡 = B ⋅ ∇u

1
𝐵

d𝐵
d𝑡 = �̂��̂� ∶ ∇u

Then, from Equation 10.22,
𝑝⟂𝑠 − 𝑝∥𝑠 ∼ 𝑝𝑠

𝜈𝑐
̂𝑏 ̂𝑏 ∶ ∇u

where 𝑝𝑠/𝜈𝑐 is the parallel dynamical viscosity. Putting this back into Equation 10.10, we get
the lowest order ??? MHD equation. So, from the large-scale point of view, pressure anisotropy
is viscous stress — but the resulting equations are ill-posed (blow up via instabilities with
𝛾 ∝ 𝑘∥).

10.4.2 Remark II

More rigorously, Equation 10.21 can be obtained via “CGL equations”, i.e. the evolution
equations of 𝑝⟂𝑠 and 𝑝∥𝑠. Namely ∫dw𝑚𝑠𝑤2

⟂
2 Equation 10.11:

𝑝⟂𝑠
d
d𝑡 ln 𝑝⟂𝑠

𝑛𝑠𝐵
= −∇ ⋅ (𝑞⟂𝑠 ̂𝑏) − 𝑞⟂𝑠∇ ⋅ ̂𝑏 − 𝜈𝑠(𝑝⟂𝑠 − 𝑝∥𝑠) (10.23)

∫dw𝑚𝑠𝑤2
∥ Equation 10.11:

𝑝∥𝑠
d
d𝑡 ln

𝑝∥𝑠𝐵2

𝑛3𝑠
= −∇ ⋅ (𝑞∥𝑠�̂�) + 2𝑞⟂𝑠∇ ⋅ ̂𝑏 − 2𝜈𝑠(𝑝∥𝑠 − 𝑝⟂𝑠) (10.24)

The left-hand side is the conservation of 𝐽 = ∮𝑑𝑙𝑤∥, i.e. “bounce invariant”. The new feature
here is heat fluxes:

𝑞⟂𝑠 = ∫ dw𝑚𝑠𝑤2
⟂

2 𝑤∥𝑓𝑠

𝑞∥𝑠 = ∫ dw𝑚𝑠𝑤3
∥𝑓𝑠

They are here because particles can flow in and out of a fluid element and thus affect the
conservation (or otherwise) of < 𝜇 >𝑤 and < 𝐽2 >𝑤 within it.
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Finally, from Equation 10.23 and Equation 10.24,

d
d𝑡(𝑝⟂𝑠 − 𝑝∥𝑠) = (𝑝⟂𝑠 + 2𝑝∥𝑠)

1
𝐵

d𝐵
d𝑡 + (𝑝⟂𝑠 − 3𝑝∥𝑠)

1
𝑛𝑠

𝑑𝑛𝑠
d𝑡

− ∇ ⋅ [(𝑞⟂𝑠 − 𝑞∥𝑠)�̂�] − 3𝑞⟂𝑠∇ ⋅ ̂𝑏 − 3𝜈𝑠(𝑝⟂𝑠 − 𝑝∥𝑠)

???

Δ𝑠 =
𝑝⟂𝑠 − 𝑝∥𝑠

𝑝𝑠

≈ 1
𝜈𝑠

{ 1
𝐵

d𝐵
d𝑡 − 2

3
1
𝑛𝑠

𝑑𝑛𝑠
d𝑡 −

∇ ⋅ [((𝑞⟂𝑠 − 𝑞∥𝑠) ̂𝑏)] + 3𝑞⟂𝑠∇ ⋅ ̂𝑏
3𝑝𝑠

}

Typically, what prominent here are electron heat fluxes. So heat fluxes can also lead to
anisotropies and so macroscopic solutions of KMHD involving temperature gradients will also
go unstable at microscales!

So here we are, we cannot change B at large scales, we cannot compress/rarefy the plasma
and we cannot have temperature gradients without having to deal everything exploding and
needing new equations. Enjoy!
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11 Gyrokinetics

This is taken from the slide given by Frank Jenko from Max-Planck-Institut für Plasma-
physik.

Gyrokinetics is a theory for describing plasmas at a much finer level. If kinetic effects (e.g. finite
Larmor radius, Landau damping, magnetic trapping etc.) play a role, MHD is not applicable,
and one has to use a kinetic description.

Once again we start from the Vlasov-Maxwell equation. Removing the fast gyromotion under
the assumption 𝜔 ≪ Ω leads to a dramatic speed-up. Thus we can think the basic element
of charged rings as quasiparticles: it is described by gyrocenter coordinates and can keep the
kinetic effects.

11.1 A Brief Historical Review

The word “gyrokinetics” appeared in the literature in the late 1960s, first proposed by Ruther-
ford, Frieman, Taylor and Hastie. The goal is to provide an adequate formalism for the linear
kinetic drift waves study in general magnetic configurations, including finite Larmor radius ef-
fects. The first nonlinear set of equations for the perturbed distribution function 𝛿𝑓 was given
by Friemann and Liu Chen in 1982, who also introduced the gyrokinetic ordering. Gyrokinetic
theory is based on Hamiltonian methods, which means that from a Lagrangian description,
we remove the gyro-angle dependency by the change of coordinate systems to describe the
equation of motion.

11.2 Coordinate Transformation

We perform the following coordinate transformation from the charged particle’s phase space
(x,v) to the corresponding guiding-center phase space (X,V), where:

X = X⟂ +𝑋∥b0, X⟂ = x⟂ + r𝐿, r𝐿 = v × b0/Ω𝑐

V = [𝜖 = 𝑣2/2, 𝜇 = 𝑣2⟂/2𝐵0, 𝜎 = sgn(𝑣∥)]
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Here, b0 = B0/𝐵0, r𝐿 is the gyroradius vector, 𝑣∥ = v⋅b0, 𝜇 is the magnetic moment adiabatic
invariant and, assuming there is no equilibrium electrostatic potential, 𝜖 is an equilibrium
constant of motion.

In the guiding-center phase space, charged particle dynamics is naturally separated into the
fast cyclotron motion and the slow guiding-center motion. One can then apply the gyroki-
netic orderings and systematically average out the fast cyclotron motion (i.e., the gyrophase
averaging) and obtain the asymptotically dominant (in terms of the smallness parameter 𝜖)
perturbed distribution function response. This perturbed distribution function in the guiding-
center phase space can then be inversely transformed back to the charged particle phase space
and applied toward the field equations (i.e., Maxwell’s equations) for a self-consistent kinetic
description.

• Obtain Vlasov equation in the guiding center coordinates.
• Obtain Maxwell’s equations in the guiding center coordinates.

Why do we need extra steps before using Maxwell’s equations? It is because in Maxwell’s equa-
tions the particle information (𝜌, j) are described not in the guiding center coordinates. The
distribution we obtain from Vlasov equation must be transformed back to ordinary coordinates
and then we can do the moment integral.

In the guiding center coordinates, density and current density can be expressed as

𝑛 = ̄𝑁0 + ∇̄ ⋅ (𝑐
̄𝑁0

𝐵Ω ∇̄⟂𝛿𝜙) +
̄𝑁0𝛿𝐵∥
𝐵 +∫ ̄𝐹1𝑑p (11.1)

j = −
̄𝑁0𝑞2
𝑐𝑚 𝛿𝐴∥�̂� +∫

𝑞P̄∥
𝑚

̂𝑏dP̄ + 𝑐𝑞 ̄𝑁0
𝐵

̂𝑏 × ∇̄𝛿𝜙 + 3𝑐2 ̄𝑁0 ̄𝑇
2𝐵2Ω

̂𝑏 × ∇̄∇̄2
⟂𝛿𝜙

+ 2𝑐 ̄𝑁0 ̄𝑇
𝐵2

̂𝑏 × ∇̄𝛿𝐵∥ +
̂𝑏

𝐵 × ∇̄(𝑐 ̄𝑁0 ̄𝑇 ) + ̂𝑏 × ∇̄∫𝑐 ̄𝜇 ̄𝐹1dP̄
(11.2)

Note that

• In Vlasov equation in the guiding center coordinates, the E×B drift, gradient drift and
curvature drift all appears but the polarization drift is missing.

• In Equation 11.1, only the polarization term correction appears. From Hamilton’s me-
chanics, all term that has a explicit time dependency will not contribute here since it
will break the energy conservation of the system.
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Figure 11.1: Charged particle orbit in a magnetic field pointing into the plane with electrostatic
potential fluctuations.
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11.3 The Gyrokinetic Ordering

11.3.1 From Kinetics to Gyrokinetics

Figure 11.1 shows the basic idea of gyrokinetic approximation. There is a strong magnetic
field pointing into the plane. The electrostatic potential fluctuations are shown by the colored
contours. The particle orbit is composed of two parts: a fast gyromotion and a slow E × B
drift. In gyrokinetics we simply remove the fast gyromotion and introduce charged rings as
quasiparticles, i.e. go from particle to gyrocenter coordinates.

Figure 11.2: Gyrokinetic approximation.
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• Slow time variation as compared to the gyromotion time scale:

𝜔/Ω𝑖 ≪ 1

• Spatial equilibirum scale much larger than the Larmor radius:

𝑟𝐿/𝐿 ≪ 1

• Strong anisotropy, i.e. only perpendicular components of the fluctuating quantities can
be large:

𝑘∥/𝑘⟂ ≪ 1

• Small amplitude perturbations, i.e. energy of perturbation much smaller than the thermal
energy:

𝑒𝜙/𝑘𝐵𝑇𝑒 ≪ 1

There exists a natural smallness parameter, 𝜖 = 𝑟𝐿/𝐿, which we are going to use in the ordering.
In magnetically confined plasmas, typically we have 𝜖 ≲ 𝒪(10−2) ≪ 1.

𝜔
Ω ∼ 𝑟𝐿

𝐿 ∼
𝑘∥
𝑘⟂

∼ 𝛿𝐹
𝐹0

∼ 𝛿𝑇
𝑇0

∼ 𝛿𝑛
𝑛0

∼ |𝛿B|
|B0|

∼ 𝑞𝛿𝜙
𝑇 ∼ 𝜖

Usually low-frequency (|𝜔/Ω𝑖| ∼ 𝜖) but short-wavelength (𝑘⟂𝑟𝐿 ∼ 1) fluctuations are of interest
in gyrokinetics. To include Landau resonance (???),

𝑘∥𝑣∥ ∼ 𝜔, or |𝑘⟂𝑟𝑖| ∼ 1

Noting, furthermore, for |𝑘⟂𝑟𝑖| ∼ 1 and the ratio of plasma ion pressure to the background
magnetic field energy density 𝛽𝑖 ≲ 1:

𝛽 = 𝑃0𝑖
𝑃0𝐵

= 𝑚𝑖𝑛𝑖𝑣2⟂𝑖/2
𝐵2

0/2𝜇0
= 𝑣2⟂𝑖

𝑣2𝐴

∣ 𝜔
𝑘⟂𝑣𝐴

∣ ∼ ∣ 𝜔Ω𝑖
∣∣ 1
𝑘⟂𝑟𝑖𝐿

∣𝛽1/2
𝑖 ≲ 𝜖

i.e. fast waves are systematically suppressed in the gyrokinetic orderings.
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11.4 A Lagriangian Approach

If the Lagriangian of a dynamical system is known, e.g. for charged particle motion in non-
canonical coordinates (x,v):

𝐿 = (𝑒𝑐A(x, 𝑡) + 𝑚v) ⋅ ẋ −𝐻(x,v)

𝐻 = 𝑚
2 𝑣2 + 𝑒𝜙(x, 𝑡)

with B = ∇× A and E = −∇𝜙 − 𝜕𝑡A/𝑐. The equation of motion are given by the Lagrange
equations (I almost forget everything from theoretical mechanics…):

d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑖

− 𝜕𝐿
𝜕𝑞𝑖

= 0, 𝑖 = 1, ..., 6

For charged particles,

d
d𝑡

𝜕𝐿
𝜕v̇ − 𝜕𝐿

𝜕v = 0?

ẋ = v

v̇ = 𝑒
𝑚(E + v × B)

In gyrokinetics we add low-frequency, anisotropic, small-amplitude fluctuations:

𝜔
Ω𝑖

∼
𝑘∥
𝑘⟂

∼ 𝑒𝜙
𝑇𝑒

∼ 𝜖

We need a transition from particle coordinates (x,v) to guiding center coordinates (R, 𝑣∥, 𝜇, 𝜑).
The easy way is to construct a new Lagrangian using Lie transforms (???)

Γ = (𝑚𝑣∥ ̂𝑏0 +
𝑒
𝑐 Ā1∥�̂�0 +

𝑒
𝑐A0) ⋅ dX + 𝑚𝑐

𝑒 𝜇d𝜃 − (𝑚2 𝑣2∥ + 𝜇𝐵0 + 𝜇�̄�1∥ + 𝑒 ̄𝜙1)d𝑡

where 𝜇 is the magnetic moment, 𝜃 is the gyroangle, and the overbar denotes a gyroaveraging
operation. This gives the Euler-Lagrange equations
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Ẋ = 𝑣∥ ̂𝑏 + 𝐵
𝐵∗

∥
[𝑣⟂𝐵 B̄1⟂ + 𝑐

𝐵2 Ē1 × B + 𝜇
𝑚Ω

̂𝑏 × ∇(𝐵 + �̄�1∥) +
𝑣2∥
Ω (∇ × ̂𝑏)⟂]

̇𝑣∥ = Ẋ
𝑚𝑣∥

⋅ (𝑒Ē1 − 𝜇∇(𝐵 + �̄�1∥))

̇𝜇 = 0

(11.3)

Equation 11.3 contains all the drifts we have seen in Chapter 4.

Applying the gyrokinetic approximation, the effective gyroaveraged potential over one gyrope-
riod can be written using Fourier transform (???):

𝜙eff(x, 𝑟𝐿) =
1
2𝜋 ∫

2𝜋

0
d𝜃𝜙(x + r𝐿)

= 1
(2𝜋)2 ∫

∞

−∞
dk𝑒𝑖k⋅x𝜙(k)𝐽0(𝑘𝑟𝐿)

where 𝐽0 is the zeroth order Bessel function.

11.4.1 Linear Gyrokinetics

We shall limit our considerations to that of a simple uniform plasma with an isotropic
Maxwellian equilibrium distribution function. Assuming, furthermore, 𝛽 (ratio between the
plasma and magnetic pressures) ≪ 1, such that there is negligible magnetic compression, the
particle velocity distribution is then given by:

𝑓(x,v, 𝑡) = 𝑓𝑀(𝜖) + 𝛿𝑓(x,v, 𝑡)

where 𝑓𝑀(𝜖) = 𝑛0/(𝜋3/2𝑣3𝑡 ) exp(−𝜖/𝑣2𝑡 ) is the Maxwellian distribution function, 𝑣𝑡 is the ther-
mal speed (HOW TO UNDERSTAND THIS???):

𝛿𝑓 = 𝑞
𝑇 𝑓𝑀(𝜖)𝛿𝜙 + 𝑒−r𝐿⋅∇𝛿𝑔

𝑇 = 𝑚𝑣2𝑡 /2, 𝛿𝑔 satisfies the following linear gyrokinetic equation:

( 𝜕
𝜕𝑡 + 𝑣∥b0 ⋅ ∇)𝛿𝑔 = 𝑞

𝑇 𝑓𝑀(𝜖) 𝜕𝜕𝑡 ⟨𝛿𝐿𝑔⟩𝛼
𝛿𝐿𝑔 = 𝑒−r𝐿⋅∇𝛿𝐿

𝛿𝐿 = 𝛿𝜙 − 𝑣∥𝛿𝐴∥/𝑐

(11.4)
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and < ... >𝛼 denotes averaging over the gyrophase angle, 𝛼. Here, the field variables are the
scalar and vector potentials, 𝛿𝜙 and 𝛿A, with 𝛿𝐴∥ = 𝛿A ⋅ b0 and the ∇ ⋅ 𝛿A = 0 Coulomb
gauge. The operator 𝑒−r𝐿⋅∇, meanwhile, represents the transformation between the particle
and guiding center positions.

The corresponding field equations are the Poisson’s equation and the parallel Ampère’s law,
∇2𝛿𝐴∥ = −4𝜋𝛿𝐽∥/𝑐. In the low-frequency and |𝑘𝜆𝐷|2 ≪ 1 limit with 𝜆𝐷 being the Debye
length, Poisson’s equation can be approximated as the quasi-neutrality condition; ∑𝑗 𝑛0𝑗𝑞𝑗 <
𝛿𝑓𝑗 >𝑣≃ 0. Here, < ... >𝑣= ∫dv(...) is the velocity-space integral, and subscript 𝑗 runs over
the particle species. Meanwhile, substituting the parallel Ampère’s law into the ∇ ⋅ 𝛿J ≃ 0
quasi-neutrality condition as derived by Equation 11.4 yields a generalized linear gyrokinetic
vorticity equation, which is often convenient to use in studying shear/kinetic Alfvén wave
dynamics.

Linear kinetic Alfvén wave properties

(WARNING: SUPER HARD TO FOLLOW!) For plane wave 𝜔,k perturbations, Equation 11.4
gives:

𝛿𝑔k = − 𝑞
𝑇 𝑓𝑀𝐽0(𝑘⟂r𝐿)

𝜔
𝑘∥𝑣∥ − 𝜔(𝛿𝜙 −

𝑣∥
𝑐 𝛿𝐴∥)

k

𝐽0 is the Bessel function and 𝐽0(𝑘⟂r𝐿) corresponds to the gyro-averaging of the coordinate
transformation, that is:

< exp(−r𝐿 ⋅ ∇) >𝛼= 𝐽0(𝑘⟂𝑟𝐿)

In SAW/KAW analyses, it is sometimes convenient to introduce an effective induced parallel
potential defined by b0 ⋅ ∇𝛿Ψ = −𝜕𝑡𝛿𝐴∥/𝑐 or:

𝛿Ψk = 𝜔𝛿𝐴∥k/(𝑐𝑘∥)

𝛿Ψ, thus, gives rise to the induced parallel electric field; that is, the net parallel electric field
is given by:

𝛿𝐸∥ = −b0 ⋅ ∇(𝛿𝜙 − 𝛿Ψ) or
𝛿𝐸∥k = −𝑖𝑘∥(𝛿𝜙 − 𝛿Ψ)k

The quasi-neutrality condition then straightforwardly yields: (Chen and Hasegawa 1991)

∑
𝑗

(𝑛0𝑞2
𝑇0

)
𝑗
{𝛿𝜙k + Γ0𝑘𝑗[𝜉𝑘𝑗𝑍𝑘𝑗𝛿𝜙k − (1 + 𝜉𝑘𝑗𝑍𝑘𝑗𝛿Ψk)]} = 0 (11.5)
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Here, 𝜉𝑘𝑗 = 𝜔/|𝑘∥|𝑣𝑡𝑗, 𝑍𝑘𝑗 = 𝑍(𝜉𝑘𝑗) with 𝑍 being the well-known plasma dispersion function
(Equation 8.33), and Γ0𝑘𝑗 = 𝐼0(𝑏𝑘𝑗) exp(−𝑏𝑘𝑗) with 𝐼0 the modified Bessel function and 𝑏𝑘𝑗 =
𝑘2
⟂𝑟𝐿𝑗/2 = 𝑘2

⟂(𝑇𝑗/𝑚𝑗)/Ω2
𝑗 . The linear gyrokinetic vorticity equation, meanwhile, is given by:

(Chen and Hasegawa 1991)

𝑖 𝑐2
4𝜋𝜔𝑘2

∥𝑘2
⟂𝛿Ψk − 𝑖∑

𝑗
(𝑛0𝑞2

𝑇0
)
𝑗
(1 − Γ0𝑘𝑗)𝜔𝛿𝜙k = 0 (11.6)

Nothing that, for KAW, |𝑘⟂𝑟𝐿𝑖| ∼ 𝒪(1) and |𝑘⟂𝑟𝐿𝑒| ≪ 1 and, thus, Γ0𝑘𝑒 ≃ 1, Equation 11.5
and Equation 11.6 then become

𝜖𝑠k𝛿𝜙k = [1 + 𝜉𝑘𝑒𝑍𝑘𝑒 + 𝜏(1 + Γ𝑘𝜉𝑘𝑖𝑍𝑘𝑖)]𝛿𝜙k

= [1 + 𝜉𝑘𝑒𝑍𝑘𝑒 + 𝜏Γ𝑘(1 + 𝜉𝑘𝑖𝑍𝑘𝑖)]𝛿Ψk
(11.7)

and

𝜔2𝛿𝜙k = 𝑘2
∥𝑣2𝐴

𝑏𝑘
1 − Γ𝑘

𝛿Ψk (11.8)

Here, 𝜏 = 𝑇0𝑒/𝑇0𝑖, 𝑏𝑘 = 𝑏𝑘𝑖, Γ𝑘 = Γ0𝑘𝑖, and 𝜖𝑠k is the dielectric constant for the slow-sound
(ion-acoustic) wave (SSW).

It is also instructive, as done in some literatures, to define the effective parallel potential,
𝛿𝜙∥k = 𝛿𝜙k − 𝛿Ψk, and rewrite Equation 11.7 and Equation 11.8 as

𝜖𝑠k𝛿𝜙∥k = −𝜏(1 − Γ𝑘)𝛿Ψk (11.9)

and

[𝜔2 − 𝑘2
∥𝑣2𝐴

𝑏𝑘
1 − Γ𝑘

]𝛿Ψk = −𝜔2𝛿𝜙∥k (11.10)

Equation 11.9 and Equation 11.10 demonstrate the coupling between SAW and SSW via the
finite |𝑘⟂𝑟𝐿𝑠| term. In the |𝑘⟂𝑟𝐿𝑖| ∼ 𝒪(1) short-wavelength limit, SAW evolves into KAW due
to both the finite |𝑘⟂𝑟𝐿𝑖| and |𝑘⟂𝑟𝐿𝑠| effects. (???) More specifically, the coupled KAW-SSW
dispersion relation becomes

𝜔2
k[1 − 𝜏(1 − Γ𝑘)

𝜖𝑠k
] = 𝑘2

∥𝑣2𝐴
𝑏𝑘

1 − Γ𝑘
(11.11)
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Let us concentrate on the KAW branch and, to further simplify the analysis, assume 1 ≫
𝛽𝑖 ∼ 𝛽𝑒 ≫ 𝑚𝑒/𝑚𝑖. With |𝜔| ∼ |𝑘∥𝑣𝐴|, we then have |𝜉𝑘𝑖| = |𝜔/𝑘∥𝑣𝑡𝑖| ∼ 𝛽−1/2

𝑖 ≫ 1 ≫ |𝜉𝑘𝑒| ∼
(𝑚𝑒/𝑚𝑖𝛽𝑒)1/2, and, keeping only the lowest order O(1) terms:

𝜖𝑠k ≃ 1 + 𝜏(1 − Γ𝑘) ≡ 𝜎𝑘

From Equation 11.11, we then have

𝜔2
k ≃ 𝑘2

∥𝑣2𝐴
𝜎𝑘𝑏𝑘
1 − Γ𝑘

(11.12)

As to wave polarizations, which are useful for wave identification in observations, we can readily
derive:

∣ 𝑐𝛿E⟂
𝛿B⟂

∣ = 𝑣𝐴[
𝑏𝑘

𝜎𝑘(1 − Γ𝑘)
]
1/2

(11.13)

and

∣
𝑐𝛿𝐸∥
𝛿B⟂

∣ = 𝑣𝐴∣
𝑘∥
𝑘⟂

𝜏∣[𝑏𝑘(1 − Γ𝑘)
𝜎𝑘

]
1/2

(11.14)

ADD PLOTS for Equation 11.12, Equation 11.13, and Equation 11.14!!!

Equation 11.14 show that, for a fixed |𝑘∥/𝑘⟂|, |𝛿𝐸∥/𝛿B⟂| increases with 𝑏𝑘. Since wave-particel
energy and momentum exchanges are proportional to |𝛿𝐸∥|, short-wavelength KAW are, thus,
expected to play crucial roles in the heating, acceleration, and transport of charged particles.

In addition to having a significant 𝛿𝐸∥, another important property of KAW, in contrast
to SAW, is that KAW has a finite perpendicular (to B0) group velocity, v𝑔⟂. Assuming
|𝑘⟂𝑟𝐿𝑖|2 ≪ 1, we have, letting 𝜔2

𝐴 ≡ 𝑘2
∥𝑣2𝐴:

𝜔2
k ≃ 𝜔2

𝐴(1 + 𝑘2
⟂ ̂𝑟2) (11.15)

where

̂𝑟2 = (3/4 + 𝜏)𝑟2𝐿𝑖 (11.16)

Thus

v𝑔⟂ = 𝜕𝜔k
𝜕k⟂

≃ 𝜔2
𝐴

𝜔k
̂𝑟2k⟂ (11.17)
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Linear mode conversion of KAW

Equation 11.15 has a significant implication in non-uniform plasmas. Consider, again, a slab
plasma with a non-uniform 𝜔2

𝐴(𝑥) and 𝑘2
⟂ = 𝑘2

𝑥(𝑥) being the WKB wavenumber in the non-
uniformity 𝑥-direction. Equation 11.15 then indicates that KAW is propagating (𝑘2

𝑥 > 0) in
the 𝜔2

k > 𝜔2
𝐴(𝑥) region, and it is cutoff (𝑘2

𝑥 < 0) in the 𝜔2
k < 𝜔2

𝐴(𝑥) region. That v𝑔⟂ is finite
also suggests that, in constrast to SAW, an initial smooth perturbation will not only evolve
into short wavelengths, but also propagate toward the lower 𝜔2

𝐴(𝑥) region. These features are
illustrated in ?@fig-gk-KAW-evolution(b); where the spatial-temporal evolution of KAW
is solved explicitly according to the following wave equation: (DO IT MYSELF!!!)

[ ̂𝑟2 𝜕2

𝜕𝑥2 − 1 − 1
𝜔2
𝐴(𝑥)

𝜕2

𝜕𝑡2 ]𝛿𝐵𝑦(𝑥, 𝑡) = 0 (11.18)

Equation 11.18 can be readily derived from Equation 11.15 by letting 𝜔k = 𝑖𝜕/𝜕𝑡 and
𝑘⟂ = −𝑖𝜕/𝜕𝑥. The spatial profile of 𝜔2

𝐴(𝑥)/𝜔2 = 1/(1 + 𝑥2/𝐿2) is shown in ?@fig-gk-
KAW-evolution(a), with 𝐿 indicating the profile length-scale, so that the KAW wave-packet
frequency is assumed to be consistent with the SAW frequency at 𝑥 = 0. ?@fig-gk-KAW-
evolution(b) shows the propagation of the KAW wave-packet in the direction of radial non-
uniformity, consistent with Equation 11.17.

That there exists a finite perpendicular group velocity also implies, in the steady state, the
removal of “singular” resonance and linear mode conversion process (Hasegawa and Chen 1976,
see also Chapter 12). More specifically, the corresponding wave equation is given by:

[ ̂𝑟2 𝜕2

𝜕𝑥2 + ( 𝜔2
0

𝜔2
𝐴(𝑥)

− 1)]𝛿�̂�𝑦(𝑥) = 𝛿�̂�𝑦0 (11.19)

Here, 𝜔0 is the external driving frequency. In the ideal SAW ( ̂𝑟 → 0) limit, there is the
resonance singularity at 𝑥0, where 𝜔2

0 = 𝜔2
𝐴(𝑥0). Noting that, near 𝑥 = 𝑥0, 𝜔2

𝐴(𝑥) ≃
𝜔2
0 + (𝜔2

𝐴)′(𝑥0)(𝑥 − 𝑥0) ≡ 𝜔2
0 − (𝜔2

0/𝐿𝐴)(𝑥 − 𝑥0), Equation 11.19 can be approximated as
an inhomogeneous Airy equation and solved analytically. Equation 11.19 can then be solved,
with appropriate boundary conditions, by connecting the solutions valid away from the 𝑥 = 𝑥0
resonance layer via the analytic solution of the inhomogeneous Airy equation valid near 𝑥 = 𝑥0
(Hasegawa and Chen 1975, 1976). The solutions away from the singular layer are given by:

𝛿�̂�𝑦(𝑥) =
⎧{
⎨{⎩

𝛿�̂�𝑦0
𝜖𝐴(𝑥) for 𝜔2

0 < 𝜔2
𝐴(𝑥)

𝛿�̂�𝑦0
𝜖𝐴(𝑥) −

√𝜋𝛿�̂�𝑦0
( ̂𝑟/𝐿𝐴)1/2( ̂𝑟2

𝜖𝐴(𝑥))
1/4

exp [𝑖 ∫𝑥
𝑥0

( 𝜖𝐴(𝑥′)
̂𝑟2 )

1/2
d𝑥′ + 𝑖𝜋4 ] for 𝜔2

0 > 𝜔2
𝐴(𝑥)

(11.20)

where
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𝜖𝐴(𝑥) =
𝜔2
0

𝜔2
𝐴(𝑥)

− 1

The corresponding numerical solutions are plotted in ?@fig-gk-KAW-MHD. (I DON’T UN-
DERSTAND!!!)

Both the analytical results and mode conversion process exhibit two important features. One
is, instead of being singular, the amplitude at 𝑥 = 𝑥0 (where 𝜔𝐴(𝑥0) = 𝜔0) is amplified by
the Airy swelling factor (𝐿𝐴/ ̂𝑟)2/3. Here, we recall 𝐿𝐴 is the scale length of 𝜔𝐴 and ̂𝑟, from
Equation 11.16, is of 𝒪(𝑟𝐿𝑖), and, hence, |𝐿𝐴/ ̂𝑟| ≫ 1. The other is the singularity at 𝑥 = 𝑥0 is
being replaced by the Airy scale length Δ0 = ( ̂𝑟2𝐿𝐴)1/3. Recalling, from Equation 7.34, |𝑘𝑥| ≃
|𝜔′

𝐴|𝑡 ≃ (𝜔/𝐿𝐴)𝑡, there then exists a KAW formation time scale given by (𝜔0/𝐿𝐴)𝑡0 ≃ 1/Δ0;
i.e., 𝜔0𝑡0 ≃ (𝐿𝐴/ ̂𝑟)2/3. Taking, for an example, a typical laboratory plasma, 𝐿𝐴/ ̂𝑟 ≃ 𝒪(103),
we have 𝜔0𝑡0 ≃ 𝒪(102), suggesting that it is reasonable to anticipate, in the presence of SAW
continuous spectrum, the appearance of KAW in such plasmas.

The main mode identification method for KAWs is based on the measurement of the wave
polarization, |𝑐𝛿E⟂/𝑣𝐴𝛿B⟂|. Observations can be found from Van Allen Probes in the Earth’s
inner magnetosphere and the Cluster satellites in the solar wind.

11.4.2 Nonlinear Gyrokinetics

The idea of deriving the gyrokinetic equations is very similar to the derivation of 5/10-moment
equations. Extra care is needed because of the coordinate transformation to the guiding center
coordinates. For species 𝛼,

𝜕𝑓𝛼
𝜕𝑡 + v ⋅ 𝜕𝑓𝛼𝜕x + 𝑞𝛼

𝑚𝛼
(E + v × B

𝑐 ) ⋅ 𝜕𝑓𝛼𝜕v = ∑
𝛼′

𝐶𝛼𝛼′(𝑓𝛼, 𝑓 ′
𝛼)

We expand 𝑓 in different orders:

𝑓 = 𝑓0 + 𝛿𝑓 = 𝑓0 + 𝑓1 + 𝑓2 + ...

and treat the velocity as a first order quantity. For simplicity, we now ignore the species
subscript 𝛼. Separating the equilibrium and perturbation terms, we have
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𝜕𝑓0
𝜕𝑡 + 𝜕𝛿𝑓

𝜕𝑡
+ v⟂ ⋅ 𝜕𝛿𝑓𝜕x + v∥ ⋅

𝜕𝛿𝑓
𝜕x

+ 𝑞
𝑚(𝛿E + v × B0

𝑐 + v × 𝛿B0
𝑐 ) ⋅ 𝜕𝑓0𝜕v + 𝑞

𝑚(𝛿E + v × B0
𝑐 + v × 𝛿B

𝑐 ) ⋅ 𝜕𝛿𝑓𝜕v =
𝐶(𝑓0, 𝑓0) + 𝐶(𝑓0, 𝛿𝑓) + 𝐶(𝛿𝑓, 𝑓0) + 𝐶(𝛿𝑓, 𝛿𝑓)

Based on the gyrokinetic ordering,

𝜕𝑓0
𝜕𝑡 ∼ 𝜔heat𝑓0 ∼ 𝜖3Ω𝑓0
𝜕𝛿𝑓
𝜕𝑡 ∼ 𝜔𝛿𝑓 ∼ 𝜖2Ω𝑓0

v⟂ ⋅ 𝜕𝛿𝑓𝜕x ∼ 𝑣th𝑘⟂𝛿𝑓 ∼ 𝜖Ω𝑓0

v∥ ⋅
𝜕𝛿𝑓
𝜕x ∼ 𝑣th𝑘∥𝛿𝑓 ∼ 𝜖2Ω𝑓0

𝑞
𝑚∇⟂𝛿𝜙 ⋅ 𝜕𝑓0𝜕v ∼ 𝑞

𝑚𝑘⟂𝛿𝜙
𝑓0
𝑣th

∼ 𝜖Ω𝑓0
𝑞
𝑚∇∥𝛿𝜙 ⋅ 𝜕𝑓0𝜕v ∼ 𝑞

𝑚𝑘∥𝛿𝜙
𝑓0
𝑣th

∼ 𝜖2Ω𝑓0
𝑞
𝑚𝑐

𝜕𝛿A
𝜕𝑡 ⋅ 𝜕𝑓0𝜕v ∼ 𝑞

𝑚𝜔𝛿𝐴 𝑓0
𝑣th

∼ 𝜖2Ω𝑓0
𝑞
𝑚𝑐(v × B0) ⋅

𝜕𝑓0
𝜕v ∼ 𝑞

𝑚𝑐𝑣th𝐵0
𝑓0
𝑣th

∼ Ω𝑓0
𝑞
𝑚𝑐(v × 𝛿B) ⋅ 𝜕𝑓0𝜕v ∼ 𝑞

𝑚𝑐𝑣th𝛿𝐵
𝑓0
𝑣th

∼ 𝜖Ω𝑓0
𝑞
𝑚∇⟂𝛿𝜙 ⋅ 𝜕𝛿𝑓𝜕v ∼ 𝑞

𝑚𝑘⟂𝛿𝜙
𝛿𝑓
𝑣th

∼ 𝜖2Ω𝑓0
𝑞
𝑚∇∥𝛿𝜙 ⋅ 𝜕𝛿𝑓𝜕v ∼ 𝑞

𝑚𝑘∥𝛿𝜙
𝛿𝑓
𝑣th

∼ 𝜖3Ω𝑓0
𝑞
𝑚𝑐

𝜕𝛿A
𝜕v ∼ 𝑞

𝑚𝜔𝛿𝐴 𝛿𝑓
𝑣th

∼ 𝜖3Ω𝑓0
𝑞
𝑚𝑐(v × B0) ⋅

𝜕𝛿𝑓
𝜕v ∼ 𝑞

𝑚𝑐𝑣th𝐵0
𝛿𝑓
𝑣th

∼ 𝜖Ω𝑓0
𝑞
𝑚𝑐(v × 𝛿B) ⋅ 𝜕𝛿𝑓𝜕v ∼ 𝑞

𝑚𝑐𝑣th𝛿𝐵
𝛿𝑓
𝑣th

∼ 𝜖2Ω𝑓0

𝜔heat is ???
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The zeroth order equation is

𝑞
𝑚𝑐(v × B0) ⋅

𝜕𝑓0
𝜕v = Ω(v⟂ × ̂𝑏0) ⋅

𝜕𝑓0
𝜕v = 0

If we tranform to a cylindrical coordinates in velocity space (Equation 10.8), this can be
written as

(v⟂ × ̂𝑏0) ⋅
𝜕𝑓0
𝜕v = −𝜕𝑓0

𝜕𝜃 = 0

This means that the equilibrium distribution function 𝑓0 does not depend on the gyrophase,
i.e. is gyrotropic.

The first order equation is

v⟂ ⋅ 𝜕𝛿𝑓1𝜕x + 𝑞
𝑚( −∇⟂𝛿𝜙 + v × 𝛿B

𝑐 ) ⋅ 𝜕𝑓0𝜕v + 𝑞
𝑚𝑐(v × B0) ⋅

𝜕𝛿𝑓1
𝜕v = 𝐶(𝑓0, 𝑓0)

Muliplying with (1 + ln 𝑓0) and integrating over phase space, we get

∫ ln(𝑓0)𝐶(𝑓0, 𝑓0)dxdv = 0

From the proof of Boltzmann’s H-theorem, we conclude:

𝑓0 = 𝑓0,𝑀(𝑣) = 𝑛0
𝜋3/2𝑣3th

𝑒−𝑣2/𝑣2
th

𝐶(𝑓0,𝑀 , 𝑓0,𝑀) = 0
𝜕𝑓0,𝑀
𝜕v = −2𝑓0,𝑀

v
𝑣2th

= −𝑓0,𝑀𝑚v
𝑇

The equilibrium distribution is Maxwellian. The first order equation thus becomes (???)

v⟂ ⋅ 𝜕𝛿𝑓1𝜕x −Ω𝜕𝛿𝑓1
𝜕𝜃 = −𝑓0,𝑀v ⋅ ∇⟂(

𝑞𝛿𝜙
𝑇 )

The solution to this is a combination of a homogeneous solution and a particular solution. For
the homogeneous part,

v⟂ ⋅ 𝜕ℎ𝜕x −Ω𝜕ℎ
𝜕𝜃 ∣x

= 0, x = X + r𝐿, Ω𝜕ℎ
𝜕𝜃 ∣X

= 0
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For the particular part, the solution is

−𝑞𝛿𝜙(x, 𝑡)𝑓0(v)/𝑇

Thus the complete solution is

𝛿𝑓1(x,v, 𝑡) = ℎ(X, 𝑣∥, 𝑣⟂, 𝑡) − 𝑞𝛿𝜙(x, 𝑡)𝑓0(v)/𝑇

We still need an equation for ℎ for closure. Therefore we have to go to the second order
equation

𝜕𝛿𝑓1
𝜕𝑡 + 𝑣∥�̂�0 ⋅ ∇𝛿𝑓1 +

𝑞
𝑚( −∇⟂𝛿𝜙 + v × 𝛿B

𝑐 ) ⋅ 𝜕𝛿𝑓1𝜕v
− 𝑞
𝑚(∇∥𝛿𝜙)

𝜕𝑓0
𝜕𝑣∥

− 𝑞
𝑚𝑐

𝜕𝛿A
𝜕𝑡 ⋅ 𝜕𝑓0𝜕v

+v⟂ ⋅ ∇𝛿𝑓2 +
𝑞
𝑚𝑐(v × B0) ⋅

𝜕𝛿𝑓2
𝜕v

= 𝐶(𝛿𝑓1, 𝑓0) + 𝐶(𝑓0, 𝛿𝑓1)

From particle coordinates to guiding center coordinates

𝜕ℎ
𝜕𝑡 + dX

d𝑡 ⋅ 𝜕ℎ
𝜕X + 𝑞

𝑚( −∇⟂𝛿𝜙 + v × 𝛿B
𝑐 ) ⋅ 𝜕ℎ𝜕v =

𝐶(ℎ, 𝑓0) + 𝐶(𝑓0, ℎ) +
𝑞
𝑇 𝑓0

𝜕𝜒
𝜕𝑡 + Ω𝜕𝛿𝑓2

𝜕𝜃 ∣
X

where 𝜉 ≡ 𝛿𝜙 − v ⋅ 𝛿A/𝑐.
For any quantity 𝑄, the gyrophase averaging at fixed guiding center position is

⟨𝑄(x,v, 𝑡)⟩X ≡ 1
2𝜋 ∫

2𝜋

0
𝑄(X − v × ̂𝑏0

Ω ,v, 𝑡)d𝜃

We have

⟨ℎ(x,v, 𝑡)⟩X = ℎ

⟨v⟂ ⋅ ∇𝑄⟩X = −Ω⟨𝜕𝑄
𝜕𝜃 ∣

X
⟩

X

= 0

The equation for the gyrocenter distribution function ℎ is then
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𝜕ℎ
𝜕𝑡 + 𝑣∥ ̂𝑏0 ⋅

𝜕ℎ
𝜕X + 𝑐

𝐵0
(�̂�0 ×

𝜕 ⟨𝜒⟩X
𝜕X ) ⋅ 𝜕ℎ

𝜕X = ⟨𝐶(ℎ)⟩X + 𝑞
𝑇 𝑓0

𝜕 < 𝜒 >X
𝜕𝑡

The quasi-neutrality ∑𝛼 𝑞𝛼𝛿𝑛𝛼 = 0 now becomes

∑
𝛼

[ − 𝑞2𝛼𝑛0𝛼
𝑇0𝛼

𝛿𝜙(x, 𝑡) + 𝑞𝛼 ∫ℎ𝛼(x + v × ̂𝑏0
Ω𝛼

,v, 𝑡)dv] = 0

∑
𝛼

( − 𝑞2𝛼𝑛0𝛼
𝑇0𝛼

𝛿𝜙(x, 𝑡) + 𝑞𝛼 ∫ < ℎ𝛼 > dv) = 0

Last but not least we need the modified Ampère’s law:

∇× 𝛿B(x, 𝑡) = 4𝜋
𝑐 ∑

𝛼
𝑞𝛼

The distribution function now depends on 6 variables, 𝑓 = 𝑓(X, 𝑣∥, 𝜇; 𝑡). The Vlasov equation
can be written as

𝜕𝑓
𝜕𝑡 + Ẋ ⋅ 𝜕𝑓

𝜕X + ̇𝑣∥
𝜕𝑓
𝜕𝑣∥

= 0

where X is the gyrocenter position, 𝑣∥ is the parallel velocity, and 𝜇 is the magnetic moment.
The appropriate field equations are now

𝑛1
𝑛0

= �̄�1
𝑛0

− (1 − |𝐼20 |)
𝑒𝜙1
𝑇 + |𝑒𝐼0𝐼1|

𝐵1∥
𝐵

∇2
⟂𝐴1∥ = −4𝜋

𝑐 ∑ ̄𝐽1∥

𝐵1∥
𝐵 = −∑𝜖𝛽(

̄𝑝1⟂
𝑛0𝑇

+ |𝑥𝐼0𝐼1|
𝑒𝜙1
𝑇 + |𝑥2𝐼21 |

𝐵1∥
𝐵 )

These equations remove the irrelevant space-time scales and become nonlinear 5D equations
instead 6D.
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11.5 Applications

Gyrokinetics has emerged as the standard approach to plasma turbulence.

Some issues under investigation where gyrokinetics may shed light on:

• Role of microturbulence in space physics?
• transport across boundary layers
• fast magnetic reconnection
• coronal and solar wind heating
• How does MHD turbulence dissipate energy?
• How do fast particles interact with turbulence?

11.6 Limitations

What gyrokinetics cannot resolve:

• cyclotron resonance
• gyro-related phenomena

At least the orginal form of gyrokinetic cannot include EMIC waves and whistler waves.
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12 Field Line Resonance

The resonant mode coupling is one of major physical processes in the space plasmas including
the magnetic reconnection and collisionless shock wave. The field line resonance describes
the resonant interaction between compressional fast waves and shear Alfvén waves in a non-
uniform plasma such as the Earth magnetosphere. The concept of this resonant mode coupling
was first outlined by Tsutomu Tamao in 1961 and later discussed in his seminal paper on
hydromagnetic coupling resonances (Tamao, 1965). Experimental work by John Samson+
(1971) made resonant mode coupling the current paradigm of planetary magnetospheric ULF
wave research. Thinking of magnetosphere as a microwave oven: instead of heating food with
microwaves, we heat Earth with EM waves.

12.1 Historial Review

Before 1950s, no people thought about the idea of standing waves in space simply because a
vacuum had been assumed. Right after the space age began, Dungey proposed that standing
Alfvén waves could be excited on geomagnetic field lines.

• Ground observations have shown discrete frequencies for EM wave power. In the magne-
tosphere the Alfvén speed is typically ∼ 1000 km/s, while typical periods of geomagnetic
pulsations are 10-600 s. Thus typical wavelengths are 104 − 106 km, or 1 − 100R𝐸, com-
parable with the size of the magnetosphere itself. So uniform plasma theory is clearly
inadequate.

• In the 1950s people realized that MHD waves of poloidal and toroidal modes can be
coupled, and if we thought the modes as standing waves, we might explain the discrete
frequencies. However, good agreements were not found because there were poor estimates
of the magnetospheric plasma density.

• In the 1960s, [Sugiura 1961] showed that waves are observed simultaneously at both
ends of the same field line, which indicated that the waves were guided. [Nagata+
1963] showed pulsations at conjugate points could be matched cycle for cycle. The
phase comparison could indicate the possible harmonics of standing waves. [Patel 1965]
reported discovery of both transverse and compressional waves in space from Explorer
12 magnetometer data that are correlated with ground measurements, confirming that
they were the same. [Cummings+ 1969] showed long-lived and frequent waves with nice
numerical comparison of their periods from the poloidal and toroidal mode equations.
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• In the 1970s a simpler box model was proposed to explain field line resonance. The idea
of standing waves could not explain why only some field lines are preferentially excited
(with the foot point of the field line near magnetic latitude 70∘). In the box model,
discrete frequencies are treated as sources that reflect the properties of the magnetopause
thickness with a preferred KHI growth rate.

• In the 1980s the cavity model was proposed to link the discrete frequencies to the eigen-
modes if we treated the magnetosphere as a cavity.

• In the 1985s the waveguide model was proposed based on the cavity idea to loose the
constrain in the azimuthal direction. This could explain many ground observation of
discrete frequency, large amplitude Pc5 waves but satellite measurements often saw small
amplitude Pc3/4 waves. Unlike field line resonances, which are described by a single
eigennumber (𝑘𝑧), cavity modes have three eigennumbers, corresponding to the number
of wavelengths along a field line (𝑘𝑧), azimuthally around the Earth (𝑘𝑦), and radially
between the magnetopause (or bow shock) and the inner reflection point (𝑛). It is argued
in the 1990s that if the lowest order mode has a frequency of, say, 2 mHz, then above
perhaps 10 mHz the higher order modes will be so numerous and close in frequency
that they could probably not be resolved in the data given their inherent width and the
frequency resolution of a typical spectrum. Rather they would appear as a continuum.
As a continuum, they can not be responsible for exciting discrete frequencies in this
higher frequency band (corresponding to Pc3/4). Maybe the waveguide model is only
relevant to Pc5 pulsations?

Now, the big question is: where do the quantized numbers of the observed ULF waves come
from [Kivelson & Southwood, 1986]?Researchers borrowed ideas from ionospheric radio prop-
agation, laser fusion and plasma physics and came up with the names cavity and waveguide.
For the box model that we will discuss in the next section, if the z boundaries are perfectly
reflecting, wave fields must have standing structure in the z direction, and allowed parallel
wave numbers are quantized (𝑘𝑧 = 𝑚𝜋/𝑐, as in Equation 12.19). If the boundaries are weakly
absorptive, the parallel wave numbers are complex, but the real parts are still quantized as
above. If we impose periodic boundary conditions in the y direction, the wavenumber in 𝑦, 𝑘𝑦,
needs to be quantized as well.

Another question: if these discretized frequencies correspond to standing waves propagating
along the field lines, at the footprints (i.e. ground measurements) the amplitudes shall be the
smallest? Why are we still able to observe that on the ground?

12.2 Theory

The theory starts from linearized cold MHD Equation 7.27 and Equation 7.28.
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12.2.1 Axisymmetric Spherical Coordinates

First, let’s treat the problem in spherical coordinates (𝑟, 𝜃, 𝜙), as done by (Radoski and Carovil-
lano 1966).

The background density is taken to be only a function of the radial distance, 𝜌 = 𝜌(𝑟). In
the analysis below the perturbed variables, B1, E, j and u are treated as axisymmetric, i.e. in
spherical coordinates any perturbed function has the form

� = 𝛿𝑟(𝑟, 𝜃) ̂𝑟 + 𝛿𝜃(𝑟, 𝜃) ̂𝜃 + 𝛿𝜙(𝑟, 𝜃) ̂𝜙

Under this symmetry, the variables can be separated into two independent sets referred to as
the toroidal and poloidal variables:

• Toroidal variables

𝐵1𝜙, 𝐸𝑟, 𝐸𝜃, 𝑢𝜙, 𝑗𝑟, 𝑗𝜃; ∇ ⋅ u = 1
𝑟 sin 𝜃

𝜕𝑢𝜙
𝜕𝜙 ≡ 0 (incompressible)

• Poloidal variables

𝐵1𝑟, 𝐵1𝜃, 𝐸𝜙, 𝑢𝑟, 𝑢𝜃, 𝑗𝜙; ∇ ⋅ E = 1
𝑟 sin 𝜃

𝜕𝐸𝜙
𝜕𝜙 ≡ 0

The name of the set were originally based on the magnetic field perturbation directions. One
insight into these two sets of variables can be gained from the Poynting vector S. The simplest
MHD Ohm’s law constrains the electric field E to be perpendicular to the background magnetic
field B0. For the toroidal mode, E lies in a meridional plane and 𝐵1𝜙 is out of plane, so S is
directed along the field lines. For the poloidal mode, S is in a meridional plane and parallel
to the wave vector k, because

B1 = −𝑖k × E ⇒ S ∥ E × B1 ∥ E × (k × E) = 𝐸2k −����(E ⋅ k)E ∥ k

for a transverse EM wave (E ⟂ k). Thus the toroidal mode is an Alfvén mode with dispersion
relation 𝜔 = 𝑉𝐴𝑘 cos 𝜃, S ∥ B0, while poloidal mode is a fast mode with dispersion relation
𝜔 = 𝑉𝐴𝑘, S ∥ k.

To clarify my early misunderstanding: a toroidal mode is not propagating in the toroidal direc-
tion! Similarly, a poloidal mode does not propagate in the poloidal direction. In fact, it is more
common to have a fast poloidal mode propagating in the azimuthal direction, then coupling to
the Alfvén toroidal mode along the ambient magnetic field direction, then being observed on
the ground. Table 12.1 from (Zong, Rankin, and Zhou 2017) summarizes properties of toroidal
and poloidal mode standing ULF waves.
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Table 12.1: Properties of toroidal and poloidal mode standing ULF wave

ULF mode Magnetic field Electric field Wave number
Toroidal waves B_azimuthal (𝐵𝜙) E_radial (𝐸𝑟) Small wave number

m
Poloidal waves B_radial (𝐵𝑟) E_azimuthal (𝐸𝜙) Large wave number

m
Compressional
poloidal waves

B_parallel (𝐵∥) E_azimuthal (𝐸𝜙) Large wave number
m

For the axisymmetric poloidal electric field 𝐸𝜙 ∼ 𝑒𝑖𝜔𝑡, Equation 7.27 becomes (I HAVEN‘T
DERIVED THIS!)

𝐵2
0[∇2 − (𝑟2 sin2 𝜃)−1]𝐸𝜙 = −𝜇0𝜌𝜔2𝐸𝜙

This is the decoupled poloidal wave equation. For a dipole field, 𝐵2
0 = 𝑀2(1+3𝜇2)

𝑟6 , where 𝑀
is the magnetic moment and 𝜇 = cos 𝜃 is the colatitude. A solution for 𝐸𝜙 is sought after a
separation of the unknowns of the form

𝐸𝜙 =
∞
∑
𝑙=1

𝑓𝑙(𝑟)𝑃𝑚
𝑙 (𝜇)

where 𝑃𝑚
𝑙 is the associated Legendre function with integer indices 𝑙 and 𝑚. Why this form

you may ask? It’s a mathematical hypothesis based on experience and talents. With this
representation the poloidal wave equation becomes

∞
∑
𝑙=1

[(1 + 3𝜇2)𝑂𝑙 + 2𝐾2]𝑓𝑙𝑃𝑚
𝑙 = 0 (12.1)

where 𝐾2 = 𝜇0𝜌
2 (𝜔2𝑟2

𝑀2 )2 (maybe the coefficient is wrong) and 𝑂𝑙 is the spherical Bessel opera-
tor

𝑂𝑙 =
1
𝑟
𝜕2

𝜕𝑟2 𝑟 −
𝑙(𝑙 + 1)

𝑟2

(This is almost out of my control now. If I want to fully understand this, I need to go back
to math equations for physics!!!) The special property of Legendre polynomials allows us to
write the solution to the wave equation as

∑
𝑠=0,±2

𝑎𝑙+𝑠𝑂𝑙+𝑠𝑓𝑙+𝑠 +𝐾2𝑓𝑙 = 0 (12.2)
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where the constants coefficients are

𝑎𝑙+2 = 3(𝑙 + 2)(𝑙 + 3)
2(2𝑙 + 3)(2𝑙 + 5)

𝑎𝑙 =
5𝑙(𝑙 + 1) − 6

(2𝑙 − 1)(2𝑙 + 3)

𝑎𝑙−2 = 3(𝑙 − 2)(𝑙 − 1)
2(2𝑙 − 3)(2𝑙 − 1)

From Equation 12.2, we know that radial amplitudes of opposite parity do not couple. Since
only 𝑙 ≥ 1 occurs in Equation 12.1, there are two fundamental unknown radial amplitudes:
one for odd 𝑙 and one for even 𝑙.
We assume perfect reflection at the boundaries so that the transverse components of 𝐸, i.e. 𝐸𝜃
and 𝐸𝜙, are zeros. The walls are assumed to be rigid so that 𝑢𝑟 = 0. The normal component
of B1 also vanishes from the governing equations.

The toroidal wave equation seems to be too complicated for me following Radoski’s deriva-
tions…

From the boundary condition, the length 𝑙 of the field line between two reflection point must
be a multiple of half the wavelength 𝜆, implying

𝑛𝜆 = 2𝑙, 𝑛 = 1, 2, 3, ...

From the dispersion relation, with the average Alfvén speed < 𝑉𝐴 >, one finds:

𝜔𝑛 =< 𝑉𝐴 > 𝑘 =< 𝑉𝐴 > 2𝜋
𝜆 = 𝑛𝜋 < 𝑉𝐴 >

𝑙

12.2.2 Cylindrical Coordinates

In cylindrical coordinates (𝑟, 𝜙, 𝑧), assuming perturbations of the form 𝑒𝑖(𝑚𝜙−𝜔𝑡), we can sepa-
rate the linearized equations ((Hughes 1994) I HAVEN’T DERIVED THIS!),

[𝜔2𝜇0𝜌 − 1
𝑟 (B0 ⋅ ∇)𝑟2(B0 ⋅ ∇)]𝑢𝜙

𝑟 = 𝜔𝑚B0 ⋅ B1
𝑟 (12.3)

[𝜔2𝜇0𝜌 − 𝑟𝐵2(B0 ⋅ ∇) 1
𝑟2𝐵2 (B0 ⋅ ∇)]𝑟𝐸𝜙 = 𝑖𝜔𝐵2(B0 ×∇)𝜙(

B0 ⋅ B1
𝐵2 ) (12.4)

𝑖𝜔B0 ⋅ B1 = 1
𝑟 (B ×∇)𝜙(𝑟𝐸𝜙) − 𝑖𝑚𝐵2𝑢𝜙

𝑟
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Figure 12.1: Cartoons showing the oscillation of a field line in the two lowest frequency toroidal
modes (left) and poloidal modes (right). On the left the field line is drawn
stretched out from north to south, and we look towards the Earth as the field line
is displaced east and west. On the right, the dipolar field line is displaced within
its meridian plane so all magnetic perturbations are radial. Note that for the
toroidal mode, the magnetic perturbations (AD) have the opposite sense north
and south in the fundamental and the same sense in the second harmonic. The
opposite is true of the AH perturbation in the poloidal mode.
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The first two equations are from the momentum equation. B0 ⋅ ∇ is the derivative along the
direction of B. These are wave equations coupled by the terms on the RHS which depend
on B0 ⋅ B1, the compressional part of the magnetic perturbation. The third equation is from
Faraday’s law and Ohm’s law. It shows how B0 ⋅ B1, 𝐸𝜙 and 𝑢𝜙 are related and closes the
set. Since the transverse dispersion relation depends only on 𝑘∥, it is tempting to think of the
LHS of Equation 12.3 and Equation 12.4 as representing pseudo-transverse mode oscillations,
and the RHS as representing the coupling due to the fast mode which has a compressional
component. When 𝑚 ≠ 0, the phase variation of the toroidal mode in the 𝜙 direction leads
to a compressional perturbation in the magnetic field. The polarizations of the toroidal and
poloidal oscillations are no longer orthogonal, and thus there is coupling.

If 𝑚 = 0 the RHS of Equation 12.3 vanishes. The LHS then describes a mode in which
the electric field is purely radial and the magnetic and velocity perturbations are azimuthal.
Magnetic L shells decouple and each shell oscillates azimuthally independently of each other.
This is the Alfvénic toroidal mode. If 𝑚 → ∞, for the RHS to remain finite, B0 ⋅ B1 → 0
so the RHS of Equation 12.4 vanishes. Equation 12.4 then describes a mode in which E is
azimuthal and u and b are contained in a meridian plane. This is the compressional poloidal
mode.

12.2.3 Cartesian Box Model

Earliest theories had cold ideal MHD equations Equation 7.27 or Equation 7.28 expressed in
the spherical or cylindrical coordinates, which are not easy to solve. As we will see, the essence
of FLR can be obtained in the Cartesian coordinates. We simplify the actual dayside mag-
netosphere, which like a compressed dipole, to something we can solve analytically. Imagine
a field line with both footpoints connecting to the conducting ionosphere, we can map this
curved field line into a straight line extending along 𝑧. In the 𝑥-direction, the outer boundary is
the magnetopause, and the inner boundary is the reflection point (plasmapause or ionosphere).
The 𝑦-direction represents the azimuthal direction, therefore at the front of the magnetosphere
it is more aligned with the 𝑦-direction in GSE/GSM and at the flanks/sides it is more aligned
with the 𝑥-direction. If the length in 𝑦 is finite (𝑏 < ∞), we call it a cavity; if the length in
𝑦 is infinite (𝑏 → ∞), we call it a waveguide. The names cavity and waveguide are inherited
from electrodynamics. This is shown in the schematic Figure 12.2 and Figure 12.3.

Along the 𝑧-direction, we impose the ionospheric boundary for closed field lines 𝑢𝑥 = 𝑢𝑦 =
𝐵1𝑧 = 0. Because of the ideal MHD assumption, the electric field along the field lines 𝐸𝑧 = 0.
In the 𝑦-direction, we impose either a periodic boundary condition for the cavity model that
leads to a quantized wavenumber 𝑘𝑦, or a infinite boundary. In the 𝑥 direction, the boundaries
are provided by large 𝑉𝐴 gradients at both the outer boundary 𝑥𝑚 (magnetopause) and the
inner boundary 𝑥𝑡 (plasmapause). We impose a reflective boundary 𝑢𝑥 = 0 at 𝑥 = 𝑥𝑡, 𝑥𝑚. The
inhomogeity in 𝑥 means that we can only consider Fourier components in the 𝑦 and 𝑧 directions.
Therefore, we seek wave modes of the form ∝ exp[𝑖(𝑘𝑦𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡)] with the ansatz
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Figure 12.2: From one of Southwood & Kivelson’s paper.
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Figure 12.3: From one of Southwood & Kivelson’s paper.
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k = (0, 𝑘𝑦, 𝑘𝑧)
E = (𝐸𝑥(𝑥), 𝐸𝑦(𝑥), 0)𝑒𝑖(𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡)

B1 = (𝐵1𝑥, 𝐵1𝑦, 𝐵1𝑧)𝑒𝑖(𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡)

B0 = 𝐵𝑧 ̂𝑧 = 𝐵 ̂𝑧
𝜌 = 𝜌(𝑥)
u = u0 + u1 = u1

The linearized momentum Equation 7.26 gives

𝜌(𝜕u
𝜕𝑡 +����u ⋅ ∇u) = j × B

𝜌𝜕u
𝜕𝑡 = 1

𝜇0
(∇ × B) × B

Separating the two perpendicular 𝑥 and 𝑦 directions and applying plane wave decomposition,

−𝑖𝜔𝜌𝜇0𝑢𝑥 = (∇ × B1)𝑦𝐵𝑧 − (∇× B1)𝑧��𝐵𝑦

= (𝜕𝐵1𝑥
𝜕𝑧 − 𝜕𝐵1𝑧

𝜕𝑥 )𝐵

= − 𝜕
𝜕𝑥(𝐵𝐵1𝑧) + 𝑖𝑘𝑧𝐵𝐵1𝑥

−𝑖𝜔𝜌𝜇0𝑢𝑦 = (∇ × B1)𝑧��𝐵𝑥 − (∇× B1)𝑥𝐵𝑧

= (𝜕𝐵1𝑦
𝜕𝑧 − 𝜕𝐵1𝑧

𝜕𝑦 )𝐵

= 𝑘𝑧𝐵𝐵1𝑦 − 𝑘𝑦𝐵𝐵1𝑧

From the simplest form of the generalized Ohm’s law E = −u1 × B0,

𝐸𝑥 = −𝑢𝑦𝐵
𝐸𝑦 = −𝑢𝑥𝐵

Inserting into the linearized momentum equation, we have

−𝑖𝜔𝜌𝜇0
𝐸𝑦
𝐵 = − 𝜕

𝜕𝑥(𝐵𝐵1𝑧) + 𝑖𝑘𝑧𝐵𝐵1𝑥

𝜔𝜌𝜇0
𝐸𝑥
𝐵 = −𝑘𝑦𝐵𝐵1𝑧 + 𝑘𝑧𝐵𝐵1𝑦

(12.5)
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From linearized Faraday’s law ∇× E = − ̇B1,

−𝜕𝐸𝑦
𝜕𝑧 = − ̇𝐵1𝑥

𝜕𝐸𝑥
𝜕𝑧 = − ̇𝐵1𝑦

𝜕𝐸𝑦
𝜕𝑥 − 𝜕𝐸𝑥

𝜕𝑦 = − ̇𝐵1𝑧

𝐵1𝑥 = 1
𝜔(−𝑘𝑧𝐸𝑦)

𝐵1𝑦 = 1
𝜔(𝑘𝑧𝐸𝑥)

𝐵1𝑧 = 1
𝜔( − 𝑖𝜕𝐸𝑦

𝜕𝑥 − 𝑘𝑦𝐸𝑥)

(12.6)

Substituting Equation 12.6 into Equation 12.5 gives

−𝑖𝜔𝜌𝜇0
𝐸𝑦
𝐵 = − 𝜕

𝜕𝑥[𝐵
1
𝜔( − 𝑖𝜕𝐸𝑦

𝜕𝑥 − 𝑘𝑦𝐸𝑥)] + 𝑖𝑘𝑧𝐵
−𝑘𝑧
𝜔 𝐸𝑦

−𝑖(𝜔2𝜌𝜇0/𝐵2 − 𝑘2
𝑧)𝐸𝑦 = 𝑘𝑦

𝜕𝐸𝑥
𝜕𝑥 − 𝑖𝜕

2𝐸𝑦
𝜕𝑥2

−𝑖𝜔𝜌𝜇0
𝐸𝑥
𝐵 = 𝑘𝑧𝐵

𝑘𝑧
𝜔 𝐸𝑥 − 𝑘𝑦𝐵

1
𝜔( − 𝑖𝜕𝐸𝑦

𝜕𝑥 − 𝑘𝑦𝐸𝑥)

(𝜔2𝜌𝜇0/𝐵2 − 𝑘2
𝑦 − 𝑘2

𝑧)𝐸𝑥 + 𝑖𝑘𝑦
𝜕𝐸𝑦
𝜕𝑥 = 0

Let 𝑅2 = 𝜇0𝜌(𝑥)𝜔2/𝐵2 = 𝜔2/𝑉𝐴(𝑥)2, we have

−𝑖(𝑅2 − 𝑘2
𝑧)𝐸𝑦 = 𝑘𝑦

𝜕𝐸𝑥
𝜕𝑥 − 𝑖𝜕

2𝐸𝑦
𝜕𝑥2

(𝑅2 − 𝑘2
𝑦 − 𝑘2

𝑧)𝐸𝑥 + 𝑖𝑘𝑦
𝜕𝐸𝑦
𝜕𝑥 = 0

(12.7)

Eliminating 𝐸𝑥 from Equation 12.7 gives

𝜕2

𝜕𝑥2𝐸𝑦 − 𝑘2
𝑦
𝜕
𝜕𝑥𝑅

2(𝑥) 1
(𝑅2 − 𝑘2𝑧)(𝑅2 − 𝑘2𝑧 − 𝑘2𝑦)

𝜕𝐸𝑦
𝜕𝑥 + (𝑅2 − 𝑘2

𝑧 − 𝑘2
𝑦)𝐸𝑦 = 0 (12.8)
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There is a very important observation about polarization from Equation 12.7:

𝐸𝑥
𝐸𝑦

= − 𝑖𝑘𝑦
𝑅2 − 𝑘2𝑦 − 𝑘2𝑧

𝜕𝐸𝑦
𝜕𝑥

1
𝐸𝑦

(12.9)

Our familiar fast MHD wave is no longer linearly polarized in a nonuniform plasma! A key
thing on the RHS is the dependence on the sign of 𝑘𝑦 as well as 𝜕𝐸𝑦/𝜕𝑥. For fast waves
propagating in opposite directions (i.e. eastward and westward in the azimuthal direction),
the sense of polarization (RH, LH) will change as 𝑘𝑦 changes sign across local noon. Right at
the resonance point where 𝑅2 − 𝑘2

𝑧 − 𝑘2
𝑦 = 0, we get linearly polarized Alfvén wave. 𝜕𝐸𝑦/𝜕𝑥

changes sign across the resonance point, thus we also have another change in polarization
detected on the ground for different L-shells (or magnetic latitudes).

Equation 12.8 can also be written as a second order differential equation of 𝐵1𝑧, the compres-
sional component of the magnetic field (see Equation 3.7), as (Kivelson and Southwood 1985)
did in proposing the idea of cavity modes:

𝜕2𝐵1𝑧
𝜕𝑥2 −

𝜕𝑅2
𝜕𝑥

𝑅2 − 𝑘2𝑧

𝜕𝐵1𝑧
𝜕𝑥 + (𝑅2 − 𝑘2

𝑦 − 𝑘2
𝑧)𝐵1𝑧 = 0

or equivalently,
𝜕2𝐵1𝑧
𝜕𝑥2 − 𝜔2𝜕𝑉 −2

𝐴 /𝜕𝑥
𝜔2/𝑉 2

𝐴 − 𝑘2𝑧

𝜕𝐵1𝑧
𝜕𝑥 + ( 𝜔2

𝑉 2
𝐴

− 𝑘2
𝑦 − 𝑘2

𝑧)𝐵1𝑧 = 0 (12.10)

Let us first get some intuitions about Equation 12.8 (following (Glassmeier et al. 1999), but
note that there are sign errors and wrong equations in the original paper!). This equation ex-
hibits strong singularities found in the denominator of its second term, much as first described
by Tamao (1965). The following solutions are possible. If 𝑅2 − 𝑘2

𝑧 − 𝑘2
𝑦 > 0, from which

𝑅2 − 𝑘2
𝑧 > 0 follows, no singularities appear. Assuming 𝑘𝑦 ≈ 0, the above equation reduces

to
𝜕2

𝜕𝑥2𝐸𝑦 + (𝑅2 − 𝑘2
𝑧)𝐸𝑦 = 0

For a linear density profile, i.e. 𝑅2 = 𝛼2
0 +𝛼2𝑥, with the definition of the turning point 𝑥𝑡 via

𝑅2 = 𝑘2
𝑧, and the transformation 𝑠 = 𝛼2/3(𝑥 − 𝑥𝑡) > 0,

𝜕𝐸𝑦
𝜕𝑥 = 𝜕𝐸𝑦

𝜕(𝛼−2/3𝑠 + 𝑥𝑡)
= 𝛼2/3𝜕𝐸𝑦

𝜕𝑠
𝜕2𝐸𝑦
𝜕𝑥2 = 𝛼4/3𝜕2𝐸𝑦

𝜕𝑠2

𝜕2𝐸𝑦
𝜕𝑠2 + 𝑠𝐸𝑦 = 0
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Figure 12.4: The variation of amplitude and the sense of polarization of Pc5’s seen at high
latitudes with latitude and magnetic local time. (After [Samson +, 1974].)
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This is the Airy or Stokes equation (Section 3.11.1) with the two principal solutions displayed
in ?@fig-airy-flr. The solution 𝐵𝑖(𝑠) is unphysical as it implies unlimited growth of 𝐸𝑦 behind
the turning point at 𝑠 = 0. Thus 𝐸𝑦(𝑠) = 𝐴𝑖(𝑠) is the required solution. The turning point
actually is the point of total reflection of the wave field. Its appearance can be understood on
the following grounds. The “effective” local wavenumber in 𝑥 is given by

𝑘2
𝑥(𝑥, 𝜔) =

𝜔2

𝑉 2
𝐴(𝑥)

− 𝑘2
𝑦 − 𝑘2

𝑧 (12.11)

If 𝑉 2
𝐴 increases with 𝑥, that is with 𝑠 in the Airy function plot, 𝑘2

𝑥 has to decrease as 𝜔, 𝑘𝑦
and 𝑘𝑧 stay constant. Eventually 𝑘2

𝑥 may become negative, which implies an imaginary wave
number 𝑘𝑥. At this turning point the wave will be reflected.

KeyNotes.plot_airy_minus_x()

Next if 𝑅2 − 𝑘2
𝑧 − 𝑘2

𝑦 < 0, 𝑅2 − 𝑘2
𝑧 = 0 may occur. Assuming again a linear density profile,

defining a resonance point 𝑥𝑟 via 𝑅2 = 𝑘2
𝑧, and 𝑠 = 𝑥 − 𝑥𝑟, the electric field perturbation

transforms close to the resonance point 𝑥 − 𝑥𝑟 = 0 into

𝜕2𝐸𝑦
𝜕𝑠2 − 1

𝑠
𝑠𝑡

𝑠 − 𝑠𝑡
𝜕𝐸𝑦
𝜕𝑠 + 𝛼2(𝑠 − 𝑠𝑡)𝐸𝑦 = 0 (12.12)

where 𝑠𝑡 = 𝑘2
𝑦/𝛼2.

At the resonance point its solution exhibits a clear singularity with unlimited growth of 𝐸𝑦.
In front of the turning point 𝑠 > 𝑠𝑡 the solution is similar to an Airy function, while behind
it singular behaviour is observed at the resonance point 𝑠 = 0. I do not show the solution
BECAUSE I DON’T KNOW HOW TO WRITE IT DOWN! But let us now follow (Kivelson
and Southwood 1985) and check the equivalent perturbation Equation 12.10 for 𝐵1𝑧.

When we also assume linear mass density variation with 𝑥 in Equation 12.10 such that

𝑅2 − 𝑘2
𝑧 = 𝛼2(𝑥 − 𝑥𝑟)

𝑅2 − 𝑘2
𝑧 − 𝑘2

𝑦 = 𝛼2(𝑥 − 𝑥𝑡)

where 𝑥𝑟 = 𝑘2
𝑧/𝛼2, 𝑥𝑡 = (𝑘2

𝑧 + 𝑘2
𝑦)/𝛼2 = 𝑥𝑟 + 𝑘2

𝑦/𝛼2, we have

𝜕2𝐵1𝑧
𝜕𝑥2 − 1

𝑥 − 𝑥𝑟

𝜕𝐵1𝑧
𝜕𝑥 + 𝛼2(𝑥 − 𝑥𝑡)𝐵1𝑧 = 0 (12.13)

The solution of Equation 12.13 is discussed by (1986). The singular point where 𝑥 = 𝑥𝑟
and 𝑅2 = 𝑘2

𝑧 corresponds to the resonance point where the wave frequency matches the Alfvén
mode frequency. The point where 𝑥 = 𝑥𝑡 and 𝑅2 = 𝑘2

𝑦+𝑘2
𝑧 is the turning point of the equation.
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When 𝑥 > 𝑥𝑡, any wave described by the equation oscillates with 𝑥; when 𝑥 < 𝑥𝑡 independent
solutions grow or evanesce with 𝑥 on each side of the resonance singularity 𝑥𝑟.

Series solutions valid in the neighborhood of 𝑥 = 𝑥𝑟 and 𝑥 = 𝑥𝑡 have been derived by a variety
of authors. The Frobenius method of solution of partial differential equations can be used to
find solutions valid near 𝑥𝑟, where the analytic solution is of the form

𝑅𝑡(𝑥) = 𝑘2
𝑦(𝑥 − 𝑥𝑟)2 + 𝒪[(𝑥 − 𝑥𝑟)4] (12.14)

and the singular solution is of the form

𝑠𝑡(𝑥) = 1 + 1
2𝑅𝑡(𝑥) ln(𝑥𝑟 − 𝑥) + 𝒪[(𝑥 − 𝑥𝑟)2] (12.15)

For 𝑘2
𝑦 = 𝛼4/3, the two solutions for 𝐵1𝑧 is shown in Figure 12.5. On the far right side of the

plot the functions are close to spatial quadrature and have zeros whose spacing decreases with
increasing 𝑥. In this regime, as we will mention later, the WKB approximation is good and the
amplitude and phase are proportional to 𝑠1/4 and 𝑠3/2, respectively. The amplitudes have been
plotted just such that an incoming wave from large 𝑥 would be represented by 𝑅𝑡(𝑥)+𝑖𝑆𝑡(𝑥) if
a time variation 𝑒−𝑖𝜔𝑡 is specified. The corresponding mode propagating toward large 𝑥 would
be 𝑅𝑡(𝑥) − 𝑖𝑆𝑡(𝑥). Thus 𝑅𝑡(𝑥), 𝑆𝑡(𝑥) represent standing wave forms. However, the presence
of the resonance (at the far left of the plots) preludes there being perfect reflection or perfect
standing wave solutions.

@sco KeyNotes.plot_b1z_ode()

The following physical interpretation is tempting. The MHD wave propagating into the magne-
tosphere is a fast mode wave generated by, e.g. plasma instabilities at the magnetopause. Even-
tually the wave reaches the turning point where reflection occurs. If conditions are favourable,
that is if a resonance point occurs, part of the fast mode wave energy can tunnel into the
resonance, where coupling from the fast mode disturbance into an Alfvén mode perturbation
takes place. The resonance point always lies beyond the turning point, but energy tunnels
to the resonance point and the reflection is found to be less than perfect. This scenario is
schematically shown in Figure 12.6, where the reflection or turning point is assumed to coin-
cide with the magnetopause. The point of maximum coupling or “resonant mode coupling”
is given by 𝜔 = 𝑘∥𝑉𝐴(𝑥), where 𝜔 is the fast mode wave frequency, 𝑘∥ is the field-aligned
component of the fast mode wave vector and 𝑉𝐴(𝑥) is the local Alfvén velocity. This is also
the Alfvén dispersion relation.

Equation 12.10 has a long history that appeared first in the context of a radio wave obliquely
incident on a region of increasing electron density, all the way back to 1951, as mentioned in
(Kivelson and Southwood 1986). It also appears in calculating the absorption of laser energy by
a plasma and heating a plasma by radio wave injection to excite internal Alfvén waves. Energy
is absorbed at the location in the plasma corresponding to the singular point of the governing
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Figure 12.5: Two independent solutions of Equation 12.13 for 𝑥 > 𝑥𝑟. The particular pair
illustrated are solutions for the case 𝜆2/𝛼4/3 = 1 for which 𝑥𝑡/𝑥𝑟 = 2. The dashed
curve is the solution that is analytic at the singular point (cf. Equation 12.14).
The solution plotted as a solid curve is finite at the singularity with infinite
derivatives as evident from Equation 12.15. Amplitudes have been selected to
match at large 𝑥 where the oscillating solutions are in spatial quadrature.
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Figure 12.6: Schematic view of the field line resonance, driven by unstable surface wave.
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differential ?@eq-flr-wave-bz or its equivalent. Without the introduction of additional effects
such as dissipation or dispersion near resonance, the singularity in the differential equation
implies that the amplitude of the Alfvén wave grows secularly.

Some studies (e.g. Wright (1994)) prefer to use plasma displacement 𝜉𝜉𝜉 instead of u, where
u = ̇𝜉𝜉𝜉, and perturbed magnetic field component 𝐵1𝑧 to describe the model:

1
𝑉 2
𝐴

𝜕2𝜉𝑥
𝜕𝑡2 − 𝜕𝜉𝑥

𝜕𝑧2 = − 1
𝐵0

𝜕𝐵1𝑧
𝜕𝑥

1
𝑉 2
𝐴

𝜕2𝜉𝑦
𝜕𝑡2 − 𝜕𝜉𝑦

𝜕𝑧2 = − 1
𝐵0

𝜕𝐵1𝑧
𝜕𝑦

𝐵1𝑧 = −𝐵0(
𝜕𝜉𝑥
𝜕𝑥 + 𝜕𝜉𝑦

𝜕𝑦 )

(12.16)

This equation set is equivalent to Equation 7.28. The first two equations are the 𝑥 and 𝑦
component of the momentum equation, and the last equation is the magnetic field advection
equation (Faraday’s law + Ohm’s law). Recall that 𝐵1𝑧 is the compressional perturbation to
the ambient magnetic field, and 𝜉𝑦 corresponds to 𝑢𝑦 which is the toroidal Alfvénic perturba-
tion. Then on the RHS of the second equation, it is the azimuthal gradient in the fast mode
𝜕𝐵1𝑧/𝜕𝑦 that drives the response in the azimuthal place displacement 𝜉𝑦; the LHS is a simple
harmonic oscillator and the RHS is the forcing term. Since we are seeking for solutions of the
form 𝑒𝑖(𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡), we can see that:

• if 𝑘𝑦 = 0 for the fast mode, then there are no azimuthal gradients to drive FLRs and
hence you get no wave coupling;

• if 𝑘𝑦 → ∞, then 𝜉𝑦 → 0 and 𝜉𝑥 describes a decoupled poloidal Alfvén wave.
• if 𝑘𝑦 ≠ 0 or ∞, the wave modes are coupled together and energy initially in the fast

mode may mode convert to Alfvén wave energy on localized field lines.

Uniform density and background magnetic field

Let 𝜌 = const., 𝑉𝐴 = const.. From Equation 12.16,

̈𝐵1𝑧 = −𝐵0(
𝜕 ̈𝜉𝑥
𝜕𝑥 + 𝜕 ̈𝜉𝑦

𝜕𝑦 ) = 𝑉 2
𝐴(

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2)𝐵1𝑧

= 𝑉 2
𝐴∇2𝐵1𝑧

Consider normal modes of waveguides of the form 𝑒k⋅r−𝑖𝜔𝑡, where k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). The disper-
sion relation for the fast mode is then

𝜔2 = 𝑉 2
𝐴(𝑘2

𝑥 + 𝑘2
𝑦 + 𝑘2

𝑧) (12.17)
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In an infinite medium this relation gives nondispersive propagation. Since we are interested
primarily in propagation along the waveguide (i.e., in the 𝑦 direction) we shall define 𝑣𝑝 and
𝑣𝑔 to be the phase and group velocities along ̂𝑦. Employing Equation 12.17 gives

𝑣𝑝 = 𝜔
𝑘𝑦

= 𝑘
𝑘𝑦

𝑉𝐴

𝑣𝑔 = 𝜕𝜔
𝜕𝑘𝑦

= 𝑘𝑦
𝑘 𝑉𝐴

which yields the familiar waveguide relation

𝑣𝑝𝑣𝑔 = 𝑉 2
𝐴 (12.18)

The shear Alfvén wave has the same velocity parallel to the field line (because it is cold).
However, in a waveguide the boundary conditions in the 𝑥 and 𝑧 directions restrict the choice
of wavenumbers and introduce dispersion. Suppose that the boundaries in 𝑥 are perfectly
reflecting (e.g. 𝜉𝑥 = 𝜕𝐵1𝑧

𝜕𝑦 = 0) as are those in 𝑧 (𝜉𝑥 = 𝜉𝑦 = 𝐵1𝑧 = 0) which represent the
ionospheric boundary for closed field lines. Then

𝑘𝑥 = ±𝑛𝜋/𝑎, 𝑛 = 1, 2, 3...
𝑘𝑧 = ±𝑚𝜋/𝑐, 𝑚 = 1, 2, 3... (12.19)

where 𝑎 is the box length in x and 𝑐 is the box length in z (i.e. length of the field lines).

Given values of 𝑘𝑥 and 𝑘𝑧, we may use Equation 12.17 to find 𝑘𝑦 as a function of 𝜔,

𝑘2
𝑦 = 𝜔2

𝑉 2
𝐴

− 𝑘2
𝑥 − 𝑘2

𝑦

If 𝑘𝑦 is real then the mode may propagate along the guide. However, if we believe that the
boundary at 𝑥 = 𝑥𝑚 = 𝑎 is not a reflector but is driven, it would be appropriate to impose
a wavenumber 𝑘𝑦 along the outer boundary and solve for 𝑘𝑥 given 𝑘𝑧. This is the case when
the magnetopause is driven by the Kelvin-Helmholtz instability (i.e. 𝑘𝑦 given by the surface
waves), which was proposed in the 1970s to be the driver of field line resonances. In this
situation 𝑘𝑥 is found to be imaginary, and the mode is evanescent (exponentially decaying) in
𝑥.

Nonuniform density and magnetic field

The simplest assumptions in this case would be 𝜌 = 𝜌(𝑥), B0 = 𝐵0 ̂𝑧, and that the Alfvén speed
𝑉𝐴 is monotonically decreasing with 𝑥, 𝜕𝑉𝐴/𝜕𝑥 < 0. Then again we get Equation 12.10. Solv-
ing this equation for given boundary conditions in 𝑥 yields a set of orthogonal eigenfunctions
𝐵1𝑧(𝑥) and eigenfrequencies.
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First of all, we shall notice that a singularity/resonance occurs at 𝑥𝑟 where

𝜔2 = 𝑘2
𝑧𝑉 2

𝐴(𝑥𝑟) (12.20)

Across 𝑥𝑟 there will be a 180∘ phase shift for the perturbed terms (Equation 12.9). Energy is
been absorbed at the resonance point from fast mode to Alfvén mode. Dissipation is required,
otherwise the amplitude of the Alfvén wave grows secularly. Ionospheric dissipation near the
resonant field line is likely to be one important process limiting the growth of the resonance
amplitude.

Secondly, there is a turning point at 𝑥𝑡 defined via 𝑘2
𝑥 = 0 (fixed 𝑘𝑦, 𝑘𝑧, 𝜔):

𝜔2 = (𝑘2
𝑦 + 𝑘2

𝑧)𝑉 2
𝐴(𝑥𝑡) (12.21)

On the right of 𝑥𝑡, the positive exponent represents a wave propagating in the positive 𝑥
direction towards the magnetopause, and the negative exponent represents one propagating
away from the magnetopause. This is like an imperfect standing wave solution. Across 𝑥𝑡 on
the left, the oscillating solutions convert to a decaying solution and an exponentially growing
solution (Section 3.11.1).

If the Alfvén speed 𝑉𝐴 is monotonically decreasing with 𝑥, from Equation 12.20 and Equa-
tion 12.21 we always have 0 < 𝑥𝑟 < 𝑥𝑡 < 𝑥𝑚. In the low Alfvén speed region [𝑥𝑡, 𝑥𝑚] the fast
mode may propagate, while in the high Alfvén speed region [0, 𝑥𝑡] the fast mode is evanescent.
Thus the resonant singularity 𝑥𝑟 is in the evanescent tail of the fast mode.

The first-order derivative term in Equation 12.10 dominate near 𝑥 = 𝑥𝑟, but is small in the
propagating interval [𝑥𝑡, 𝑥𝑚]. This is particularly true in the WKB limit (Section 3.11), where
we consider waves of short wavelength in 𝑥; i.e. second-order derivative term is much larger
than the first-order derivative term. In the lowest order WKB analysis we may neglect the
first-order derivatives and solve

𝜕2𝐵1𝑧
𝜕𝑥2 + (𝜔2

𝑉 2
𝐴

− 𝑘2
𝑦 − 𝑘2

𝑧)𝐵1𝑧 = 0 (12.22)

and the WKB solution is given in the form

𝐵1𝑧(𝑥) = 𝐴𝑘−1/2
𝑥 𝑒𝑖 ∫𝑘𝑥𝑑𝑥 +𝐵𝑘−1/2

𝑥 𝑒−𝑖∫𝑘𝑥𝑑𝑥

where 𝐴 and 𝐵 are constants, and 𝑘𝑥 is the “effective” wavenumber defined in Equation 12.11,
an explicit function of 𝑥.

The Bohr-Sommerfeld (or phase integral, Section 3.11.4) condition which the quasi-standing
wave must satisfy between 𝑥𝑡 and 𝑥𝑚 is

∫
𝑥𝑚

𝑥𝑡

𝑘𝑥(𝑥, 𝜔𝑛)𝑑𝑥 = (𝑛 + 𝛼)𝜋 𝑛 = 1, 2, 3... (12.23)
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where 𝑥𝑚 = 𝑎 is the location of the outer boundary in 𝑥 and the phase factor 𝛼 is determined
by the boundary conditions in 𝑥. For a perfect reflector at 𝑎 (𝜉𝑥 = 0) and evanescent decay at
small x, we find 𝛼 = −1/4. If there is a resonance in the waveguide, it will modify 𝛼; however,
since the resonance is in the evanescent tail there will be no leading order change in 𝛼.

Equation 12.23 is an integral relation for the eigenfrequencies of the fast mode: we specify 𝑘𝑦,
𝑘𝑧, and 𝑛 (the mode number in x), then find the n-th eigenfrequency 𝜔𝑛 as that frequency for
which the criterion is met. Once we compute 𝜔𝑛, we can then compute the locations of the
excited field line 𝑥𝑟 from Equation 12.20. These are the most observable discrete modes.

Driven FLR vs Cavity Modes vs Waveguide Modes

The surface wave driven FLR seems reasonable. However, the biggest problem for this hypoth-
esis to be valid is that the mapped phase speeds to the magnetopause were too high compared
to in-situ measurements. In addition, in spite of numerous magnetopause crossings by ISEE 1
and 2, regular oscillations of the magnetopause corresponding to the Kelvin-Helmholtz waves
were not seen. These two facts indicated that we should seek for a new explanation for the
driver.

In the 1980s, cavity modes and waveguide modes were proposed to remove the constraint
on driven FLR. The analogy of a magnetosphere to a cavity came before the analogy to a
waveguide. In a cavity model the azimuthal direction 𝜙 or the 𝑦 direction in the box geometry
is finite, and the wavenumber 𝑘𝑦 is determined by the given scale size 𝑏. In the axisymmetric
cylindrical coordinates (𝑟, 𝜙, 𝑧), where 𝜙 is the azimuthal angle and 𝑧 is the coordinate along
the field lines, the field has the form ∼ 𝑒𝑖𝑚𝜙, 𝑚 = 0, 1, 2.1 This is a weak point of the theory
because the magnetosphere is far from axisymmetric and there are no other obvious boundaries
to define the cavity. If the system is similar to a waveguide, then 𝑘𝑦 can have a continuum of
values, and the waveguide allows propagation over a wide band of frequencies.

If instead we use a waveguide model, the azimuthal direction (or 𝑦-direction) will have no im-
posed boundary condition. Theoretically a continuum of wave modes 𝑘𝑦 can excite FLR, and
the discrete resonance frequencies are determined by the Bohr-Sommerfeld condition Equa-
tion 12.23 where harmonics of toroidal and poloidal are given by 𝑘𝑧. The discrete frequency
spectrum of the fast waveguide modes is suitable for driving a series of Alfvén resonance; how-
ever, it is not obvious that the continuous frequency spectrum of the modes will be able to
drive resonances at discrete frequencies. A key observation to make waveguide mode more
valid is that only small 𝑘𝑦 contributes to the resonance. ((Walker et al. 1992),[Wright 1992],
(Wright 1994)). If 𝑘𝑦 is not fixed (but 𝑘𝑧 is fixed), then Equation 12.23 is the dispersion rela-
tion for the waveguide expressing 𝜔 as a function of 𝑘𝑦. The Alfvén speed is a strong function
of the L shell, typically ∼ 𝐿−3. Thus, if the turning point 𝑥𝑡 is reasonably deep within the
magnetosphere, the range over which 𝜔2/𝑉 2

𝐴 ≫ 𝑘2
𝑦 + 𝑘2

𝑧 contributes most significantly to the
integral Equation 12.23. The result is that over a wide range of wavelengths the frequency is
very insensitive to 𝑘𝑦. Only when 𝑘𝑦 is quite large this is not true, and then the turning point is
near the magnetopause, and the wave does not penetrate very deeply into the magnetosphere.

1𝐸(𝜙 = 0) = 𝐸(𝜙 = 2𝜋)
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Figure 12.7: From Wright 1992.
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Figure 12.8: From (Samson et al. 1992).
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Each waveguide mode has a phase velocity 𝜔/𝑘𝑦 and a group velocity d𝜔/𝑑𝑘𝑦. Since Equa-
tion 12.23 defines 𝜔 as a function of 𝑘𝑦, we can substitute Equation 12.11 into Equation 12.23
and differentiate with respect to 𝑘𝑦 (assuming 𝛼 is a constant):

𝜕
𝜕𝑘𝑦

∫
𝑥𝑚

𝑥𝑡

( 𝜔2

𝑉𝐴(𝑥)2
− 𝑘2

𝑦 − 𝑘2
𝑧)

1/2
𝑑𝑥 = 0

∫
𝑥𝑚

𝑥𝑡

1
2𝑘

−1
𝑥 ( 1

𝑉 2
𝐴

𝜕𝜔2

𝜕𝑘𝑦
− 2𝑘𝑦)𝑑𝑥 = 0

𝜔
𝑘𝑦

𝜕𝜔
𝜕𝑘𝑦

∫
𝑥𝑚

𝑥𝑡

𝑘−1
𝑥 𝑉 −2

𝐴 𝑑𝑥 = ∫
𝑥𝑚

𝑥𝑡

𝑘−1
𝑥 𝑑𝑥

𝑣𝑝𝑣𝑔 ≡ 𝜔
𝑘𝑦

d𝜔
𝑑𝑘𝑦

=
∫𝑥𝑚
𝑥𝑡

𝑘−1
𝑥 𝑑𝑥

∫𝑥𝑚
𝑥𝑡

𝑉 −2
𝐴 𝑘−1𝑥 𝑑𝑥

The RHS is the reciprocal of the weighted mean of 𝑉 −2
𝐴 with weighting function 𝑘−1

𝑥 . Thus we
can write

𝑣𝑝𝑣𝑔 = ⟨𝑉 −2
𝐴 ⟩−1 (12.24)

In a uniform waveguide filled with plasma for which the Alfvén speed was 𝑉𝐴 the well-known
waveguide relation Equation 12.18 would be recovered. In this more complicated case where
the Alfvén speed is not constant throughout the waveguide the RHS of Equation 12.24 is an
appropriately weight mean of 𝑉 −2

𝐴 . In general the phase velocity 𝑣𝑝 is much larger than the
mean Alfvén velocity in the guide, and the group velocity 𝑣𝑔 is much smaller. This is also
consistent with the weak dependence of 𝜔 on 𝑘𝑦 such that 𝑣𝑔 is small. The consequence is that
even if the ends of the guide are open, the time taken for energy to be propagated along it is
long compared with the period of the oscillations.

Therefore, the waveguide model proposes the following explanation. Disturbances in the solar
wind move along the magnetopause, producing a disturbance on the boundary which is prop-
agated tailward with speed 𝑣𝑤. Generally 𝑣𝑤 ≫ 𝑉𝐴. Such a disturbance is likely to excite
waveguide modes with phase velocities equal to 𝑣𝑤. Because the frequency of the modes is very
insensitive to 𝑘𝑦, the same frequencies (determined by eigenmodes in 𝑥 and 𝑧) are excited no
matter what the velocity. The disturbance moving with the wave can feed energy continuously
into it. This then requires

𝑘𝑦 = 𝜔
𝑣𝑤

i.e., the azimuthal wavenumber is determined by the velocity of the source rather than by a
boundary condition on 𝑦. Thus we have a discrete value of wavenumber and a discrete fast
mode frequency spectrum, without relying on the resonance modes from the cavity model.

Such a disturbance could arise from more than one type of source. If it arose from an impulse
in the solar wind, then one would expect the waveguide response to be a ringing at the natural
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frequencies of its modes with growth on the time scale required to establish the mode and
decay on the time scale for leakage to the resonance and loss in the ionosphere or elsewhere.
Alternatively the waveguide modes could be excited by the Kelvin-Helmholtz instability. In
this case it could be expected that the waveguide modes would all be excited continuously and
would be driven so long as the solar wind velocity and the characteristics of the magnetopause
were maintained.

12.3 Energy Consideration

???

The energy that is carried into the magnetosphere across the background field by the non-
guided fast mode is accumulated in the plane of resonant mode coupling (i.e. the y–z plane
through 𝑥𝑟 in Figure 12.3) in the form of the guided Alfvén wave. It is this localized accumula-
tion of energy due to resonant mode coupling between a non-guided mode and a guided mode
that constitutes a field line resonance. This wave energy accumulation can be described by

𝜕𝑤
𝜕𝑡 + ∇ ⋅ S = −ℎ

where 𝑤 is the wave energy density, S is the Poynting flux, and ℎ a dissipation term, describing
energy loss due to e.g. ionospheric Joule heating. As the background parameters only vary in
the radial direction, this equation reduces to

𝜕𝑤
𝜕𝑡 = − d

d𝑟𝑆𝑥 − ℎ

Integration across the width of the coupling region in a radial direction leads to the following
rate equation:

𝜕𝑊
𝜕𝑡 = 𝑐𝑒𝑆𝑛𝑔 − 𝑆off

ℎ −𝐻

where 𝑊 is the energy per area that is being accumulated in the coupling, 𝑐𝑒 is a coupling
efficiency, 𝑆𝑛𝑔 the incoming Poynting flux of the non-guided mode, and 𝑆off

𝑔 the “off-angle”
component of the Poynting flux of that mode to which the non-guided mode couples. Including
this term 𝑆off

𝑔 allows us to consider energy losses due to coupling to not strictly guided modes.
A finite off-angle component of the coupled wave mode would render the energy accumulation
less efficient or may even inhibit the build-up of a resonance. Off-angle components may arise
if the transverse scale of the coupled wave become small enough for finite ion gyroradius or
finite electron inertia becoming important. In this case the coupled mode is a kinetic Alfvén
mode. The parameter 𝑐𝑒 denotes the coupling efficiency, that is the fraction of energy of the
non-guided mode that is converted into the guided mode. Finally, 𝐻 gives the dissipative
losses, integrated in the 𝑥 direction.
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It is now instructive to evaluate the rate Equation for the ideal MHD regime. As the Alfvén
mode is a strictly guided mode its Poynting flux is directed exactly parallel to the background
magnetic field. In other words, 𝑆off

ℎ = 0, and Equation reads

𝜕𝑊
𝜕𝑡 = 𝑐𝑒𝑆fast

where 𝑆fast = 𝑆𝑛𝑔 is the Poynting flux of the non-guided MHD mode. Thus, the energy density
in the coupling region is continuously increasing as there is no outward transport of energy
to balance the incoming Poynting flux of the fast mode. However, ionospheric Joule heating
provides a significant dissipation mechanism with H limiting the energy density.

Resonant mode coupling is only a necessary condition for field line resonances to occur. A
sufficient condition is critical coupling to a strictly guided mode and absence of dissipation to
a degree that there is enough energy for resonance.

12.4 Non-MHD Effects

As been shown in previous sections, some features of the wave absorption can be simply
understood using a cold fluid approach. In the cold plasma description, the Alfvén resonance
is a singularity of the compressional wave Equation 12.10. The compressional wave equation
may be solved by analytic continuation around the Alfvén resonance singularity in which case
there is a loss of Poynting flux at the resonance and wave energy is converted to an Alfvén wave.
Alternatively, a kinetic description of the mode conversion process involves two propagating
modes, i.e. the compressional wave and the dispersive kinetic Alfvén wave, which couple near
the resonance location with energy converted from the former to the latter. If we then consider
a hot plasma, as the temperature increases the Doppler shift will spread the resonance leading
to a more extended coupling region. Thus the inclusion of finite-temperature and 𝐸∥ (in
KAWs) can remove the singularity in the cold fluid model, and the energy absored by the
Alfvén resonance shows up as electron heating near the resonance.

As a recap, in a plasma with a 1‐D inhomogeneity in the background plasma parameters
along the direction perpendicular to the magnetic field, the linearized MHD equations can be
expressed in terms of 𝛿𝑝1 = 𝐵0𝛿𝐵∥ + 𝛿𝑝 and 𝛿𝐵⟂ by a coupled system of equations

−𝑖𝑘∥ (1 −
𝑘2
∥𝑐2𝑠
𝜔2 )𝛿𝑝1 = (1 + 𝑐2𝑠

𝑣2𝐴
−

𝑘2
∥𝑐2𝑠
𝜔2 )𝐵2

0∇⟂ ⋅ (𝛿B⟂
𝐵0

) (12.25)

and
(𝜔2 − 𝑘2

∥𝑉 2
𝐴)𝐵0𝛿B⟂ = 𝑖𝑘∥𝑣2𝐴∇⟂𝛿𝑝1 (12.26)

In higher frequency cases, the Alfvén resonance condition Equation 12.20 is modified as

𝜔2 = 𝑘2
∥𝑉 2

𝐴(1 − 𝜔2/𝜔2
𝑐𝑖)2 (12.27)
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because of the finite ion Larmor radius effects [Stix, 1992].

The Alfvén resonance singularity can be removed by including non‐MHD effects such as elec-
tron inertia or ion Larmor radius corrections.2

Using the two-fluid theory, Equation 12.26 can be replaced by

[𝜔2(1 − 𝜆2
𝑒∇2

⟂) − 𝑘2
∥𝑣2𝐴(1 − 𝑟2𝐿𝑠∇2

⟂)]𝐵0𝛿𝐵⟂ = 𝑖𝑘∥𝑣2𝐴∇⟂𝛿𝑝1 (12.28)

which includes electron inertial effects with 𝜆𝑒 = 𝑐/𝜔𝑝𝑒 being the plasma skin depth or electron
inertial length, and electron pressure effects on the ion acoustic Larmor radius scale 𝑟2𝐿𝑠 =
𝑘𝐵𝑇𝐸/𝑚𝑖Ω2

𝑖 . The relative importance of electron pressure versus electron inertial effects is
determined by 𝑟𝐿𝑠/𝜆𝑒: the pressure effect is dominant if 𝑟𝐿𝑠/𝜆𝑒 = 𝑛𝑘𝐵𝑇𝑒/𝜇0𝐵2√𝑚𝑖/𝑚𝑒 > 1,
which occurs when 𝛽𝑒/2 > √𝑚𝑒/𝑚𝑖 = 0.02. Near the magnetopause, electron inertial effects
are typically not important except at locations where 𝑘∥ → 0 such as in a sheared field or
reconnection geometry.

Thus what’s usually been considered to remove the singularity is the ion kinetic effects, where
we end up coupling fast waves with kinetic Alfvén waves of the dispersion relation Equa-
tion 7.78. Using the kinetic theory Equation 12.26 can be modified as

[𝜔2�̂�1 − 𝑘2
∥𝑣2𝐴 (1 + 𝑇𝑒

𝑇𝑖
�̂�2)]𝐵0𝛿𝐵⟂ = 𝑖𝑘∥𝑣2𝐴∇⟂𝛿𝑝1 (12.29)

where
�̂�1 = ???
�̂�2 = ???

It can shown that under certain approximations (Pade approximation and 𝜁𝑒 ≪ 1), the left
hand side of Equation 12.29 becomes the kinetic Alfvén wave

𝑘2
∥𝑣2𝐴 [1 + (1 + 𝑇𝑒

𝑇𝑖
)𝑘2

⟂𝑟2𝑖𝐿] = 𝑖𝑘∥𝑣2𝐴∇⟂𝛿𝑝1 (12.30)

Ion Landau damping may be important when 𝜁𝑖 = 𝜔/
√
2𝑘∥𝑣𝑖,𝑡ℎ ∼ 1 (I can feel this from Bellan,

but how exactly???).

From the cold MHD theory the nonzero azimuthal/y wavenumber is necessary for wave cou-
pling (Equation 12.16). However, finite-frequency effects can remove the decoupling when
𝑘𝑦 = 0, as orginally noted by (1979). The energy absorption rate can be expressed as a func-
tion of 𝑘𝑦 and 𝑘𝑧 so even if 𝑘𝑦 = 0, as long as 𝑘𝑧𝑙2(𝜔/Ω𝑖) ≠ 0 (𝑙 is a length scale related to
𝜔, 𝑣𝐴, Ω𝑖, and 𝑘𝑧), we can still get energy absorption.

2Check the papers by Lin, Hasegawa, Chen, Johnson, and Cheng.
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12.5 Nonlinear Effects

Cold ions theory and an extension to finite 𝑘⟂𝑟𝑖𝐿 predict that a pump KAW can nonlinearly
decay into an ion acoustic mode and a lower-sideband daughter KAW through a parametric
instability (Section 13.4).

12.6 3D FLR
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13 Nonlinear Effects

In many experiments waves are no longer describable by the linear theory by the time they
are observed. Consider, for instance, the case of drift waves. Because they are unstable, drift
waves would, according to linear theory, increase their amplitude exponentially. This period
of growth is not normally observed — since one usually does not know when to start looking
— but instead one observes the waves only after they have grown to a large, steady amplitude.
The fact that the waves are no longer growing means that the linear thoery is no longer valid,
and some nonlinear effect is limiting the amplitude. Theoretical explanation of this elementary
observation has proved to be a surprisingly difficult problem, since the observed amplitude at
saturation is rather small.

A wave can undergo a number of changes when its amplitude gets large. It can change its
shape — say, from a sine wave to a lopsided triangular waveform. This is the same as saying
that Fourier components at other frequencies (or wave numbers) are generated. Ultimately,
the wave can “break”, like ocean waves on a beach, converting the wave energy into thermal
energy of the particles. A large wave can trap particles in its potential troughs, thus changing
the properties of the medium in which it propagates (e.g. nonlinear Landau damping). If a
plasma is so strongly excited that a continuous spectrum of frequencies is present, it is in a
state of turbulence. This state must be described statistically, as in the case of hydrodynamics.
An important consequence of plasma turbulence is anomalous resistivity, in which electrons are
slowed down by collisions with random electric field fluctuations, rather than with ions. This
effect is used for ohmic heating of a plasma to temperature so high that ordinary resistivity is
insufficient.

Nonlinear phenomena can be grouped into three broad categories:

1. Basically nonlinearizable problems.

• Diffusion in a fully ionized gas, for instance, is intrinsically a nonlinear problem because
the diffusion coefficient varies with density.

• Problems of hydromagnetic equilibrium are nonlinear.
• Plasma sheath.

2. Wave-particle interactions.

• Particle trapping can lead to nonlinear damping (Section 8.6).
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• A classic example is the quasilinear effect, in which the equilibrium of the plasma is
changed by the waves. Consider the case of a plasma with an electron beam (Fig.8-1).
Since the distribution function has a region where 𝑑𝑓0/𝑑𝑣 is positive, the system has
inverse Landau damping, and plasma oscillations with 𝑣𝜙 in the positive-slope region
are unstable (Equation 8.32). The resonant electrons are the first to be affected by
wave-particle interactions, and their distribution function will be changed by the wave
electric field. The waves are stabilized when 𝑓𝑒(𝑣) is flattened by the waves, as shown
by the dashed line in Fig.8-1 ?@fig-unstable-f, so tha the new equilibrium distribution
no longer has a positive slope.

• Plasma wave echoes (Section 13.5).

3. Wave-wave interactions.

• Waves can interact with each other even in the fluid description, in which individual
particle effects are neglected. A single wave can decay by first generating harmonics of
its fundamental frequency. These harmonics can then interact with each other and with
the primary wave to form other waves at the beat frequencies. The beat waves in turn
can grow so large that they can interact and form many more beat frequencies, until
the spectrum becomes continuous. It is interesting to discuss the direction of energy
flow in a turbulent spectrum. In fluid dynamics, long-wavelength modes decay into
short-wavelength modes, because the large eddies contain more energy and can decay
only by splitting into small eddies, which are each less energetic. The smallest eddies
then convert their kinetic motion into heat by viscous damping. In a plasma, usually
the opposite occurs. Short wave-length modes tend to coalesce into long-wavelength
modes, which are less energetic. This is because the electric field energy 𝐸2/8𝜋 is of
order 𝑘2𝜙2/8𝜋, so that if 𝑒𝜙 is fixed (usually by 𝑘𝐵𝑇𝑒), the small-𝑘, long-𝜆 modes have
less energy. As a consequence, energy will be transferred to small 𝑘 by instabilities at
large 𝑘, and some mechanism must be found to dissipate the energy. No such problem
exists at large 𝑘, where Landau damping can occur. For motions along B0, nonlinear
“modulational” instabilities could cause the energy at small 𝑘 to be coupled to ions and
to heat them. For motions perpendicular to B0, the largest eddies will have wavelengths
of the order of the plasma radius and could cause plasma loss to the walls by convection.

Although problems still remain to be solved in the linear theory of waves and instabilities, the
mainstream of plasma research has turned to the much less well understood area of nonlinear
phenomena. The examples in the following sections will give an idea of some of the effects
that have been studied in theory and in experiment.

13.1 The Necessity for Sheaths

In all practical plasma devices, the plasma is contained in a vacuum chamber of finite size.
What happens to the plasma at the wall? For simplicity, let us confine our attention to a
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one-dimensional model with no magnetic field ?@fig-sheath. Suppose there is no appreciable
electric field inside the plasma; we can then let the potential 𝜙 be zero there. When ions and
electrons hit the wall, they recombine and are lost. Since electrons have much higher thermal
velocities than ions, they are lost faster and leave the plasma with a net positive charge. The
plasma must then have potential positive with respect to the wall; i.e., the wall potential 𝜙𝑤
is negative. This potential cannot be distributed over the entire plasma, since Debye shielding
will confine the potential variation to a layer of the order of several Debye lengths in thickness.
This layer, which must exist on all cold walls with which the plasma is in contact, is called a
sheath. The function of a sheath is to form a potential barrier so that the more mobile species,
usually electrons, is confined. electrostatically. The height of the barrier adjusts itself so that
the flux of electrons that wave enough energy to go over the barrier to the wall is just equal
to the flux of ions reaching the wall.

13.1.1 The Planar Sheath Equation

Recall that the Debye length is derived from linearing Poisson’s equation. To examine the
exact behavior of 𝜙(𝑥) in the sheath, we must treat the nonlinear problem: we shall find that
there is not always a solution. ?@fig-sheath-potential shows the situation near one of the
walls. At the plane 𝑥 = 0, ions are imagined to enter the sheath region from the main plasma
with a drift velocity 𝑢0. This drift is needed to accout for the loss of ions to the wall from
the region in which they were created by ionization. For simplicity, we assume 𝑇𝑖 = 0, so that
all ions have the velocity 𝑢0 at 𝑥 = 0. We consider the steady state problem in a collisionless
sheath region. The potential 𝜙 is assumed to decrease monotonically with 𝑥. Actually, 𝜙 could
have spatial oscillations, and then there would be trapped particles in the steady state. This
does not happend in practice because dissipative processes tend to destroy any such highly
organized state.

If 𝑢(𝑥) is the ion velocity, conservation of energy requires

1
2𝑚𝑢2 = 1

2𝑚𝑢2
0 − 𝑒𝜙(𝑥)

𝑢 = (𝑢2
0 −

2𝑒𝜙
𝑚𝑖

)
1/2 (13.1)

The ion equation of continuity then gives the ion density 𝑛𝑖 in terms of the density 𝑛0 in the
main plasma:

𝑛0𝑢0 = 𝑛𝑖(𝑥)𝑢(𝑥)

𝑛𝑖(𝑥) = 𝑛0(1 − 2𝑒𝜙
𝑚𝑖𝑢2

0
)
1/2 (13.2)

In steady state, the electrons will follow the Boltzmann relation closely,
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𝑛𝑒(𝑥) = 𝑛0 exp(𝑒𝜙/𝑘𝐵𝑇𝑒)

Poisson’s equation is then

𝜖0
d2𝜙
d𝑥2 = 𝑒(𝑛𝑒 − 𝑛𝑖) = 𝑒𝑛0[ exp( 𝑒𝜙

𝑘𝐵𝑇𝑒
) − (1 − 2𝑒𝜙

𝑚𝑖𝑢2
0
)
1/2

] (13.3)

The structure of this equation can be seen more clearly if we simplify it with the following
changes in notation:

𝜒 ≡ − 𝑒𝜙
𝑘𝐵𝑇𝑒

𝜉 ≡ 𝑥
𝜆𝐷

= 𝑥( 𝑛0𝑒2
𝜖0𝑘𝐵𝑇𝑒

)
1/2

𝜇 ≡ 𝑢0
(𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

Then it can be written as

𝜒′′ = (1 + 2𝜒
𝜇2 )

−1/2
− 𝑒−𝜒 (13.4)

where the prime denotes d/d𝜉. This is the nonlinear equation of a plane sheath, and it has
an acceptable solution only if 𝜇 is large enough. The reason for the symbol 𝜇 will become
apparent in the following section on shock waves.

13.1.2 The Bohm Sheath Criterion

Equation 13.4 can be integrated once by multiplying both sides by 𝜒′:

∫
𝜉

0
𝜒′𝜒′′d𝜉1 = ∫

𝜉

0
(1 + 2𝜒

𝜇2 )
−1/2

𝜒′d𝜉1 −∫
𝜉

0
𝑒−𝜒𝜒′d𝜉1

where 𝜉1 is a dummy variable. Since 𝜒 = 0 at 𝜉 = 0, the integration easily yield

1
2(𝜒

′2 − 𝜒′
0
2) = 𝜇2[(1 + 2𝜒

𝜇2 )
1/2 − 1] + 𝑒−𝜒 − 1 (13.5)

If E = 0 in the plasma, we must set 𝜒′
0 = 0 at 𝜉 = 0. A second integration to find 𝜒 would

have to be done numerically; but whatever the answer is, the right-hand side of Equation 13.5
must be positive for all 𝜒. In particular, for 𝜒 ≪ 1, we can expand the right-hand terms in
Taylor series:
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𝜇2[1 + 𝜒
𝜇2 − 1

2
𝜒2

𝜇4 + ... − 1] + 1 − 𝜒 + 1
2𝜒

2 + ... − 1 > 0
1
2𝜒

2( − 1
𝜇2 + 1) > 0

𝜇2 > 1 or 𝑢0 > (𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

(13.6)

This inequality is know as the Bohm sheath criterion. It says that ions must enter the sheath
with a velocity greater than the acoustic velocity 𝑣𝑠. To give the ions this directed velocity
𝑢0, there must be a finite electric field in the plasma. Our assumption that 𝜒′ = 0 at 𝜉 = 0
is therefore only an approximate one, made possible by the fact that the scale of the sheath
region is usually much smaller than the scale of the main plasma region in which the ions are
accelerated. The value of 𝑢0 is somewhat arbitrary, depending on where we choose to put the
boundary 𝑥 = 0 between the plasma and the sheath. Of course, the ion flux 𝑛0𝑢0 is fixed by
the ion production rate, so if 𝑢0 is varies, the value of 𝑛0 at 𝑥 = 0 will vary inversely with 𝑢0.
If the ions have finite temperature, the critical drift velocity 𝑢0 will be somewhat lower.

The physical reason for the Bohm criterion is easily seen from a plot of the ion and electron
densities vs. 𝜒 ?@fig-sheath-n-variation. The electron density 𝑛𝑒 falls exponentially with 𝜒,
according to the Boltzmann relation. The ion density also falls, since the ions are accelerated
by the sheath potential. If the ions start with a large energy, 𝑛𝑖(𝜒) falls slowly, since the sheath
field causes a relatively minor change in the ions’ velocity. If the ions start with a small energy,
𝑛𝑖(𝜒) falls fast, and can go belwo the 𝑛𝑒 curve. In that case, 𝑛𝑒 − 𝑛𝑖 is positive near 𝜒 = 0;
and Equation 13.4 tells us that 𝜙(𝑥) must curve upward, in contradiction to the requirement
that the sheath must repel electrons. In order for this not to happen, the slope of 𝑛𝑖(𝜒) at
𝜒 = 0 must be smaller (in absolute value) than that of 𝑛𝑒(𝜒); this condition is identical with
the condition 𝜇2 > 1.

13.1.3 The Child-Langmuir Law

Since 𝑛𝑒(𝜒) falls exponentially with 𝜒, the electron density can be neglected in the region of
large 𝜒 next to the wall (or any negative electrode). Poisson’s equation is then approximately

𝜒′′ ≈ (1 + 2𝜒
𝜇2 )

−1/2
≈ 𝜇

(2𝜒)1/2

Multiplying by 𝜒′ and integrating from 𝜉1 = 𝜉𝑠 to 𝜉1 = 𝜉, we have

1
2(𝜒

′2 − 𝜒′
𝑠
2) =

√
2𝜇(𝜒1/2 − 𝜒1/2

𝑠 )

where 𝜉𝑠 is the place where we started neglecting 𝑛𝑒. We can redefine the zero of 𝜒 so that
𝜒𝑠 = 1 at 𝜉 = 𝜉𝑠. We shall also neglect 𝜒′

𝑠, since the slope of the potential curve can be
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expected to be much steeper in the 𝑛𝑒 = 0 region than in the finite-𝑛𝑒 region. Then the above
equation becomes

𝜒′2 = 23/2𝜇𝜒1/2

𝜒′ = 23/4𝜇1/2𝜒1/4

d𝜒/𝜒1/4 = 23/4𝜇1/2d𝜉

Integrating from 𝜉 = 𝜉𝑠 to 𝜉 = 𝜉𝑠 + d/𝜆𝐷 = 𝜉wall, we have

4
3𝜒

3/4
𝑤 = 23/4𝜇1/2d/𝜆𝐷

or

𝜇 = 4
√
2

9
𝜒3/2
𝑤
d2 𝜆2

𝐷

Changing back to the variables 𝑢0 and 𝜙, and noting that the ion current into the wall is
𝐽 = 𝑒𝑛0𝑢0, we then find

𝐽 = 4
9(

2𝑒
𝑚𝑖

)
1/2 𝜖0|𝜙𝑤|3/2

d2 (13.7)

This is just the well-known Child-Langmuir law of space-charge-limited current in a plane
diode.

The potential variation in a plasma-wall system can be divided into three parts. Nearest the
wall is an electron-free region whose thickness d given by Equation 13.7. Here 𝐽 is determined
by the ion production rate, and 𝜙𝑤 is determined by the equility of electron and ion fluxes.
Next comes a region in which 𝑛𝑒 is appreciable; as shown in the linear theory from which
the scale of Debye length is derived. Finally, there is a region with much larger scale length,
the “presheath”, in which the ions are accelerated to the required velocity 𝑢0 by a potential
drop |𝜙| ≥ 1

2𝑘𝐵𝑇𝐸/𝑒. Depending on the experiment, the scale of the presheath may be
set by the plasma radius, the collisional mean free path, or the ionization mechanism. The
potential distribution, of course, varies smoothly; the division into three regions is made only
for convenience and is made possible by the disparity in scale lengths. In the early days of
gas discharges, sheaths could be observed as dark layers where no electrons were present to
excite atoms to emission. Subsequently, the potential variation has been measured by the
electrostatic deflection of a thin electron beam shot parallel to a wall.
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13.1.4 Electrostatic Probes

The sheath criterion Equation 13.6 can be used to estimate the flux of ions to a negatively
biased probe in a plasma. If the probe has a surface area 𝐴, and if the ions entering the sheath
have a drift velocity 𝑢0 ≥ (𝑘𝐵𝑇𝑒/𝑚𝑖)1/2, then the ion current collected is

𝐼 = 𝑛𝑠𝑒𝐴(𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

The electron current can be neglected if the probe is sufficiently negative (several times 𝑘𝐵𝑇𝑒)
relative to the plasma to repel all but the tail of the Maxwellian electron distribution. The
density 𝑛𝑠 is the plasma density at the edge of the sheath. Let us define the sheath edge to
be the place where 𝑢0 is exactly (𝑘𝐵𝑇𝑒/𝑚𝑖)1/2. To accelerate ions to this velocity requires a
presheath potential |𝜙| ≥ 1

2𝑘𝐵𝑇𝑒/𝑒, so that the sheath edge has a potential

𝜙𝑠 ≃ −1
2𝑘𝐵𝑇𝑒/𝑒

relative to the body of the plasma. If the electrons are Maxwellian, this determines 𝑛𝑠:

𝑛𝑠 = 𝑛0𝑒𝑒𝜙𝑠/𝑘𝐵𝑇𝑒 = 𝑛0𝑒−1/2 ≈ 0.61𝑛0

For our purposes it is accurate enough to replace 0.61 with a round number like 1/2; thus, the
“saturation ion current” to a negative probe is approximately

𝐼𝐵 ≃ 1
2𝑛0𝑒𝐴(𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

𝐼𝐵, sometimes called the “Bohm current”, give the plasma density easily, once the temperature
is known.

If the Debye length 𝜆𝐷, and hence the sheath thickness, is very small compared to the probe
dimensions, the area of the sheath edge is effectively the same as the area 𝐴 of the probe
surface, regardless of its shape. At low densities, however, 𝜆𝐷 can become large, so that some
ions entering the sheath can orbit the probe and miss it. Calculations of orbits for various
probe shapes were first made by I. Langmuir and L. Tonks — hence the name “Langmuir
probe” ascribed to this method of measurement. Though tedious, these calculations can give
accurate determinations of plasma density because an arbitrary definition of sheath edge does
not have to be made. By varying the probe voltage, the Maxwellian electron distribution
is sampled, and the current-voltage curve of a Langmuir probe can also yield the electron
temperature. The electrostatic probe was the first plasma diagnostic and is still the simplest
and the most localized measurement device. Unfortunately, material electrodes can be inserted
only in low-density, cool plasma.
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More detailed explanation of how to measure the plasma density using a Langmuir probe is
given here.

13.2 Ion Acoustic Shock Waves

When a jet travels faster than sound, it creates a shock wave. This is a basically nonlinear
phenomenon, since there is no period when the wave is small and growing. The jet is faster than
the speed of waves in air, so the undisturbed medium cannot be “warned” by precursor signals
before the large shock wave hits it. In hydrodynamic shock waves, collisions are dominant.
Shock waves also exist in plasmas, even when there are no collisions. A magnetic shock, the
“bow shock”, is generated by the earth as it plows through the interplanetary plasma while
dragging along a dipole magnetic field. We shall discuss a simpler example: a collisionless,
one-dimensional shock wave which develops from a large-amplitude ion wave.

(Normal space plasma textbooks discuss this part starting from R-H relations. I don’t like
that.)

13.2.1 The Sagdeev Potential

?@fig-shock-potential shows the idealized potential profile of an ion acoustic shock wave.
The reason for this shape will be given presently. The wave is traveling to the left with a
velocity 𝑢0. If we go to the frame moving with the wave, the function 𝜙(𝑥) will be constant in
time, and we will see a stream of plasma impinging on the wave from the left with a velocity
𝑢0. For simplicity, let 𝑇𝑖 be zero, so that all the ions are incident with the same velocity
𝑢0, and let hte electrons be Maxwellian. Since the shock moves much more slowly than the
electron thermal speed, the shift in the center velocity of the Maxwellian can be neglected.
The velocity of the ions in the shock wave is, from energy conservation,

𝑢 = (𝑢2
0 −

2𝑒𝜙
𝑚𝑖

)
1/2

If 𝑛0 is the density of the undisturbed plasma, the ion density in the shock is

𝑛𝑖 =
𝑛0𝑢0
𝑢 = 𝑛0(1 − 2𝑒𝜙

𝑚𝑖𝑢2
0
)
−1/2

The electron density is given by the Boltzmann relation. Poisson’s equation then gives

𝜖0
d2𝜙
d𝑥2 = 𝑒(𝑛𝑒 − 𝑛𝑖) = 𝑒𝑛0[ exp( 𝑒𝜙

𝑘𝐵𝑇𝑒
) − (1 − 2𝑒𝜙

𝑚𝑖𝑢2
0
)
1/2

]
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This is, of course, the same Equation 13.3 as we had for a sheath. A shock wave is no more
than a sheath moving through a plasma. We now introduce the dimensionless variables

𝜒 ≡ 𝑒𝜙
𝑘𝐵𝑇𝑒

𝜉 ≡ 𝑥
𝜆𝐷

= 𝑥( 𝑛0𝑒2
𝜖0𝑘𝐵𝑇𝑒

)
1/2

𝜇 ≡ 𝑢0
(𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

Note that we have changed the sign in the definition of 𝜒 so as to keep 𝜒 positive in this
problem. The quantity 𝜇 is called the Mach number of the shock. Poisson’s equation can now
be written

𝜒′′ = 𝑒𝜒 − (1 − 2𝜒
𝜇2 )

−1/2
= −𝑑𝑉 (𝜒)

d𝜒 (13.8)

which differs from the sheath Equation 13.4 only because of the change in sign of 𝜒.

The behavior of the solution of Equation 13.8 was made clear by R. Z. Sagdeev, who used an
analogy to an oscillator in a potential well. The displacement 𝑥 of an oscillator subjected to
a force −𝑚𝑑𝑉 (𝑥)/d𝑥 is given by

̈𝑥 = −𝑑𝑉 /d𝑥

If the right-hand side of Equation 13.8 is defined as −𝑑𝑉 /d𝑥, the equation is the same as
that of an oscillator, with the potential 𝜒 playing the role of 𝜒, and d/d𝜉 replacing d/d𝑡. The
quasipotential 𝑉 (𝜒) is sometimes called the Sagdeev potential. The function 𝑉 (𝑥) can be
found from Equation 13.8 by integration with the boundary condition 𝑉 (𝜒) = 0 at 𝜒 = 0:

𝑉 (𝜒) = 1 − 𝑒𝜒 + 𝜇2[1 − (1 − 2𝜒
𝜇2 )

1/2
] (13.9)

For 𝜇 lying in a certain range, this function has the shape shown in ?@fig-shock-
quasipotential. If this were a real well, a particle entering from the left will go to the
right-hand side of the well (𝑥 > 0), reflect, and return to 𝑥 = 0, making a single transit.
Similarly, a quasiparticle in our analogy will make a single excursion to positive 𝜒 and return
to 𝜒 = 0, as shown in ?@fig-shock-soliton. Such a pulse is called a soliton: it is a potential
and density disturbance propagating to the left in ?@fig-shock-soliton with velocity 𝑢0. (I
DON’T FULLY UNDERSTAND!!!)

Now, if a particle suffers a loss of energy while in the well, it will never return to 𝑥 = 0 but will
oscillate (in time) about some positive value of 𝑥. Similarly, a little dissipation will make the
potential of a shock wave oscillate (in space) about some positive value of 𝜙. This is exactly
the behavoir depicted in ?@fig-shock-potential. Actually, dissipation is not needed for this:
reflection of ions from the shock front has the same effect. To understand this, imagine that
the ions have a small thermal spread in energy and that the height 𝑒𝜙 of the wave front is just
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large enough to reflect some of the ions back to the left, while the rest go over the potential
hill to the right. The reflected ions cause an increase in ion density in the upstream region to
the left of the shock front (?@fig-shock-potential). This means that the quantity

𝜒′ = 1
𝑛0

∫
𝜉

0
(𝑛𝑒 − 𝑛𝑖)d𝜉1

is decreased. Since 𝜒′ is the analog of d𝑥/d𝑡 in the oscillator problem, our virtual oscillator
has lost velocity and is trapped in the potential well of ?@fig-shock-quasipotential.

13.2.2 The Critical Mach Numbers

Solutions of either the soliton type or the wave-train type exist only for a range of 𝜇. A
lower limit for 𝜇 is given by the condition that 𝑉 (𝜒) be a potential well, rather than a hill.
Expanding Equation 13.9 for 𝜒 ≪ 1 yields

𝜇2 > 1 𝑢0 > (𝑘𝐵𝑇𝑒/𝑚𝑖)1/2

This is exactly the same, both physically and mathematically, as the Bohm criterion for the
existence of a sheath (Equation 13.6).

An upper limit to 𝜇 is imposed by the condition that the function 𝑉 (𝜒) of ?@fig-shock-
quasipotential must cross the 𝜒 axis for 𝜒 > 0; otherwise, the virtual particle will not be
reflected, and the potential will rise indefinitely. From Equation 13.9, we require

𝑒𝜒 − 1 < 𝜇2[1 − (1 − 2𝜒
𝜇2 )

1/2
]

for some 𝜒 > 0. If the lower critical Mach number is surpassed (𝜇 > 1), the left-and side,
representing the integral of the electron density from zero to 𝜒, is initially larger than the
right-hand side, representing the integral of the ion density. As 𝜒 increases, the right-hand
side can catch up with the left-hand side if 𝜇2 is not too large. However, because of the square
root, the largest value 𝜒 can have is 𝜇2/2. This is because 𝑒𝜙 cannot exceed 1

2𝑚𝑖𝑢2
0; otherwise,

ions would be excluded from the plasma in the downstream region. Inserting the largest value
of 𝜒 into the above equation, we have

exp(𝜇2/2) − 1 < 𝜇 or 𝜇 < 1.6

This is the upper critical Mach number. Shock waves in a cold-ion plasma therefore exist only
for 1 < 𝜇 < 1.6.
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As in the case of sheaths, the physical situation is best explained by a diagram of 𝑛𝑖 and
𝑛𝑒 vs. 𝜒 (?@fig-shock-n). This diagram differs from ?@fig-sheath-n-variation because of
the change of sign of 𝜙. Since the ions are now decelerated rather than accelerated, 𝑛𝑖 will
appraoch infinity at 𝜒 = 𝜇2/2. The lowe critical Mach number ensures that the 𝑛𝑖 curve lies
below the 𝑛𝑒 curve at small 𝜒, so that the potential 𝜙(𝑥) starts off with the right sign for its
curvature. When the curve 𝑛𝑖1 crosses the 𝑛𝑒 curve, the soliton (?@fig-shock-soliton) has
an inflection point. Finally, when 𝜒 is large enough that the areas under the 𝑛𝑖 and 𝑛𝑒 curves
are equal, the soliton reaches a peak, and the 𝑛𝑖1 and 𝑛𝑒 curves are retraced as 𝜒 goes back
to zero. The equality of the areas ensures that the net charge in the soliton is zero; therefore,
there is no electric field outside. If 𝜇 is larger than 1.6, we have the curve 𝑛𝑖2, in which the
area under the curve is too small even when 𝜒 has reached its maximum value of 𝜇2/2.

13.2.3 Wave Steepening

If one propagates an ion wave in a cold-ion plasma, it will have the phase velocity given by

𝑣𝑝 = (𝑘𝐵𝑇𝑒 + 𝛾𝑖𝑘𝐵𝑇𝑖
𝑚𝑖

)
1/2

= (𝑘𝐵𝑇𝑒
𝑚𝑖

)
1/2

corresponding to 𝜇 = 1. How, then, can one create shocks with 𝜇 > 1? One must remember
that the above phase velocity was a linear result valid only at small amplitudes. As the
amplitude is increased, an ion wave speeds up and also changes from a sine wave to a sawtooth
shape with a steep leading edge (?@fig-wave-steepening). The reason is that the wave
electric field has accelerated the ions. In ?@fig-wave-steepening, ions at the peak of the
potential distribution have a large velocity in the direction of 𝑣𝜙 than those at the trough, since
they have just experienced a period of acceleration as the wave passed by. In linear theory,
this difference in velocity is taken into account, but not the displacement resulting from it.
In nonlinear theory, it is easy to see that the ions at the peak are shifted to the right, while
those at the trough are shifted to the left, thus steepening the wave shape. Since the density
perturbation is in pahse with the potential, more ions are accelerated to the right than to the
left, and the wave causes a net mass flow in the direction of propagation. This causes the
wave velocity to exceed the acoustic speed in the undisturbed plasma, so that 𝜇 is larger than
unity.

13.2.4 Double Layers

A phenomenon related to sheaths and ion acoustic shocks is that of the double layer. This
is a localized potential jump, believed to occur naturally in the ionosphere, which neither
propagates nor is attached to a boundary. The name comes from the successive layers of net
positive and net negative charge that are necessary to create a step in 𝜙(𝑥). Such a step can
remain stationary in space only if there is a plasma flow that Doppler shifts a shock front
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down to zero velocity in the lab frame, or if the distribution functions of the transmitted and
reflected electrons and ions on each side of the discontinuity are specially tailored so as to make
this possible. In natural situations double layers are likely to arise where there are gradients
in the magnetic field B, not where B is zero or uniform, as in laboratory simulations. In that
case, the 𝜇∇𝐵 force can play a large role in localizing a double layer away from all boundaries.
Indeed, the thermal barrier in tandem mirror reactors is an example of a double layer with
strong magnetic trapping.

13.3 The Ponderomotive Force

Light waves exert a radiation pressure which is usually very weak and hard to detect. Even
the esoteric example of comet tails, formed by the pressure of sunlight, is tainted by the added
effect of particles streaming from the sun. When high-powered microwaves or laser beams are
used to heat or confine plasmas, however, the radiation pressure can reach several hundred
thousand atmospheres! When applied to a plasma, this force is coupled to the particles in a
somewhat subtle way and is called the ponderomotive force. Many nonlinear phenomena have
a simple explanation in terms of the ponderomotive force.

The easiest way to derive this nonlinear force is to consider the motion of an electron in the
oscillating E and B fields of a wave. We neglect dc E0 and B0 fields. The electron equation
of motion is

𝑚v̇ = −𝑒[E(r) + v × B(r)]

This equation is exact if E and B are evaluated at the instantaneous position of the electron.
The nonlinearity comes partly from the v × B, which is second order because both v and B
vanish in the equilibrium, so that the term is no larger than v1×B1, where v1 and B1 are the
linear-theory values. The other part of the nonlinearity, as we shall see, comes from evaluating
E at the actual position of the particle rather than its initial position. Assume a wave electric
field of the form

E = E𝑠(r) cos𝜔𝑡

where E𝑠(r) contains the spatial dependence. In first order, we may neglect the v × B term
in the equation of motion and evaluate E at the initial position r0. We have

𝑚v̇1 = −𝑒E(r0)
v1 = −(𝑒/𝑚𝜔)E𝑠 sin𝜔𝑡 = ̇r1
𝛿r1 = (𝑒/𝑚𝜔2)E𝑠 cos𝜔𝑡
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It is important to note that in a nonlinear calculation, we cannot write 𝑒𝑖𝜔𝑡 and takes its
real part later. Instead, we write its real part explicitly as cos𝜔𝑡. This is because products
of oscillating factors appera in nonlinear theory, and the operations of multiplying and taking
the real part do not commute.

Going to second order, we expand E(r) about r0:

E(r) = E(r0) + (𝛿r0 ⋅ ∇)E|𝑟=𝑟0 + ...

We must now add the term v1 × B1, where B1 is given by Maxwell’s equation:

∇× E = −Ḃ
B1 = −(1/𝜔)∇ × E𝑠|𝑟=𝑟0 sin𝜔𝑡

The second-order part of the equation of motion is then

𝑚v̇2 = −𝑒[(𝛿r1 ⋅ ∇)E + v1 × B1]

Inserting the expressions of v1, 𝛿r1 and B1 into the above and averaging over time, we have

𝑚⟨dv2
d𝑡 ⟩ = − 𝑒2

𝑚𝜔2
1
2[(E𝑠 ⋅ ∇)E𝑠 + E𝑠 × (∇× E𝑠)] = f𝑁𝐿 (13.10)

Here we have used ⟨sin2 𝜔𝑡⟩ = ⟨cos2 𝜔𝑡⟩ = 1
2 . The double cross product can be written as the

sum of two terms, one of which cancels the (E𝑠 ⋅ ∇)E𝑠 term.

What remains is

f𝑁𝐿 = −1
4

𝑒2
𝑚𝜔2∇𝐸2

𝑠

This is the effective nonlinear force on a single electron. The force per 𝑚3 is f𝑁𝐿 times the
electron density 𝑛0, which can be written in terms of 𝜔2

𝑝. Since 𝐸2
𝑠 = 2 ⟨𝐸2⟩, we finally have

for the ponderomotive force the formula

F𝑁𝐿 = −𝜔2
𝑝

𝜔2∇
⟨𝜖0𝐸2⟩

2 (13.11)

If the wave is electromagnetic, the second term in Equation 13.10 is dominant, and the physical
mechanism for F𝑁𝐿 is as follows. Electrons oscillate in the direction of E, but the wave
magnetic field distorts their orbits. That is, the Lorentz force −𝑒v × B pushes the electrons
in the direction of k (since v is in the direction of E, and E × B is in the direction of k).
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The phases of v and B are such that the motion does not average to zero over an oscillation,
but there is a secular drift along k. If the wave has uniform amplitude, no force is needed to
maintain this drift; but if the wave amplitude varies, the electrons will pile up in regions of
small amplitude, and a force is needed to overcome the space charge. This is why the effective
force F𝑁𝐿 is proportional to the gradient of ⟨𝐸2⟩. Since the drift for each electron is the same,
F𝑁𝐿 is proportional to the density — hence the factor 𝜔2

𝑝/𝜔2.

If the wave is electrostatic, the first term in Equation 13.10 is dominant. Then the physical
mechanism is simply that an electron oscillating along k ∥ E moves farther in the half-cycle
when it is moving from a strong-field region to a weak-field region than vice versa, so there is
a net drift.

Although F𝑁𝐿 acts mainly on the electrons, the force is ultimately transmitted to the ions,
since it is a low-frequency or dc effect. When electrons are bunched by F𝑁𝐿, a charge-
separation field E𝑐𝑠 is created. The total force felt by the electrons is

F𝑒 = −𝑒E𝑐𝑠 + F𝑁𝐿

Since the ponderomotive force on the ions is smaller by Ω2
𝑝/𝜔2

𝑝 = 𝑚𝑒/𝑚𝑖, the force on the ion
fluid is approximately

F𝑖 = 𝑒E𝑐𝑠

Summing the last two equations, we find that the force on the plasma is F𝑁𝐿.

A direct effect of F𝑁𝐿 is the self-focusing of laser light in a plasma. In ?@fig-laser-self-
focusing we see that a laser beam of finite diameter causes a radially directed ponderomotive
force in a plasma. This force moves plasma out of the beam, so that 𝜔𝑝 is lower and hte
dielectric constant 𝜖 is higher inside the beam than outside. The plasma then acts as a convex
lens, focusing the beam to a smaller diameter.

13.4 Parametric Instabilities

The most thoroughly investigated nonlinear wave-wave interactions are the “parametric in-
stabilities”, so called because of an analogy with parametric amplifiers, well-known devices
in electrical engineering. A reason for the relatively advanced state of understanding of this
subject is that the theory is basically a linear one, but linear about a non-oscillating equili-
birum.

The parametric instabilities arise when a nonlinearity such as a pressure gradient couples
waves. The waves must allow frequency and wavenumber matching which are consequences
of energy and momentum conservation. But parametric instabilities are not limited to waves
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but also arise in nonlinear resonances such as a plasma sheath. A very common parametric
wave instability arises from the decay of strong electromagnetic wave, the “pump”, into two
electrostatic waves, an electron plasma waves and an ion acoustic waves. It is called a “decay”
instability when the pump excites a lower frequency sideband, the electron plasma wave,
and the difference mode, an ion acoustic wave. These three modes are the only ones in an
unmagnetized plasma.

See here for an observation example from a lab experiment. The following video demonstrates
some intuitive lab experiments from parametric excitation to parametric instability.

13.4.1 Coupled Oscillators

Consider the mechanical model of ?@fig-parametric-amplifier, in which two oscillators M1
and M2 are coupled to a bar resting on a pivot. The pivot P is made to slide back and forth
at a frequency 𝜔0, while the natural frequencies of the oscillators are 𝜔1 and 𝜔2. It is clear
that, in the absence of friction, the pivot encounters no resistance as long as M1 and M2 are
not moving. Furthermore, if P is not moving and M2 is put into motion, M1 will move; but as
long as �2 is not the natural frequency of M1, the amplitude will be small. Suppose now that
both P and M2 are set into motion. The displacement of M1 is proportional to the product
of the displacement of M2 and the length of the lever arm and, hence, will vary in time as

cos𝜔2𝑡 cos𝜔0𝑡 =
1
2 cos[(𝜔2 + 𝜔0)𝑡] +

1
2 cos[(𝜔2 − 𝜔0)𝑡]

If 𝜔1 is equal to either 𝜔2 + 𝜔0 or 𝜔2 − 𝜔0, M1 will be resonantly excited and will grow to
large amplitude. Once M1 starts oscillating, M2 will also gain energy, because one of the
beat frequencies of 𝜔1 with 𝜔0 is just 𝜔2. Thus, once either oscillator is started, each will
be excited by the other, and the system is unstable. The energy, of course, comes from the
“pump” P, which encounters resistance once the rod is slanted. If the pump is strong enough,
its oscillation amplitude is unaffected by M1 and M2; the instability can then be treated by a
linear theory. In a plasma, the oscillators P, M1, and M2 may be different types of waves.

13.4.2 Frequency Matching

The equation of motion for a simple harmonic oscillator 𝑥1 is

̈𝑥1 + 𝜔2
1𝑥1 = 0 (13.12)

where 𝜔1 is its resonant frequency. If it is driven by a time-dependent force which is propor-
tional to the product of the amplitude 𝐸0 of the driver, or pump, and the amplitude 𝑥2 of a
second oscillator, the equation of motion becomes

̈𝑥1 + 𝜔2
1𝑥1 = 𝑐1𝑥2𝐸0 (13.13)
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where 𝑐1 is a constant indicating the strength of the coupling. A similar equation holds for
𝑥2:

̈𝑥2 + 𝜔2
1𝑥2 = 𝑐2𝑥1𝐸0 (13.14)

Let 𝑥1 = ̄𝑥1 cos𝜔𝑡, 𝑥2 = ̄𝑥2 cos𝜔′𝑡, and 𝐸0 = ̄𝐸0 cos𝜔0𝑡. Equation 13.14 becomes

(𝜔2
2 − 𝜔′2) ̄𝑥2 cos𝜔′𝑡 = 𝑐2 ̄𝐸0 ̄𝑥1 cos𝜔0𝑡 cos𝜔𝑡

= 𝑐2 ̄𝐸0 ̄𝑥1
1
2{cos[(𝜔0 + 𝜔)𝑡] + cos[(𝜔0 − 𝜔)𝑡]}

The driving terms on the right can excite oscillators 𝑥2 with frequencies

𝜔′ = 𝜔0 ± 𝜔 (13.15)

In the absence of nonlinear interactions, 𝑥2 can only have the frequency 𝜔2, so we must
have 𝜔′ = 𝜔2. However, the driving terms can cause a frequency shift so that 𝜔′ is only
approximately equal to 𝜔2. Furthermore, 𝜔′ can be complex, since there is damping (which
has been neglected so far for simplicity), or there can be growth (if there is an instability). In
either case, 𝑥2 is an oscillator with finite Q and can respond to a range of frequencies about
𝜔2. If 𝜔 is small, one can see from that both choices for 𝜔′ may lie within the bandwidth of
𝑥2, and one must allow for the existence of two oscillators, 𝑥2(𝜔0 + 𝜔) and 𝑥2(𝜔0 − 𝜔).
Now let 𝑥1 = ̄𝑥1 cos𝜔′′𝑡 and 𝑥2 = ̄𝑥2 cos[(𝜔0 ± 𝜔)𝑡] and insert into Equation 13.13:

(𝜔2
1 − 𝜔′′2) ̄𝑥1 cos𝜔′′𝑡

= 𝑐1 ̄𝐸0 ̄𝑥2
1
2( cos{[𝜔0 + (𝜔0 ± 𝜔)]𝑡} + cos{[𝜔0 − (𝜔0 ± 𝜔)]𝑡})

= 𝑐1 ̄𝐸0 ̄𝑥2
1
2( cos[(2𝜔0 ± 𝜔)𝑡] + cos𝜔𝑡)

(13.16)

The driving terms can excite not only the original oscillation 𝑥1(𝜔), but also new frequencies
𝜔′′ = 2𝜔0 ± 𝜔. We shall consider the case |𝜔0| ≫ |𝜔1|, so that 2𝜔0 ± 𝜔 lies outside the range
of frequencies to which 𝑥1 can respond, and 𝑥1(2𝜔0 ±𝜔) can be neglected. We therefore have
three oscillators, 𝑥1(𝜔), 𝑥2(𝜔0 −𝜔), and 𝑥2(𝜔0 +𝜔), which are coupled by Equation 13.13 and
Equation 13.14:

(𝜔2
1 − 𝜔2)𝑥1(𝜔) − 𝑐1𝐸0(𝜔0)[𝑥2(𝜔0 − 𝜔) + 𝑥2(𝜔0 + 𝜔)] = 0

[𝜔2
2 − (𝜔0 − 𝜔)2]𝑥2(𝜔0 − 𝜔) − 𝑐2𝐸0(𝜔0)𝑥1(𝜔) = 0

[𝜔2
2 − (𝜔0 + 𝜔)2]𝑥2(𝜔0 + 𝜔) − 𝑐2𝐸0(𝜔0)𝑥1(𝜔) = 0

(13.17)

The dispersion relation is given by setting the determinant of the coefficients equal to zero:

∣
𝜔2 − 𝜔2

1 𝑐1𝐸0 𝑐1𝐸0
𝑐2𝐸0 (𝜔0 − 𝜔)2 − 𝜔2

2 0
𝑐2𝐸0 0 (𝜔0 + 𝜔)2 − 𝜔2

2

∣ = 0 (13.18)
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A solution with ℑ(𝜔) > 0 would indicate an instability.

For small frequency shifts and small damping or growth rates, we can set 𝜔 and 𝜔′ approxi-
mately equal to the undisturbed frequencies 𝜔1 and 𝜔2. Equation 13.15 then gives a frequency
matching condition:

𝜔0 ≈ 𝜔2 ± 𝜔1 (13.19)

When the oscillators are waves in a plasma, 𝜔𝑡 must be replaced by 𝜔𝑡 − k ⋅ r. There is then
also a wavelength matching condition

k0 ≈ k2 ± k1 (13.20)

describing spatial beats; that is, the periodicity of points of constructive and destructive inter-
ference in space. The two conditions Equation 13.19 and Equation 13.20 are easily understood
by analogy with quantum mechanics. Multiplying the former by Planck’s constant ℏ, we
have

ℏ𝜔0 = ℏ𝜔2 ± ℏ𝜔1

𝐸0 and 𝑥2 may, for instance, be electromagnetic waves, so that ℏ𝜔0 and ℏ𝜔2 are the photon
energies. The oscillator 𝑥1 may be a Langmuir wave, or plasmon, with energy ℏ𝜔1. Equa-
tion 13.17 simply states the conservation of energy. Similarly, Equation 13.16 states the
conservation of momentum ℏk.

For plasma waves, the simultaneous satisfaction of Equation 13.15 and Equation 13.16 in
one-dimensional problems is possible only for certain combinations of waves. The required
relationships are best seen on an 𝜔 − 𝑘 diagram ?@fig-parallelogram-construction. (A)
shows the dispersion curves of an electron plasma wave 𝜔2 (Bohm-Gross wave) and an ion
acoustic wave 𝜔1. A large-amplitude electron wave (𝜔0,k0) can decay into a backward moving
electron wave (𝜔2,k2) and an ion wave (𝜔1,k1). The parallelogram construction ensures that
𝜔0 = 𝜔1 + 𝜔2 and k0 = k1 + k2. The positions of (𝜔0,k0) and (𝜔2,k2) on the electron curve
must be adjusted so that the difference vector lies on the ion curve. Note that an electron wave
cannot decay into two other electron waves, because there is no way to make the difference
vector lie on the electron curve.

B shows the parallelogram construction for the “parametric decay” instability. Here, (𝜔0,k0)
is an incident electromagnetic wave of large phase velocity (𝜔0/𝑘0 ≈ 𝑐). It excites an electron
wave and an ion wave moving in opposite directions. Since |k0| is small, we have |k1| ≈ −|k2|
and 𝜔0 = 𝜔1 + 𝜔2 for this instability.

C shows the 𝜔−𝑘 diagram for the “parametric backscattering” instability, in which a light wave
excites an ion wave and another light wave moving in the opposite direction. This can also
happen when the ion wave is replaced by a plasma wave. By analogy with similar phenomena
in solid state physics, these processes are called, respectively, “stimulated Brillouin scattering”
and “stimulated Raman scattering.”
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D represents the two-plasmon decay instability of an electromagnetic wave. Note that the two
decay waves are both electron plasma waves, so that frequency matching can occur only if
𝜔0 ≃ 2𝜔𝑝. Expressed in terms of density, this condition is equivalent to 𝑛 ≃ 𝑛𝑐/4, when 𝑛𝑐
is the critical density associated with 𝜔0 (𝑛𝐶 = 𝑚𝜖0𝜔2

0/𝑒2). This instability can therefore be
expected to occur only near the “quarter-critical” layer of an inhomogeneous plasma.

13.4.3 Instability Threshold

Parametric instabilities will occur at any amplitude if there is no damping, but in practice
even a small amount of either collisional or Landau damping will prevent the instability unless
the pump wave is rather strong. To calculate the threshold, one must introduce the damping
rates Γ1 and Γ2 of the oscillators 𝑥1 and 𝑥2. Equation 13.12 then becomes

̈𝑥1 + 𝜔2
1𝑥1 + 2Γ1 ̇𝑥1 = 0

For instance, if 𝑥1 is the displacement of a spring damped by friction, the last term represents
a force proportional to the velocity. If 𝑥1 is the electron density in a plasma wave damped by
electron–neutral collisions, Γ1 is 𝑣𝑐/2 (???) Examination of Equation 13.13, Equation 13.14,
and Equation 13.18 will show that it is all right to use exponential notation and let d/d𝑡 → 𝑖𝜔
for 𝑥1 and 𝑥2, as long as we keep 𝐸0 real and allow ̄𝑥1 and ̄𝑥2 to be complex. Equation 13.13
and Equation 13.14 become

(𝜔2
1 − 𝜔2 − 2𝑖𝜔Γ1)𝑥1(𝜔) = 𝑐1𝑥2𝐸0

[𝜔2
2 − (𝜔 − 𝜔0)22𝑖(𝜔 − 𝜔0)Γ2]𝑥2(𝜔 − 𝜔0) = 𝑐2𝑥1𝐸0

(13.21)

We further restrict ourselves to the simple case of two waves — that is, when 𝜔 ≃ 𝜔1 and
𝜔0 − 𝜔 ≃ 𝜔2 but 𝜔0 + 𝜔 is far enough from 𝜔2 to be nonresonant — in which case the
third row and column of Equation 13.18 can be ignored. If we now express 𝑥1, 𝑥2, and 𝐸0 in
terms of their peak values, as in Equation 13.16, a factor of 1/2 appears on the right-hand
sides of Equation 13.21. Discarding the nonresonant terms and eliminating 𝑥1 and 𝑥2 from
Equation 13.21, we obtain

(𝜔2 − 𝜔2
1 + 2𝑖𝜔Γ1)[(𝜔0 − 𝜔)2 − 𝜔2

2 − 2𝑖(𝜔0 − 𝜔)Γ2] =
1
4𝑐1𝑐2

̄𝐸2
0

At threshold, we may set ℑ(𝜔) = 0. The lowest threshold will occur at exact frequency
matching; i.e., 𝜔 = 𝜔1, 𝜔0 − 𝜔 = 𝜔2. Then the last equation gives

𝑐1𝑐2( ̄𝐸2
0)threshold = 16𝜔1𝜔2Γ1Γ2

The threshold goes to zero with the damping of either wave.
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13.4.4 Physical Mechanism

The parametric excitation of waves can be understood very simply in terms of the pondero-
motive force (Section 13.3). As an illustration, consider the case of an electromagnetic wave
(𝜔0,k0) driving an electron plasma wave (𝜔2,k2) and a low-frequency ion wave (𝜔1,k1) (fig-
parallelogram-construction B). Since 𝜔1 is small, 𝜔0 must be close to 𝜔𝑝. However, the behavior
is quite different for 𝜔0 < 𝜔𝑝 than for 𝜔0 > 𝜔𝑝. The former case gives rise to the “oscillating
two-stream” instability (which will be treated in detail), and the latter to the “parametric
decay” instability.

Suppose there is a density perturbation in the plasma of the form 𝑛1 cos 𝑘1𝑥; this perturbation
can occur spontaneously as one component of the thermal noise. Let the pump wave have an
electric field 𝐸0 cos𝜔0𝑡 in the 𝑥 direction, as shown in ?@fig-oscillating-2stream. In the
absence of a dc field B0, the pump wave follows the relation 𝜔2

0 = 𝜔2
𝑝+𝑐2𝑘2

0, so that 𝑘0 ≈ 0 for
𝜔0 ≈ 𝜔𝑝. We may therefore regard 𝐸0 as spatially uniform. If 𝜔0 is less than 𝜔𝑝 (HOW IS THIS
POSSIBLE???), which is the resonant frequency of the cold electron fluid, the electrons will
move in the direction opposite to 𝐸0, while the ions do not move on the time scale of 𝜔0. The
density ripple then causes a charge separation, as shown in ?@fig-oscillating-2stream. The
electrostatic charges create a field 𝐸1, which oscillates at the frequency 𝜔0. The ponderomotive
force due to the total field is given by Equation 13.11:

F𝑁𝐿 = −𝜔2
𝑝

𝜔2∇
⟨(𝐸0 +𝐸1)2⟩

2 𝜖0

Since E0 is uniform and much larger than 𝐸1, only the cross term is important:

F𝑁𝐿 = −𝜔2
𝑝

𝜔2
𝜕
𝜕𝑥

⟨2𝐸0𝐸1⟩
2 𝜖0

This force does not average to zero, since E1 changes sign with E0. As seen in ?@fig-
oscillating-2stream, 𝐹𝑁𝐿 is zero at the peaks and troughs of 𝑛1 but is large where ∇𝑛1
is large. This spatial distribution causes 𝐹𝑁𝐿 to push electrons from regions of low density
to regions of high density. The resulting de electric field drags the ions along also, and the
density perturbation grows. The threshold value of 𝐹𝑁𝐿 is the value just sufficient to overcome
the pressure ∇𝑛𝑖1(𝑘𝐵𝑇𝑖 + 𝑘𝐵𝑇𝑒), which tends to smooth the density. The density ripple does
not propagate, so that ℜ(𝜔1) = 0. This is called the oscillating two-stream instability because
the sloshing electrons have a time-averaged distribution function which is double-peaked, as
in the two-stream instability (Sect. ???).

13.4.5 The Oscillating Two-Stream Instability

I do not understand parametric instability so far. Too hard.
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13.4.6 The Parametric Decay Instability

13.5 Plasma Echoes

Echoes in a plasma are the excitement of new waves due to nonlinear interaction. The ex-
citement may happen at an arbitrarily large time, which is the main source of difficulties in
understanding Landau damping. Since Landau damping does not involve collisions or dissi-
pation, it is a reversible process. That this is true is vividly demonstrated by the remarkable
phenomenon of plasma echoes.

13.6 Nonlinear Landau Damping

When the amplitude of an electron or ion wave excited, say, by a grid is followed in space, it is
often found that the decay is not exponential, as predicted by linear theory, if the amplitude is
large. Instead, one typically finds that the amplitude decays, grows again, and then oscillates
before settling down to a steady value. Although other effects may also be operative, these
oscillations in amplitude are exactly what would be expected from the nonlinear effect of
particle trapping discussed in Section 8.6.

13.7 Equations of Nonlinear Plasma Physics

13.7.1 The Korteweg-de Vries Equation

𝜕𝑈
𝜕𝜏 + 𝑈 𝜕𝑈

𝜕𝜉 + 1
2
𝜕2𝑈
𝜕𝜉3 = 0

where 𝑈 is amplitude, and 𝜏 and 𝜉 are timelike and spacelike variables, respectively.

13.7.2 The Nonlinear Schrödinger Equation

𝑖𝜕𝜓𝜕𝑡 + 𝑝𝜕
2𝜓

𝜕𝑥2 + 𝑞|𝜓|2𝜓 = 0 (13.22)

where 𝜓 is the wave amplitude, 𝑖 = √(−1), and 𝑝 and 𝑞 are coefficients whose physical signif-
icance will be explained shortly. Equation ?? differs from the usual Schrödinger equation

𝑖ℏ𝜕𝜓𝜕𝑡 + ℏ2

2𝑚
𝜕2𝜓
𝜕𝑥2 − 𝑉 (𝑥, 𝑡)𝜓 = 0

in that the potential 𝑉 (𝑥, 𝑡) depends on 𝜓 itself, making the last term nonlinear.
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14 Turbulence

Turbulence is perhaps the most beautiful unsolved problem of classical physics. History of
turbulence in interplanetary space is, perhaps, even more interesting since its knowledge pro-
ceeds together with the human conquest of space. The behavior of a flow which rebels against
the deterministic rules of classical dynamics is called turbulent. Practically turbulence appears
everywhere when the velocity of the flow is high enough. At a first sight turbulence looks
strongly irregular and chaotic, both in space and time: it seems to be impossible to predict
any future state of the motion. However, it is interesting to recognize the fact that, when we
take a picture of a turbulent flow at a given time, we see the presence of a lot of different
turbulent structures of all sizes which are actively present during the motion. We recognize
that the gross features of the flow are reproducible but details are not predictable. We have
to use a statistical approach to turbulence, just as it is done to describe stochastic processes,
even if the problem is born within the strange dynamics of a deterministic system.

Small fluctuations in plasmas lead to turbulence, and turbulent eddies can very effectively
transport mass, momentum and heat from the hot core across confining magnetic field lines
out to the cooler plasma edge. Predicting this phenomenon of turbulent-transport is essential
for solar wind study and the understanding and development of fusion reactors.

Turbulence became an experimental science since Osborne Reynolds who, at the end of 19th
century, observed and investigated experimentally the transition from laminar to turbulent
flow. He noticed that the flow inside a pipe becomes turbulent every time a single parameter,
a combination of the mass density 𝜌, viscosity coefficient 𝜂, a characteristic velocity 𝑈 , and
length 𝐿, would increase. This parameter Re = 𝑈𝐿𝜌/𝜂 is now called the Reynolds number.
When Re increases beyond a certain threshold of the order of Re ≃ 4000, the flow becomes
turbulent.

Predictability in turbulence can be recast at a statistical level. In other words, when we look
at two different samples of turbulence, even collected within the same medium, we can see
that details look very different. What is actually common is a generic stochastic behavior.
This means that the global statistical behavior does not change going from one sample to the
other. Fully developed turbulent flows are extremely sensitive to small perturbations but have
statistical properties that are insensitive to perturbations. Fluctuations of a certain stochastic
variable 𝜓 are defined as the difference from the average value 𝛿𝜓 = 𝜓 − ⟨𝜓⟩, where brackets
mean some averaging process. There are, at least, three different kinds of averaging procedures
that may be used to obtain statistically-averaged properties of turbulence:
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1. Space averaging over flows that are statistically homogeneous over scales larger than
those of fluctuations.

2. Ensemble averaging where average is taken over an ensemble of turbulent flows prepared
under nearly identical external conditions. Each member of the ensemble is called a
realization.

3. Time averaging, which is useful only if the turbulence is statistically stationary over
time scales much larger than the time scale of fluctuations. In practice, because of the
convenience offered by locating a probe at a fixed point in space and integrating in
time, experimental results are usually obtained as time averages. The ergodic theorem
(Halmos, 1956) assures that time averages coincide with ensemble averages under some
standard conditions.

A different property of turbulence is that all dynamically interesting scales are excited, that
is, energy is spread over all scales and a kind of self-similarity is observed.

Since fully developed turbulence involves a hierarchy of scales, a large number of interacting
degrees of freedom are involved. Then, there should be an asymptotic statistical state of
turbulence that is independent on the details of the flow. Hopefully, this asymptotic state
depends, perhaps in a critical way, only on simple statistical properties like energy spectra, as
much as in statistical mechanics equilibrium where the statistical state is determined by the
energy spectrum (Huang, 1987). Of course, we cannot expect that the statistical state would
determine the details of individual realizations, because realizations need not to be given the
same weight in different ensembles with the same low-order statistical properties.

It should be emphasized that there are no firm mathematical arguments for the existence of an
asymptotic statistical state. Reproducible statistical results are obtained from observations,
that is, it is suggested experimentally and from physical plausibility. Apart from physical
plausibility, it is embarrassing that such an important feature of fully developed turbulence, as
the existence of a statistical stability, should remain unsolved. However, such is the complex
nature of turbulence.

14.1 MHD

Nunov highly recommended a review (Schekochihin 2022). Another nice reference for the solar
wind turbulence is presented (Bruno and Carbone 2013), where I cite many materials in this
note.
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14.1.1 Navier–Stokes equation and Reynolds number

14.1.2 Coupling between charged fluid and magnetic field

Elsässer variables are used to extract the Alfvénic component from MHD. They are defined
as

z+ = v + b
z− = v − b

(14.1)

where b = B/√𝜇0𝜌.
The perturbations are written as

𝛿z+ = 𝛿v + 𝛿b
𝛿z− = 𝛿v − 𝛿b

z± corresponds to anti-parallel/parallel propagating modes:

• Parallel wave: 𝛿v = −𝛿b ⇒ 𝛿z+ = 0, 𝛿z− = 2𝛿v
• Anti-parallel wave: 𝛿v = 𝛿b ⇒ 𝛿z+ = 2𝛿v, 𝛿z− = 0

The Alfvénicity condition
𝛿v = ±𝛿b = ±𝛿B/√𝜇0𝜌0 (14.2)

often appears in the context of discussing Alfvén waves.

The incompressible MHD wave equation in fluctuating Elsässer form is:

𝜕𝛿z±

𝜕𝑡 ∓ 𝑣𝐴∇∥𝛿z± + 𝛿z∓ ⋅ ∇𝛿z± = −∇𝑝 (14.3)

∇ ⋅ 𝛿z± = 0 (14.4)

The zero divergence means that there are no forcing or dissipation terms.

Equation 14.3 unveils the interesting phenonmena in Alfvénic turbulence study. The sec-
ond term on the left-hand side is a linear term (𝑣𝐴 constant?) that represents propagation
of waves parallel to the mean field. The third term represent the non-linear interaction of
counter-propagating waves, during which energy is transferred to smaller scales. This is ex-
actly turbulence.
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14.1.3 Critical balance

If we match the Alfvén (linear) timescale, 𝜏𝐴 ∼ 𝑙∥/𝑣𝐴, with the nonlinear timescale, 𝜏𝑛𝑙 ∼ 𝑙⟂/𝛿𝑧,
we have the so-called critical balance

𝜏𝐴 = 𝜏𝑛𝑙

Assume a constant energy cascade rate 𝜖 ∼ 𝛿𝑧2/𝜏𝑛𝑙, and an energy injection rate at scale L
𝜖𝐿 ∼ 𝑣2𝐴/𝜏𝑛𝑙 = 𝑣3𝐴/𝐿. When we match the two rates and … (I have some memory from Nunov’s
lecture at Nordita), we have 𝑘∥ ∝ 𝑘2/3

⟂ . This means that anisotropy grows with decreasing
scale. The power spectra are given as

𝐸(𝑘⟂) ∝ 𝑘−5/3
⟂

𝐸(𝑘∥) ∝ 𝑘−2
∥

The critical balance scalings were seen in observations when analysed with local mean field
techniques [Chen 2016]. However, why this is the case in nature is still under debate.

14.1.4 Residual energy

Residual energy is the difference in energy between magnetic and velocity fluctuations. The
normalized residual energy is

𝜎𝑟 = |𝛿v|2 − |𝛿b|2
|𝛿v|2 + |𝛿b|2 (14.5)

𝜎𝑟 is zero for an Alfvén wave but is generally negative (|𝛿b|2 > |𝛿v|2) at MHD scales for solar
wind observations, meaning that they are mostly likely turbulence but not waves.

14.1.5 Normalized cross helicity

Cross helicity is the difference in energy between z+ and z− fluctuations (Section 15.5). The
normalized cross helicity is

𝜎𝑐 = |𝛿z+|2 − |𝛿z−|2
|𝛿z+|2 − |𝛿z−|2 = 2𝛿v ⋅ 𝛿b

|𝛿v|2 + |𝛿b|2 (14.6)

• |𝜎𝑐| = 1: unidirectional Alfvén waves (no turbulence)
• |𝜎𝑐| ≲ 1: imbalanced turbulence
• |𝜎𝑐| = 0: balanced turbulence (or non-Alfvénic fluctuations)
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The solar wind is typically imbalanced towards the anti-sunward direction. From Equation 14.5
and Equation 14.6 we can easily see that

√𝜎2𝑟 + 𝜎2𝑐 ≤ 1

The observed distribution is shown in Figure 14.1. Note, however, 𝜎𝑟 depends on how you
evaluate 𝛿𝑏. In the MHD case b = B/√𝜇0𝜌 is used, but in the kinetic case there will be an
extra coefficient. The results look pretty different!

Figure 14.1: Solar wind normalized residual energy and cross helicity statistics from Chen+
2013.

Observation from 1 AU (WIND) show that the non-Alfvénic wind typically has small alpha-
proton relative drift and nearly equal temperatures of both ionic components. In terms of
occurrence, there is no significant difference for a typical solar wind speed of 300 km/s, but
for high speed solar wind there is a higher probability for large |𝜎𝑐| of being Alfvénic.

• Non-Alfvénic solar winds

– slower and lower in abundance, 𝑛𝛼/𝑛𝑝 < 4
– 𝑣𝑝 − 𝑣𝛼 ∼ 0
– 𝑇𝑝 ∼ 𝑇𝛼
– could be formed by the interchange-recnnection near the Sun

• Alfvénic solar winds
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– 𝑛He/𝑛p ∼ 4 and does not depend on the proton velocity
– alpha particles are about 4 times hotter than protons.
– originates from the coronal holes

14.2 Solar Wind Turbulence

14.2.1 Taylor’s hypothesis

Solar wind is a supersonic flow (𝑣𝐴/𝑣SW ≪ 1), with advection timescale much shorter than
any dynamical timescales in the plasma. This means that for spacecraft observations, the time
series represents an instantaneous spatial cut through the solar wind plasma. We can thus
relate spacecraft frequency, 𝑓sc, to wavenumber in the plasma frame, 𝑘, in a simple way via

𝑘 = 2𝜋𝑓sc
𝑣SW

This is often not appropriate in the magnetosheath, and modified Taylor’s hypothesis is re-
quired close to the Sun.

The wavenumber 𝑘 determined from Taylor’s hypothesis is really the flow-aligned component of
k. For a given angle 𝜃𝑣𝑏, one cannot distinguish 𝑘⟂ and 𝑘∥; these can be possibly measured for
small (∼ 0∘ for 𝑘∥) and large (∼ 90∘ for 𝑘⟂) at different times. In the solar wind, 𝑃(𝑘⟂) ≫ 𝑃(𝑘∥),
where 𝑃 is the power of perturbation. For a Parker spiral-like magnetic field at 1 AU, the
angle between B0 and vsw is rarely small (∼ 45∘), the power spectra are typically dominated
by the contribution from the 𝑘⟂ fluctuations (Figure 14.2).

14.2.2 Solar Wind Power Spectrum

When we plot the solar wind power spectrum (𝛿|B|), it is usually representative of 𝑘⟂. There
are three distinct power-law ranges in the spectrum from spacecraft solar wind observations
(Figure 14.3):

• Injection range:

– Large amplitude, low frequency Alfvén waves originating from the Sun.
– The 𝑓−1 spectrum is known as the “pink noise”.
– Non-interacting
– Inject energy to the MHD cascade at higher frequencies

• Inertial range:

– Mostly incompressible Alfvénic turbulence.
– ∼ 𝑓−5/3 spectrum (Kolmogorov type)

460



Figure 14.2: Wave scale from typical L1 satellite solar wind observation.
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Figure 14.3: Solar wind power spectrum from Kiyoni+, 2015.
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– a cascade of energy to smaller scales

• Kinetic range:

– Scales at which particles are heated
– Typically 𝑓−2.8 spectrum
– Possibly KAW (Section 7.9.4) or whistler mode (Section 7.7) turbulence

When we move to smaller scales, anisotropy increases. This is demonstrated in Figure 14.4
as a result of 𝑘⟂ ≫ 𝑘∥, which is also why gyrokinetics is the theory for turbulence. Isotropic
MHD is inadequate in turbulence study because of this major drawback.

Figure 14.4: Demonstration of parallel and perpendicular length scales of turbulence.

Fluctuation modes in the inertial range consists of 90% incompressible (Alfvén) modes and
10% compressible slow/mirror modes. Alfvénic turbulence is thought to be passive to the
compressive modes: compressive modes scatter off Alfvén modes without affecting them signif-
icantly (i.e. being decoupled from each other). The compressive modes are expected to damp
∼ 𝑘∥𝑣𝐴. Since 𝑘⟂ ≫ 𝑘∥, the damp is not significant for compressive modes, so they tend to be
more anisotropic than the Alfvénic turbulence.

14.3 Turbulence and Reconnection

Turbulence and magnetic reconnection can be mutually driven, but the underlying nature
of energy dissipation, intrinsic turbulence waves, and magnetic field topologies in turbulent
magnetic reconnection is still poorly understood.

To study turbulence and reconnection together, one need to confirm several things before-
hand:

1. The existence of reconnection, from identifying magnetic null point, plasma inflow and
outflow, and the diffusion regions.

2. The existence of turbulence, by looking at the magnetic field power spectrum and confirm
the cascades. From satellite data, this is done by taking a time interval, performing FFT,
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and check the characteristic frequency scales such as the ion cyclotron frequency 𝑓𝑐𝑖, the
lower hybrid frequency 𝑓𝑙𝑛, etc.

If there are spectral breaks in the power spectrum diagram (PSD), especially near the character-
istic frequencies, they may indicate local cyclotron resonance, which is related to wave-particle
interactions. Some researchers have found from MMS tail current sheet observations that in
the reconnection outflow regions, energy is deposited in the form of kinetic Alfvén waves in
low-frequency 𝑓𝑐𝑖 ion cyclotron scale and fast/slow waves in high-frequency low-hybrid scale.

464



15 Geometry

This chapter introduces the topology-related concepts in plasma physics, including ropes, knots,
boundaries, and null points. Usually, observers and modelers have different views of topology
because of the tools at hand: observers have probes which give measurements as a function of
both time and space, while modelers have full spatial-temporal information under the given
resolution. It always amazes me how observers can deduce the general picture of plasma
structures with such limited data. Incorporating observation experience into physics as well
as diagnosing numerical simulations with physics are our main goals in studing geometry.

Generally speaking, there are two ways of tackling the geometry problems: physics-based
methods and statistical methods (classical and machine learning). We may find harmony
when combining these two families and reach optimal results.

15.1 Local Coordinate System

Define the Jacobian ⃡⃡⃡ ⃡⃡𝐺 = ∇B of the magnetic field.

• Minimum Directional Derivative (MDD) Method: In the MDD method, local orthogonal
coordinate directions can be obtained from eigenvectors of ⃡⃡⃡ ⃡⃡𝐺⊺ ⃡⃡⃡ ⃡⃡𝐺.

• Minimum Gradient Analysis (MGA): In MGA, local orthogonal coordinate directions
can be obtained from eigenvectors of ⃡⃡⃡ ⃡⃡𝐺 ⃡⃡⃡ ⃡⃡𝐺⊺.

MGA produces a set of basis vectors that are analogous with the ones from Minimum Variance
Analysis (MVA), with the eigenvector corresponding to the largest eigenvalue aligned with the
vector that has maximal variation (which is denoted by �̂�MGA), the second one corresponding
to the intermediate (�̂�MGA) and third the least variation ( ̂𝑁MGA). MDD produces a set of
basis vectors where the eigenvector corresponding to the largest eigenvalue shows the direction
of the displacement which produces the largest variation in B (the cross-sheet direction in a
Harris current sheet; �̂�MDD), idem with smaller eigenvalues (�̂�MDD and ̂𝑁MDD, respectively).
Both of these eigensystems have the same eigenvalues, but the eigenvectors differ and are not
necessarily aligned with each others. We note here that for a one-dimensional structure, both
of these eigensystem have only one well-defined eigenvector, and that for a 1D current sheet
structure, the well-defined eigenvectors of different bases are orthogonal to each others, as
shown in Figure~??.
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Figure 15.1: a) MVA (MGA) and b) MDD eigenvectors �⃗�max, �⃗�mid, �⃗�min, corresponding to
largest, middle and minimum eigenvalues in a 1-D current sheet.

15.1.1 Dimensionality

MDD gives a way to define the local dimensionality of a structure from the eigenvalues of
the matrix ⃡⃡⃡ ⃡⃡𝐺 ⃡⃡⃡ ⃡⃡𝐺⊺. The measures 𝐷1, 𝐷2, 𝐷3 describing the one-, two- or three-dimensionality
of the magnetic field and are obtained from the ratios of square roots of the eigenvalues 𝜆𝑖
(𝑖 = 1, 2, 3, in descending order) of the MDD ⃡⃡⃡ ⃡⃡𝐺 ⃡⃡⃡ ⃡⃡𝐺⊺.

One kind of definitions for 𝐷1, 𝐷2, 𝐷3 are given below:

𝐷1 = √𝜆1 −√𝜆2
√𝜆1

𝐷2 = √𝜆2 −√𝜆3
√𝜆1

𝐷3 = √𝜆3
√𝜆1

.

These quantities are defined to lie in the range [0,1] and their sum is one. For 𝐷1 ≈ 1, the
magnetic field structure is primarily one-dimensional, such as a current sheet with B ≈ B(𝑧)
for a direction 𝑧 normal to the current sheet. Correspondingly, for 𝐷2 ≈ 1, the structure is
primarily a function of two coordinates, etc. These measures allow us to quantify whether or
not the locally 2D treatment for neutral lines is well-founded.

If the eigenvalues are not well-separated, the directions obtained from MGA and MDD are
ambiguous (Shi et al. 2019). For example, the current sheet with dimensionality 1, MGA
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obtains the field-aligned direction (above and below the current sheet), while MDD obtains
the normal direction to the current sheet, with two other directions being ambiguous.1

Common representative structure:

• 1D: current sheet
• 2D: plasmoid, flux rope
• 3D: rare2

15.2 Reconnection Identification

Here we present analytical fields for an X-point configuration and an O-point configuration,
respectively.

Figure 15.2: Example of (a) O-point and (b) X-point.

15.2.1 2D

Identification of 2D reconnection sites is easy. Assume the out-of-plane direction being y, with
𝐵𝑦 = const. The divergence-free condition gives

𝜕𝐵𝑥
𝜕𝑥 + 𝜕𝐵𝑧

𝜕𝑧 = 0

1I have not thought about Markku’s statement here carefully. In his proposed method, the two L directions
taken from both MDD and MGA are used to construct the local coordinate system.

23D structures are rarely mentioned in literature. Markku also found it rare from Vlasiator simulations.
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In the X-Z plane, we can define a flux function

𝜓 = ∫𝐵𝑥𝑑𝑧 = −∫𝐵𝑧𝑑𝑥

then
B = 𝐵𝑥 ̂𝑥 + 𝐵𝑧 ̂𝑧 = ̂𝑦 × ∇𝜓

The null points are simple saddle points and extremas of the flux function.

Figure 15.3: Neutral point classification in a well-defined local coordinate system. On the plane
where 𝐵𝐿 = 0 and on the subset of that plane where 𝐵𝑁 = 0, the O-points have
𝜕𝐵𝑁/𝜕𝐿 < 0, and X-points 𝜕𝐵𝑁/𝜕𝐿 > 0. Note that this classification assumes
a right-handed coordinate system.

15.2.2 3D

Identification of 3D reconnection sites is not easy.

Implement Lapenta’s method.

The four-field junction (FFJ) method is proposed by Laitinen+ 2006. It works decently on
steady reconnection cases, but not when things change drastically.

15.2.3 Critical Points

Let us discuss the problem with topological definitions (following Kenneth Rohde Christiansen
and Aard Keimpema). Critical points are points where the vector vanishes (i.e. v = 0). More
rigidly speaking, critical points are stationary points that have a non-singular (i.e. no zero
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eigenvalues) Jacobian or vector gradient ∇v. There are 6 different types of critical points,
characterized by the behavior of nearby tangent curves. The position of these critical points
can be found by searching all cells in the flow field. Critical points only occur in cells whree all
components of the vector pass through zero. In order to find the exact location of the critical
point we will have to do interpolations.

We can then classify these by looking at the eigenvalues of the Jacobian matrix. The Jacobian
matrix for a 2D vector (𝑢, 𝑣) is given by

𝜕(𝑢, 𝑣)
𝜕(𝑥, 𝑦) ∣

𝑥0,𝑦0

= (𝜕𝑥𝑢 𝜕𝑦𝑢
𝜕𝑥𝑣 𝜕𝑦𝑣

) ∣
𝑥0,𝑦0

(15.1)

As seen in Figure 15.4 these 6 different types are classified by the sign of the real and imaginary
part of the eigenvalues. The real part of the eigenvalue gives rise to an attraction (if 𝑅𝐸 < 0)
or a repulsion (if 𝑅𝐸 > 0). The imaginary part of the eigenvalue give rise to a rotation of
vector field around the critical point. When we have an imaginary eigenvalue we are left with
an entirely rotational vector field around the critical point.

Figure 15.4: Classification of critical points, here Re1/Re2 is the real part of the first/second
eigenvalue and Im1/Im2 is the imaginary part of the first/second eigenvalue.
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The most important critical point is the saddle point here we have a combination of attraction
in one direction and repulsion in the other. The importance of saddle points as we shall see in
the next section is that the tangent curves near a critical point determine the global structure
of the flow.

A critical point is called hyperbolic if it does not have any eigenvalues with zero real part.
Hyperbolic critical points are structurally stable, i.e., a small perturbation does not change
their topology.

Besides critical points there are also so-called attachment/detachment nodes. These are points
on the wall of an object where tangent curves terminate or begin.

In 3D, the most common (i.e., nondegenerate) types of critical points are sources, sinks, re-
pelling saddles, and attracting saddles, visualized in Figure 15.5 ((Bujack et al. 2021)). Each
of these types may imply a rotating pattern in a certain plane depending on the presence of
eigenvalues with nonzero imaginary part. This gives rise to the eight cases shown in the figure.
A 2D separatrix and two 1D separatrices originate or terminate at a saddle (if the 2D separa-
trix originates at the saddle, then the 1D separatrices terminate at the saddle, and vice-versa).
The directions along which the separatrices approach the saddle are given by the eigenvectors
of ∇𝑣. The 1D separatrices are computed by placing two seeds at a small user-defined offset
of the saddle in the direction of the eigenvectors of ∇𝑣 corresponding to the eigenvalue whose
sign appears only once. The trajectories from these seeds are integrated as explained above.
The 2D separatrix is computed by placing eight seeds at a small user-defined offset of the
saddle in the plane spanned by the eigenvectors of �v corresponding to the eigenvalues whose
signs appear twice. These seeds are the base for integrating a surface — the separatrix.

The most important input parameters are the distance in which the separatrices are seeded
away from the saddles and the parameters that are handed off to the streamline and stream-
surface integrators, like step sizes and maximum number of steps.

15.2.4 Separatrix

In scientific visualization, we treat vector fields defined on a discrete set of points in a grid
and interpolate linearly or multilinearly within the cells. Since piecewise linear or multilinear
functions are Lipschitz continuous, streamlines always exist uniquely.

A skeleton of a flow field is a figure containing the critical points of the flow field and the
so-called integral curves connecting them. An integral curve can be thought of as the path
a test particle takes when released infinitesimally close to a critical point. By adding e.g. an
arrow the direction of the integral curves can be displayed; giving a global image of the flow.
In the topology context, the skeleton is known as the separatrix. Separatrices are solutions
which differ from their neighbors in their limit sets (?) or in their behavior in the large (?).
Separatrices include critical points, periodic orbits, and invariant manifolds of saddles.

In practice, separatrices are constructed by
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Figure 15.5: The different types of nondegenerate 3D critical points visualized with stream-
lines color coded in red/blue for forward/backward integration and line integral
convolution in the plane of the common sign. Here the presence of the subscript
𝑖 means all 𝑖 ∈ (1, 2, 3), and the order of the eigenvalues does not matter.
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• Detecting critical points analytically in each cell
• Classifying them based on the eigenvalues of their Jacobian
• Seeding separatrices in a small offset of the saddles in the direction of their eigenvectors

Figure 15.6: Identification of separatrices in 2D.

In 3D, instead of lines we may have separatrix surfaces.

15.3 Helicity

In fluid dynamics, helicity is, under appropriate conditions, an invariant of the Euler equations
of fluid flow, having a topological interpretation as a measure of linkage and knottedness of
vortex lines in the flow (Moffatt 1969).
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Let u(𝑥, 𝑡) be the velocity field and ∇×u the corresponding vorticity field. Under the following
three conditions, the vortex lines are transported with (or “frozen in”) the flow:

1. the fluid is inviscid;
2. either the flow is incompressible (∇ ⋅ u = 0), or it is compressible with a barotropic

relation 𝑝 = 𝑝(𝜌) between pressure 𝑝 and density 𝜌;
3. any body forces acting on the fluid are conservative. Under these conditions, any closed

surface 𝑆 on which 𝑛 ⋅ (∇ × u) = 0 is, like vorticity, transported with the flow.

Let 𝑉 be the volume inside such a surface. Then the helicity in 𝑉 is defined by

𝐻 = ∫
𝑉

u ⋅ (∇ × u) 𝑑𝑉 (15.2)

For a localised vorticity distribution in an unbounded fluid, 𝑉 can be taken to be the whole
space, and 𝐻 is then the total helicity of the flow. 𝐻 is invariant precisely because the
vortex lines are frozen in the flow and their linkage and/or knottedness is therefore conserved,
as recognized by Lord Kelvin (1868). Helicity is a pseudo-scalar quantity: it changes sign
under change from a right-handed to a left-handed frame of reference; it can be considered
as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known
integral invariants of the Euler equations; the other three are energy, momentum and angular
momentum.

The invariance of helicity provides an essential cornerstone of the subject topological fluid
dynamics and MHD, which is concerned with global properties of flows and their topological
characteristics.

15.4 Magnetic Helicity

The helicity of a smooth vector field defined on a domain in 3D space is the standard measure
of the extent to which the field lines wrap and coil around one another. As to magnetic
helicity, this “vector field” is magnetic field. It is a generalization of the topological concept of
linking number to the differential quantities required to describe the magnetic field. As with
many quantities in electromagnetism, magnetic helicity (which describes magnetic field lines)
is closely related to fluid mechanical helicity (which describes fluid flow lines).

If magnetic field lines follow the strands of a twisted rope, this configuration would have
nonzero magnetic helicity; left-handed ropes would have negative values and right-handed
ropes would have positive values.

Formally,
𝐻 = ∫A ⋅ Bdr3 (15.3)

where
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• 𝐻 is the helicity of the entire magnetic field
• B is the magnetic field strength
• A is the vector potential of B and B = ∇× A

Magnetic helicity has units of Wb2 in SI units and Mx2 in Gaussian Units. Note that A ⋅ B
should not be considered as “helicity density” because of gauge freedom.

It is a conserved quantity in electromagnetic fields, even when magnetic reconnection dissipates
energy (Woltjer 1958). The concept is useful in solar dynamics and in dynamo theory. Helicity
is approximately conserved during magnetic reconnection and topology changes. Helicity can
be injected into a system such as the solar corona. When too much builds up, it ends up
being expelled through coronal mass ejections. The simple proof in ideal MHD can be found
on Wikipedia.

Magnetic helicity is a gauge-dependent quantity, because A can be redefined by adding a
gradient to it (gauge transformation):

A′ = A +∇𝜙

However, for perfectly conducting boundaries or periodic systems without a net magnetic flux,
the magnetic helicity is gauge invariant. A gauge-invariant relative helicity has been defined
for volumes with non-zero magnetic flux on their boundary surfaces. If the magnetic field is
turbulent and weakly inhomogeneous a magnetic helicity density and its associated flux can
be defined in terms of the density of field line linkages.

The topological properties of a magnetic field are interpreted in terms of magnetic helicity.
The total helicity of a collection of flux tubes arises from the linking of flux tubes with one
another (mutual helicity) and the internal magnetic structure of each flux tube (self-helicity).
Reconnection changes the topology and magnetic connectivity of flux tubes. This can also
be viewed as a redistribution of self- and mutual helicities. If total magnetic helicity is ap-
proximately conserved, it is possible to put quantitative limits upon the changes in self- and
mutual helicities. This can be interpreted as the change in magnetic flux tube linkage (due to
reconnection) and amount of twist present in the reconnected flux tubes. [Wright & Berger,
1989]

Simple examples:

1. A single untwisted closed flux loop has 𝐻 = 0.
2. A single flux rope with a magnetic flux of 𝜙 that twists around itself 𝑇 times has a

helicity of 𝐻 = 𝑇𝜙2.
3. Two interlinked untwisted flux loops with fluxes 𝜙1 and 𝜙2 have 𝐻 = ±2𝜙1𝜙2 where the

sign depends on the sense of the linkedness.
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There are generalizations to allow for gauge-invariant definitions of helicity. [Berger & Field
(1984)] defined the relative magnetic helicity to be

𝐻 = ∫
𝑉

A ⋅ B − A0 ⋅ B0𝑑𝑉 (15.4)

where B0 = ∇ × A0 is the potential field inside 𝑉 with the same field outside of 𝑉 (see also
Finn & Antonsen 1985).

In toroidal laboratory experiments, it is natural to consider the volume contained within
conducting wall boundaries that are coincident with closed flux surfaces (i.e., the magnetic
field along the wall is parallel to the boundary).

The time evolution of magnetic helicity is given by

d𝐻
d𝑡 = −2𝑐∫

𝑉
E ⋅ B𝑑𝑉 + 2𝑐∫

𝑆
A𝑝 × E ⋅ dS

where we choose ∇×A𝑝 = 0 and A𝑝 ⋅dS = 0 on 𝑆. The first term represents helicity dissipation
when 𝐸∥ ≠ 0, which is always zero in ideal MHD. The second term represents helicity fluxes
in and out of the system, for example, flux emergence from the solar photosphere corresponds
to helicity injection in the corona.

15.5 Cross Helicity

The cross helicity measures the imbalance between interacting waves, which is important in
MHD turbulence (Section 14.1.5). It is given by

𝐻𝐶 = ∫
𝑉

v ⋅ B𝑑𝑉 (15.5)

In ideal MHD, the rate of change of 𝐻𝐶 is

d𝐻𝐶
d𝑡 = −∮

𝑆
dS ⋅ [(12𝑣

2 + 𝛾
𝛾 − 1

𝑝
𝜌)B − v × (v × B)]

This vanishes when dS⋅B = 𝑑S⋅V = 0 along the boundary 𝑆 or when the boundary conditions
are periodic. Cross helicity is an ideal MHD invariant when this integral vanishes.

There are discretized forms of cross helicity from the observation point of view. Check it out
if you want to know more.
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15.6 Flux Rope Identification

Using turbulence parameters to find flux ropes (Zhao et al. 2020):

𝜎𝑟 < −0.5
|𝜎𝑐| < 0.4
|𝜎𝑚| > 0.7

where 𝜎𝑚 is the normalized reduced magnetic helicity, which is a measure of B rotation. Strictly
speaking, the magnetic helicity depends on the spatial properties of the magnetic field topol-
ogy, and thus cannot be directly evaluated from single spacecraft measurements. However,
Matthaeus+ (1982) described a reduced form of magnetic helicity that can be estimated with
measurements from a single spacecraft based on the magnetic power spectrum. The normalized
reduced magnetic helicity can be estimated by

𝜎𝑚(𝜈, 𝑡) = 2ℑ[𝑊 ∗
𝑇 (𝜈, 𝑡) ⋅ 𝑊𝑁(𝜈, 𝑡)]

|𝑊𝑅(𝜈, 𝑡)|2 + |𝑊𝑇 (𝜈, 𝑡)|2 + |𝑊𝑁(𝜈, 𝑡)|2 (15.6)

where 𝜈 is the frequency associated with the Wavelet function and the sampling period of
the measured magnetic field in the radial tangential normal (RTN) coordinate system. The
spectra 𝑊𝑅(𝜈, 𝑡), 𝑊𝑇 (𝜈, 𝑡), and 𝑊𝑁(𝜈, 𝑡) are the wavelet transforms of time series of B1𝑅,
B1𝑇 , and B1𝑁 , respectively; and 𝑊 ∗

𝑇 (𝜈, 𝑡) is the conjugate of 𝑊𝑇 (𝜈, 𝑡). From the resulting
spectrogram of the magnetic helicity, 𝜎𝑚, one can determine both the magnitude and the
handedness (chirality) of underlying fluctuations at a specific scale. A positive value of 𝜎𝑚
corresponds to right-handed chirality and a negative value to left-handed chirality.

15.7 Magnetospause Identification

From pressure balance argument, let 𝛽∗ = (𝑝th + 𝑝dyn)/𝑝𝐵, we can have a simple criterion:

𝛽∗ ≃ 1
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16 Solar Wind

The solar wind is a high-speed particle stream continuously blown out from the Sun into
interplanetary space. It extends far beyond the orbit of the Earth, and terminates in a shock
front, called the heliopause, where it interfaces with the weakly ionized interstellar medium.
The heliopause is predicted to lie between 110 and 160 AU (1 Astronomical Unit is 1.5×1011m)
from the center of the Sun. Voyager 1 & 2, which were launched in 1977, have passed through
the heliopause, and are still functional!

In the vicinity of the Earth, (i.e., at about 1 AU from the Sun) the solar wind velocity typically
ranges between 300 and 1400 km s−1. The average value is approximately 500 km s−1, which
corresponds to about a 4 day time of flight from the Sun. Note that the solar wind is both
super-sonic and super-Alfvénic.

The solar wind is predominately composed of protons and electrons. Generally helium (He++)
is about 4%, and oxygen (O+) is less than 1%.

Amazingly enough, the solar wind was predicted theoretically by Eugine Parker in 1958, a
number of years before its existence was confirmed using satellite data. Parker’s prediction of
a super-sonic outflow of gas from the Sun is a fascinating scientific detective story, as well as
a wonderful application of plasma physics.

The solar wind originates from the solar corona. The solar corona is a hot, tenuous plasma
surrounding the Sun, with characteristic temperatures and particle densities of about 106K
and 1014 m−3, respectively. Note that the corona is far hotter than the solar atmosphere, or
photosphere. In fact, the temperature of the photosphere is only about 6000 K. It is thought
that the corona is heated by Alfvén waves emanating from the photosphere together with a
turbulent cascading process. The solar corona is most easily observed during a total solar
eclipse, when it is visible as a white filamentary region immediately surrounding the Sun.

Let us start, following Chapman, by attempting to construct a model for a static solar corona.
The equation of hydrostatic equilibrium for the corona takes the form

d𝑝
d𝑟 = −𝜌 𝐺𝑀⊙

𝑟2 (16.1)

where 𝐺 = 6.67 × 10−11 m3 s−2 kg−1 is the gravitational constant, and 𝑀⊙ = 2× 1030 kg is the
solar mass. The plasma density is written

𝜌 ≃ 𝑛𝑚𝑝 (16.2)
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where 𝑛 is the number density of protons. If both protons and electrons are assumed to possess
a common temperature, 𝑇 (𝑟), then the coronal pressure is given by

𝑝 = 2𝑛𝑘𝐵𝑇 (16.3)

The thermal conductivity of the corona is dominated by the electron thermal conductivity,
and takes the form (???)

𝜅 = 𝜅0 𝑇 5/2

where 𝜅0 is a relatively weak function of density and temperature. For typical coronal condi-
tions this conductivity is extremely high: i.e., it is about twenty times the thermal conductivity
of copper at room temperature. The coronal heat flux density is written

q = −𝜅∇𝑇

For a static corona, in the absence of energy sources or sinks, we require

∇ ⋅ q = 0

Assuming spherical symmetry, this expression reduces to
1
𝑟2

d
d𝑟 (𝑟2𝜅0 𝑘𝐵𝑇 5/2 𝑑𝑇

d𝑟 ) = 0

Adopting the sensible boundary condition that the coronal temperature must tend to zero at
large distances from the Sun, we obtain

𝑇 (𝑟) = 𝑇 (𝑎) (𝑎𝑟)
2/7

(16.4)

The reference level 𝑟 = 𝑎 is conveniently taken to be the base of the corona, where 𝑎 ∼
7 × 105 km, 𝑛 ∼ 2 × 1014 m−3, and 𝑇 ∼ 2 × 106K.

Equation 16.1, Equation 16.2, Equation 16.3, and Equation 16.4 can be combined and inte-
grated to give

𝑝(𝑟) = 𝑝(𝑎) exp{7
5

𝐺𝑀⊙ 𝑚𝑝
2𝑘𝐵𝑇 (𝑎) 𝑎 [(𝑎𝑟)

5/7
− 1]}

Note that as 𝑟 → ∞ the coronal pressure tends towards a finite constant value:

𝑝(∞) = 𝑝(𝑎) exp{−7
5

𝐺𝑀⊙ 𝑚𝑝
2𝑘𝐵𝑇 (𝑎) 𝑎}

There is, of course, nothing at large distances from the Sun which could contain such a pressure
(the pressure of the interstellar medium is negligibly small). Thus, we conclude, with Parker,
that the static coronal model is unphysical.

Since we have just demonstrated that a static model of the solar corona is unsatisfactory, let us
now attempt to construct a dynamic model in which material flows outward from the Sun.
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16.1 Parker Solar Wind Model

By symmetry, we expect a purely radial coronal outflow. The radial momentum conservation
equation for the corona takes the form

𝜌 𝑢 𝑑𝑢
d𝑟 = −d𝑝

d𝑟 − 𝜌 𝐺𝑀⊙
𝑟2 (16.5)

where 𝑢 is the radial expansion speed. The continuity equation reduces to

1
𝑟2

d(𝑟2 𝜌 𝑢)
d𝑟 = 0 (16.6)

In order to obtain a closed set of equations, we now need to adopt an equation of state for the
corona, relating the pressure, 𝑝, and the density, 𝜌. For the sake of simplicity, we adopt the
simplest conceivable equation of state, which corresponds to an isothermal corona. Thus, we
have

𝑝 = 2𝑘𝐵𝜌𝑇
𝑚𝑝

(16.7)

where 𝑇 is a constant. Note that more realistic equations of state complicate the analysis, but
do not significantly modify any of the physics results.

Equation 16.6 can be integrated to give

𝑟2 𝜌 𝑢 = 𝐼 (16.8)

where 𝐼 is a constant. The above expression simply states that the mass flux per unit solid
angle, which takes the value 𝐼 , is independent of the radius, 𝑟. Equation 16.5, Equation 16.7,
and Equation 16.8 can be combined together to give

1
𝑢

𝑑𝑢
d𝑟 (𝑢2 − 2𝑘𝐵𝑇

𝑚𝑝
) = 4𝑘𝐵𝑇

𝑚𝑝 𝑟
− 𝐺𝑀⊙

𝑟2 (16.9)

Let us restrict our attention to coronal temperatures which satisfy

𝑇 < 𝑇𝑐 ≡ 𝐺𝑀⊙ 𝑚𝑝
4𝑘𝐵 𝑎

where 𝑎 is the radius of the base of the corona. 𝑇𝑐 is the defined temperature where the
right-hand side of Equation 16.9 is zero at 𝑟 = 𝑎. For typical coronal parameters (see previous
section), 𝑇𝑐 ≃ 5.8 × 106K, which is certainly greater than the temperature of the corona at
𝑟 = 𝑎. For 𝑇 < 𝑇𝑐, the right-hand side of Equation 16.9 is negative for 𝑎 < 𝑟 < 𝑟𝑐, where
(???)

𝑟𝑐
𝑎 = 𝑇𝑐

𝑇 (16.10)
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and positive for 𝑟𝑐 < 𝑟 < ∞. The right-hand side of Equation 16.9 is zero at 𝑟 = 𝑟𝑐, implying
that the left-hand side is also zero at this radius, which is usually termed the “critical radius”.
There are two ways in which the left-hand side of Equation 16.9 can be zero at the critical
radius. Either

𝑢2(𝑟𝑐) = 𝑢2
𝑐 ≡ 2𝑘𝐵𝑇

𝑚𝑝
(16.11)

or
𝑑𝑢(𝑟𝑐)

d𝑟 = 0 (16.12)

Note that 𝑢𝑐 is the coronal sound speed.

As is easily demonstrated, if Equation 16.11 is satisfied then 𝑑𝑢/d𝑟 has the same sign for all
𝑟, and 𝑢(𝑟) is either a monotonically increasing, or a monotonically decreasing, function of 𝑟.
On the other hand, if Equation 16.12 is satisfied then 𝑢2 −𝑢2

𝑐 has the same sign for all 𝑟, and
𝑢(𝑟) has an extremum close to 𝑟 = 𝑟𝑐. The flow is either super-sonic for all 𝑟, or sub-sonic
for all 𝑟. These possibilities lead to the existence of four classes of solutions to Equation 16.9,
with the following properties:

1. 𝑢(𝑟) is sub-sonic throughout the domain 𝑎 < 𝑟 < ∞. 𝑢(𝑟) increases with 𝑟, attains a
maximum value around 𝑟 = 𝑟𝑐, and then decreases with 𝑟.

2. a unique solution for which 𝑢(𝑟) increases monotonically with 𝑟, and 𝑢(𝑟𝑐) = 𝑢𝑐.
3. a unique solution for which 𝑢(𝑟) decreases monotonically with 𝑟, and 𝑢(𝑟𝑐) = 𝑢𝑐.
4. 𝑢(𝑟) is super-sonic throughout the domain 𝑎 < 𝑟 < ∞. 𝑢(𝑟) decreases with 𝑟, attains a

minimum value around 𝑟 = 𝑟𝑐, and then increases with 𝑟.

These four classes of solutions are illustrated in ?@fig-parker-sol.

Each of the classes of solutions described above fits a different set of boundary conditions at
𝑟 = 𝑎 and 𝑟 → ∞. The physical acceptability of these solutions depends on these boundary
conditions. For example, both Class 3 and Class 4 solutions can be ruled out as plausible
models for the solar corona since they predict super-sonic flow at the base of the corona,
which is not observed, and is also not consistent with a static solar photosphere. Class 1 and
Class 2 solutions remain acceptable models for the solar corona on the basis of their properties
around 𝑟 = 𝑎, since they both predict sub-sonic flow in this region. However, the Class 1 and
Class 2 solutions behave quite differently as 𝑟 → ∞, and the physical acceptability of these
two classes hinges on this difference.

Equation 16.9 can be rearranged to give

𝑑𝑢2

d𝑟 (1 − 𝑢 2
𝑐
𝑢2 ) = 4𝑢 2

𝑐
𝑟 (1 − 𝑟𝑐

𝑟 )

where Equation 16.10 and the definition of 𝑇𝑐 have been used. The above expression can be
integrated to give

( 𝑢
𝑢𝑐

)
2
− ln( 𝑢

𝑢𝑐
)

2
= 4 ln 𝑟

𝑟𝑐
+ 4 𝑟𝑐

𝑟 + 𝐶 (16.13)
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where 𝐶 is a constant of integration.

Let us consider the behaviour of Class 1 solutions in the limit 𝑟 → ∞. It is clear from ?@fig-
parker-sol that, for Class 1 solutions, 𝑢/𝑢𝑐 is less than unity and monotonically decreasing
as 𝑟 → ∞. In the large-𝑟 limit, Equation 16.13 reduces to

ln 𝑢
𝑢𝑐

≃ −2 ln 𝑟
𝑟𝑐

so that
𝑢 ∝ 1

𝑟2

It follows from Equation 16.8 that the coronal density, 𝜌, approaches a finite, constant value,
𝜌∞, as 𝑟 → ∞. Thus, the Class 1 solutions yield a finite pressure,

𝑝∞ = 2𝑘𝐵 𝜌∞ 𝑇
𝑚𝑝

at large 𝑟, which cannot be matched to the much smaller pressure of the interstellar medium.
Clearly, Class 1 solutions are unphysical.

Let us consider the behaviour of the Class 2 solution in the limit 𝑟 → ∞. It is clear from
?@fig-parker-sol that, for the Class 2 solution, 𝑢/𝑢𝑐 is greater than unity and monotonically
increasing as 𝑟 → ∞. In the large-𝑟 limit, Equation 16.13 reduces to

( 𝑢
𝑢𝑐

)
2
≃ 4 ln 𝑟

𝑟𝑐
so that

𝑢 ≃ 2𝑢𝑐 (ln 𝑟
𝑟𝑐

)
1/2

It follows from Equation 16.8 that 𝜌 → 0 and 𝑟 → ∞. Thus, the Class 2 solution yields 𝑝 → 0
at large 𝑟, and can, therefore, be matched to the low pressure interstellar medium.

We conclude that the only solution to Equation 16.9 which is consistent with physical boundary
conditions at 𝑟 = 𝑎 and 𝑟 → ∞ is the Class 2 solution. This solution predicts that the solar
corona expands radially outward at relatively modest, sub-sonic velocities close to the Sun, and
gradually accelerates to super-sonic velocities as it moves further away from the Sun. Parker
termed this continuous, super-sonic expansion of the corona the solar wind.

Note that while the velocity prediction accords well with satellite observations, the Parker
model’s prediction for the density of the solar wind at the Earth is significantly too high
compared to satellite observations. Consequently, there have been many further developments
of this model. In particular, the unrealistic assumption that the solar wind plasma is isothermal
has been relaxed, and two-fluid effects have been incorporated into the analysis.
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16.2 Parker Spiral

The interplanetary magnetic field (IMF), also called Parker spiral, is the component of the
solar magnetic field that is dragged out from the solar corona by the solar wind flow to fill
the Solar System. Depending on the polarity of the photospheric footpoint, the heliospheric
magnetic field spirals inward or outward; the magnetic field follows the same shape of spiral
in the northern and southern parts of the heliosphere, but with opposite field direction. These
two magnetic domains are separated by a current sheet (an electric current that is confined
to a curved plane). This heliospheric current sheet has a shape similar to a twirled ballerina
skirt (Figure 16.1), and changes in shape through the solar cycle as the Sun’s magnetic field
reverses about every 11 years.

KeyNotes.plot_IMF_ecliptic()

KeyNotes.plot_IMF_3D()

16.3 Anisotropy in the Solar Wind

Observationally, Pioneer 6 showed that the ion temperature anisotropy in the solar wind at
1AU generally has 𝑇∥ > 𝑇⟂, together with other two interesting discoveries:

1. high fluctuations of flow velocity outside the solar ecliptic plane;
2. anisotropic ion thermal distribution (𝑇∥/𝑇⟂ ∼ [2, 5]);
3. presence of a 3rd species, helium, from charge-to-mass ratio analysis of the angular and

energy distributions.

It may possibly be explained by the conservation of the 1st adiabatic invariant Scarf, Wolfe,
and Silva (1967).

The magnetic moment 𝜇 = 𝑚𝑣2⟂/2𝐵 is conserved as the collisionless solar wind flows outward
from the sun. Near the solar equator the mean field magnitude declines with

𝐵𝑟(𝑟) ≃ 𝐵𝑟(𝑟0)(
𝑟0
𝑟 )

2

and
𝐵𝜙(𝑟) ≃

Ω𝑟
𝑢(𝑟)𝐵𝑟(𝑟)

from the Parker spiral solar wind model and Ω𝑟 = 2.94×10−6 rad/s being the angular frequency
of the rotation of the sun.
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Figure 16.1: The heliospheric current sheet is a three-dimensional form of a Parker spiral that
results from the influence of the Sun’s rotating magnetic field on the plasma in
the interplanetary medium.
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The adiabatic equation in the perpendicular direction indicates that the perpendicular thermal
energy ⟨𝑚𝑣2⟂/2⟩ = 𝑘𝐵𝑇⟂ declines with B. Assuming in the rest frame the distribution function
is a bi-Maxwellian of the form

𝑓(𝑣) = (𝑚
2𝜋)

3/2 1
𝑘𝐵𝑇⟂(𝑘𝐵𝑇∥)1/2

exp( − 𝑚𝑣2⟂
2𝑘𝐵𝑇⟂

−
𝑚𝑣2∥
2𝑘𝐵𝑇∥

)

The conservation of the total thermal energy

𝑊 = ∫ d3𝑣𝑚𝑣2
2 𝑓(𝑣)

yields
𝑊 = 𝑘𝐵𝑇⟂ + 𝑘𝐵𝑇∥/2 = const.

These allows us to evaluate the variations in 𝑇⟂ and 𝑇∥ originating from isotropic distribution
on the surface of the sun. Starting from 𝑇⟂(0.3𝐴𝑈) = 𝑇∥(0.3𝐴𝑈) ≃ 1.3 × 105K, the predicted
anisotropy 𝑇∥/𝑇⟂ at Earth can go beyond 20! Therefore, in fact, the reasonable question
to ask is why the actual solar wind anisotropy factor is so small. In simulations, we always
apply isotropic distribution in the upstream solar wind condition, which is primarily due to
the fact that we are mostly using fluid models (i.e. MHD) for global magnetosphere-solar wind
interactions. For kinetic models, we need more realistic distribution setups.

Well, we know now when pressure anisotropy develops, two kinds of plasma instabilities can
be triggered: firehose when 𝑇⟂ < 𝑇∥ and mirror when 𝑇⟂ > 𝑇∥. Further studies require kinetic
theory to describe their behaviors.

On the other hand, the opposite case, 𝑇⟂ > 𝑇∥, is also observed and believed to be related
to local ion heating by macroscale compressions (e.g. high/low speed streams interaction) or
plasma instabilities (Bame et al. 1975).

The mirror instability criterion as an additional relation to determine the pressure anisotropy
downstream of the shock from the book Plasma instabilities and nonlinear effects by Hasegawa
1975,

1 + ∑
species

𝛽⟂(1 − 𝛽⟂
𝛽∥

) < 0

16.4 Switchbacks

When Parker Solar Probe (PSP) sent back the first observations from its voyage to the Sun,
scientists found signs of a wild ocean of currents and waves quite unlike the near-Earth space
much closer to our planet. This ocean was spiked with what became known as switchbacks:
rapid flips in the Sun’s magnetic field that reversed direction like a zig-zagging mountain
road.
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Our current understanding is that switchbacks may be generated from either magnetic recon-
nection, turbulence, or plasma velocity shears. There are models for each, but they all requires
more testing from future PSP data.

See more in Switchbacks Science: Explaining Parker Solar Probe’s Magnetic Puzzle.

16.5 MHD Description

Because of the presence of a strong magnetic field carried by the wind, low-frequency fluc-
tuations in the solar wind are usually described with MHD. However, due to some peculiar
characteristics, the solar wind turbulence contains some features hardly classified within a gen-
eral theoretical framework. (Tu and Marsch 1995) presents a thorough review of the turbulent
phenomena in the solar wind from observations in the ecliptic. In the 1990s, with the launch
of the Ulysses spacecraft, investigations have been extended to the high-latitude regions of the
heliosphere.

Ruelle and Takens (1971) who showed that a strange attractor in the phase space of the system
is the best model for the birth of turbulence. This gave a strong impulse to the investigation
of the phenomenology of turbulence from the point of view of dynamical systems. Turbulence
in the solar wind has been used as a big wind tunnel to investigate scaling laws of turbulent
fluctuations, multifractals models, etc. Therefore, the solar wind can be seen as a very big
laboratory where fully developed turbulence can be investigated not only per se, rather as far
as basic theoretical aspects are concerned.

16.6 Wave Modes in the Solar Wind

Observations in the solar wind suggest that the compressive component of inertial-range solar-
wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows
for nonthermal features to survive, which suggests the requirement of a kinetic plasma descrip-
tion.

The role of kinetic slow waves (KSWs) have largely been ignored as it is heavily damped for the
typical plasma parameters of the solar wind (Barnes, 1966; Narita & Marsch, 2015). Recently,
KSWs (or pressure balanced structures) have often been invoked to explain the compressible
fluctuations and the anticorrelation of magnetic field strength 𝐵 and the density 𝑛 at fluid
scales (Howes et al. 2012; Verscharen, Chen, and Wicks 2017) and have also been revisited at
sub-ion scales to explain the observed increase in compressibility (Lacombe, Alexandrova, and
Matteini 2017).
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17 Shock

Consider a subsonic disturbance moving through a conventional neutral fluid. As is well-
known, sound waves propagating ahead of the disturbance give advance warning of its arrival,
and, thereby, allow the response of the fluid to be both smooth and adiabatic. Now, consider
a supersonic disturbance. In this case, sound waves are unable to propagate ahead of the
disturbance, and so there is no advance warning of its arrival, and, consequently, the fluid
response is sharp and non-adiabatic. This type of response is generally known as a shock.

Let us investigate shocks first in MHD fluids. Since information in such fluids is carried via
three different waves – namely, fast or compressional-Alfvén waves, intermediate or shear-
Alfvén waves, and slow or magnetosonic waves – we might expect MHD fluids to support
three different types of shock, corresponding to disturbances traveling faster than each of the
aforementioned waves.

In general, a shock propagating through an MHD fluid produces a significant difference in
plasma properties on either side of the shock front. The thickness of the front is determined
by a balance between convective and dissipative effects. However, dissipative effects in high
temperature plasmas are only comparable to convective effects when the spatial gradients in
plasma variables become extremely large. Hence, MHD shocks in such plasmas tend to be
extremely narrow, and are well-approximated as discontinuities in plasma parameters. The
MHD equations, and Maxwell’s equations, can be integrated across a shock to give a set of
jump conditions which relate plasma properties on each side of the shock front. If the shock is
sufficiently narrow then these relations become independent of its detailed structure. We will
derive the jump conditions for a narrow, planar, steady-state, MHD shock in Section 17.1.

The realization of extreme sharpness of a collisionless shock like the Earth’s bow shock imme-
diately posed a serious problem for the MHD description of collisionless shocks. In collision-
less magnetohydrodynamics there is no known dissipation mechanism that could lead to the
observed extremely short transition scales Δ ∼ 𝑟𝐿𝑖 in high Mach number flows which are com-
parable to the ion gyro-radius 𝑟𝐿𝑖. MHD neglects any differences in the properties of electrons
and ions and thus barely covers the very physics of shocks on the observed scales. In its frame,
shocks are considered as infinitely narrow discontinuities, narrower than the MHD flow scales
𝐿 ≫ Δ ≫ 𝜆𝑑; on the other hand, these discontinuities must physically be much wider than the
dissipation scale 𝜆𝑑 with all the physics going on inside the shock transition. This implies that
the conditions derived from collisionless magnetohydrodynamics just hold far upstream and
far downstream of the shock transition, i.e. far outside the region where the shock interactions
are going on. In describing shock waves, collisionless MHD must be used in an asymptotic
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sense, providing the remote boundary conditions on the shock transition. One must look for
processes different from MHD in order to arrive at a description of the processes leading to
shock formation and shock dynamics and the structure of the shock transition. In fact, viewed
from the MHD single-fluid viewpoint, the shock should not be restricted to the steep shock
front, it rather includes the entire shock transition region from outside the foreshock across
the shock front down to the boundary layer at the surface of the obstacle. And this holds as
well even in two-fluid shock theory that distinguishes between the behaviour of electrons and
ions in the plasma fluid. The issue of dissipation is partly indicated in Section 17.1.3.

The basic process of shock formation is the growth of a small disturbance in the plasma by the
action of the intrinsic nonlinearity of flow, independent of the cause of the initial disturbance.
The latter can be an external driver like a piston or a blast, it can also be an internal instability.
Shocks form when nonlinearity causes steeping (or steepening) of the disturbance in space and
some process exists which prevents breaking of the steep wave. Such processes are of dissipative
or dispersive nature and are discussed in ascending importance.

It is important to emphasize that the various modes of waves are responsible for the genera-
tion of anomalous dissipation, shock ramp broadening, generation of turbulence in the shock
environment and shock ramp itself, as well as for particle acceleration, shock particle reflection
and the successive effects. The idea is that in a plasma that consists of electrodynamically
active particles the excitation of the various plasma wave modes in the electromagnetic field as
collective effects is the easiest way of energy distribution and transport. There is very little mo-
mentum needed in order to accelerate a wave, even though many particles are involved in the
excitation and propagation of the wave, much less momentum than accelerating a substantial
number of particles to medium energy. Therefore any more profound understanding of shock
processes cannot avoid bothering with waves, instabilities, wave excitation and wave-particle
interaction.

As a quick summary, in some special cases, for example, shock waves in an ideal neutral
gas, the global behavior does not depend on the details of the small-scale physics, because
the jump conditions across a hydrodynamic shock are fully determined by the conservation of
mass, momentum, and energy. For more complicated systems, such as magnetohydrodynamics
with anisotropic ion pressure, the conservation laws constrain the jump conditions, but the
pressure anisotropy behind the shock cannot be determined without knowledge of small-scale
processes.

A general review of collisionless shocks is given by Balogh and Treumann (2013).
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17.1 MHD Theory

The conserved form of MHD equations can be written as:

∇ ⋅ B = 0
𝜕B
𝜕𝑡 − ∇× (V × B) = 0

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌V) = 0
𝜕(𝜌V)

𝜕𝑡 + ∇ ⋅ T = 0
𝜕𝑈
𝜕𝑡 + ∇ ⋅ u = 0

(17.1)

where
T = 𝜌V V +(𝑝 + 𝐵2

2𝜇0
) I − BB

𝜇0

is the total (i.e., including electromagnetic, as well as plasma, contributions) stress tensor, I
the identity tensor,

𝑈 = 1
2𝜌𝑉

2 + 𝑝
𝛾 − 1 + 𝐵2

2𝜇0
the total energy density, and

u = (1
2𝜌𝑉

2 + 𝛾
𝛾 − 1𝑝)V + B × (V × B)

𝜇0

the total energy flux density.

Let us move into the rest frame of the shock. For a 1D shock, suppose that the shock front
coincides with the 𝑦-𝑧 plane. Furthermore, let the regions of the plasma upstream and down-
stream of the shock, which are termed regions 1 and 2, respectively, be spatially uniform and
time-static, i.e. 𝜕/𝜕𝑡 = 𝜕/𝜕𝑥 = 𝜕/𝜕𝑦 = 0. Moreover, 𝜕/𝜕𝑥 = 0, except in the immediate
vicinity of the shock. Finally, let the velocity and magnetic fields upstream and downstream
of the shock all lie in the 𝑥-𝑦 plane. The situation under discussion is illustrated in the figure
below.

Here, 𝜌1, 𝑝1, V1, and B1 are the downstream mass density, pressure, velocity, and magnetic
field, respectively, whereas 𝜌2, 𝑝2, V2, and B2 are the corresponding upstream quantities.

The basic RH relations are listed in MHD shocks. In the immediate vicinity of the planar
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shock, Equation 17.1 reduce to

d𝐵𝑥
d𝑥 = 0

d
d𝑥(𝑉𝑥 𝐵𝑦 − 𝑉𝑦 𝐵𝑥) = 0

d(𝜌 𝑉𝑥)
d𝑥 = 0
d𝑇𝑥𝑥
d𝑥 = 0

d𝑇𝑥𝑦
d𝑥 = 0
d𝑢𝑥
d𝑥 = 0

Integration across the shock yields the desired jump conditions:

⌊𝐵𝑥⌉ = 0
⌊𝑉𝑥 𝐵𝑦 − 𝑉𝑦 𝐵𝑥⌉ = 0

⌊𝜌 𝑉𝑥⌉ = 0
⌊𝜌 𝑉 2

𝑥 + 𝑝 + 𝐵 2
𝑦 /2𝜇0⌉ = 0

⌊𝜌 𝑉𝑥 𝑉𝑦 −𝐵𝑥 𝐵𝑦/𝜇0⌉ = 0

⌊12 𝜌 𝑉 2 𝑉𝑥 + 𝛾
𝛾 − 1 𝑝 𝑉𝑥 + 𝐵𝑦 (𝑉𝑥 𝐵𝑦 − 𝑉𝑦 𝐵𝑥)

𝜇0
⌉ = 0

(17.2)

where ⌊𝐴⌉ = 𝐴2 − 𝐴1 is the difference across the shock. These relations are often called the
Rankine-Hugoniot relations for MHD. There are 6 scalar equations and 12 scalar variables
all together. Assuming that all of the upstream plasma parameters are known, there are
6 unknown parameters in the problem–namely, 𝐵𝑥2, 𝐵𝑦 2, 𝑉𝑥2, 𝑉𝑦 2, 𝜌2, and 𝑝2. These 6
unknowns are fully determined by the six jump conditions. If we loose the planar assumption,
then we typically write the 𝑥-component as the normal component (𝑣𝑛, 𝐵𝑛) and the combined
𝑦- and 𝑧-components as the tangential component (𝑣𝑡, 𝐵𝑡). Luckily this is still deterministic.
However, the general case is very complicated!

A clear exposition of the two types of strong discontinuities, namely the shock wave and the
tangential discontinuity can be found in §84, Landau & Lifshitz. By definition shocks are
transition layers across which there is a transport of particles, whereas discontinuities are
transition layers across which there is no particle transport. Thus in shocks 𝑉𝑛 ≠ 0, and in
discontinuities 𝑉𝑛 = 0. Take a reference frame fixed to the discontinuity with x-axis along the
normal. Since mass, momentum and energy is conserved across the discontinuity, we must have
from Equation 17.2 for inviscid flows (no magnetic field, y-direction represents the tangential
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direction),
⌊𝜌𝑣𝑥⌉ = 0

⌊𝜌𝑣2𝑥 + 𝑝⌉ = 0, ⌊𝜌𝑣𝑥𝑣𝑦⌉ = 0

⌊𝜌𝑣𝑥 (
1
2𝑣

2 + ℎ)⌉ = 0

In tangential discontinuities, no particle transport means 𝑣1𝑥 = 𝑣2𝑥 = 0. Then the x-
momentum jump implies ⌊𝑝⌉ = 0, where the y-momentum jump sets no restrictions on 𝑣𝑦.
There is also no restriction on 𝜌. Energy equation is also satisfied. Thus, in tangential discon-
tinuities, the density and tangential velocity components can be discontinuities, whereas the
pressure must be continuous and the normal velocity component must be zero.

The categories of the solution of Equation 17.2 are shown in Table 17.1. The ± signs denote
the changes of the downstream compared with the upstream (+ means increase, − means
decrease).

Table 17.1: Classes of MHD shocks and discontinuities

Type Particle Transport 𝜌 v 𝑝 B T
Tangential No ± 𝑉𝑛 = 0 continuous𝐵𝑛 = 0 ±
Contact No ± continuous continuouscontinuous ±

Slow Yes + - + 𝐵𝑡 - +
Intermediate Yes continuous ± ± ± ±
Rotational No continuous𝑉𝑛 = 0, 𝑉𝑡 −

𝐵𝑡/
√𝜇0𝜌 = 0

continuous𝐵𝑛 = 0 ±

Fast Yes + - + 𝐵𝑡 + +

1. The contact discontinuity is a special case of tangential discontinuity in which we assume
⌊𝑉𝑡⌉ = 0, i.e., the tangential velocity (and so the velocity) is continuous, but not the
density and other thermodynamic variables. Since the tangential discontinuities do not
have a propagating aspect with respect to the flow, they move with the fluid.

2. The Earth’s magnetopause (Section 18.7.1) is generally a tangential discontinuity. When
there is no flux rope been generated, the magnetopause can be treated as the surface of
pressure balance between magnetic pressure, ram pressure and thermal pressure. How-
ever, when reconnection triggers flux rope generation, it may become a rotational dis-
continuity (TO BE CONFIRMED!).

3. Intermediate shocks are incompressive and isentropic. The rotational discontinuity is
a special case of the intermediate shock. All thermodynamic quantities are continuous
across the shock, but the tangential component of the magnetic field can “rotate”. The
condition ⌊V𝑡− B𝑡√𝜇0𝜌⌉ = 0 is known as the Walen relation. Intermediate shocks in general
however, unlike rotational discontinuities, can have a discontinuity in the pressure.
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4. Slow-mode and fast-mode shocks are compressive and are associated with an increase in
entropy. This is the key in identifying the downstream from the upstream in the case of
slow/fast shocks.

5. The Earth’s bow shock is a fast, supercritical shock.

17.1.1 Evolutionarity

The hyperbolic nature of the conservation laws allows wave propagation only if it is in accord
with causality (???). Causality is a general requirement in nature, meaning in this case that
the drop in speed across a shock must be large enough for the normal component of the
downstream flow to fall below the corresponding downstream mode velocity. For a fast shock
this implies the following ordering of the normal flow and magnetosonic velocities to both sides
of the shock:

𝑉1𝑛 > 𝑐+1𝑚𝑠
𝑉2𝑛 < 𝑐+2𝑚𝑠

where the numbers 1, 2 refer to upstream and downstream of the fast shock wave.

The first condition is necessary for the shock to be formed at all; it is the second condition
which (partially) accounts for the evolutionarity. Otherwise the small fast-mode disturbances
excited downstream and moving upward towards the shock would move faster than the flow,
they would overcome the shock and steepen it without limit1. Since this cannot happen
for a shock to form, the downstream normal speed must be less than the downstream fast
magnetosonic speed. Furthermore, for fast shocks the flow velocity must be greater than the
intermediate speed on both sides of the shock, while for slow shocks it must be less than
the intermediate speed on both sides. These conditions hold because of the same reason as
otherwise the corresponding waves would catch up with the shock front, modify and destroy
it and no shock could form.

17.1.2 Coplanarity

Knowing that for the shock 𝑣𝑛 ≠ 0 and ⌊𝑣𝑛⌉ ≠ 0, we can eliminate ⌊𝑣𝑡⌉ from the RH relations
and obtain

⌊𝑣𝑛B𝑡⌉ = 𝐵2
𝑛

𝜇0(something)⌊B𝑡⌉

1I don’t quite understand this. From Figure 17.1, it is clear that above the critical Mach number, 𝑉2𝑛 < 𝑐+
2𝑚𝑠

is true.
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Hence the cross product of the left with the right hand side must vanish:

⌊B𝑡⌉ × ⌊𝑣𝑛B𝑡⌉ = 0
(B𝑡2 − B𝑡1) × (𝑣𝑛2B𝑡2 − 𝑣𝑛1B𝑡1) = 0

(𝑣𝑛1 − 𝑣𝑛2)(B𝑡1 × B𝑡2) = 0
B𝑡1 ∥ B𝑡2

(17.3)

The resulting coplanarity theorem implies that the magnetic field across the shock has a 2-D
geometry: upstream and dowstream tangential fields are parallel to each other and coplanar
with the shock normal �̂�.

Coplanarity does not strictly hold, however. For instance, when the shock is non-stationary,
i.e. when its width changes with time or in the direction tangential to the shock, 𝜕B/𝜕𝑡 in
Faraday’s law does not vanish, and coplanarity becomes violated.

Also, any upstream low frequency electromagnetic plasma wave that propagates along the
upstream magnetic field, possesses a magnetic wave field that is perpendicular to the upstream
field. When it encounters the shock, this tangential component will be transformed and
amplified across the shock. This naturally introduces an out-of-plane magnetic field component,
thereby violating the co-planarity condition. There are also other effects which at a real non-
MHD shock violate coplanarity.

17.1.3 Criticality

In space, shock is a dissipative structure in which the kinetic and magnetic energy of a directed
plasma flow is partly transferred to heating of the plasma. The dissipation does not take
place, however, by means of particle collisions for a shock in space. Collisionless shocks can be
divided into super- and sub-critical, according to their Mach-numbers 𝑀 < 𝑀𝑐 being smaller
or 𝑀 > 𝑀𝑐 larger than some critical Mach-number 𝑀𝑐. In aerodynamics, the critical Mach
number 𝑀∗ of an aircraft is the lowest Mach number at which the airflow over some point of
the aircraft reaches the speed of sound, but does not exceed it. For a resistive shock Marshall
[1955] had numerically determined the critical Mach number to 𝑀𝑐 ≈ 2.76.
Subcritical shocks are capable of generating sufficient dissipation to account for retardation,
thermalisation and entropy in the time the flow crosses the shock from upstream to downstream.
The relevant processes are based on wave-particle interaction between the shocked plasma and
the shock-excited turbulent wave fields.

For supercritical shocks this is, however, not the case. Supercritical shocks must evoke mecha-
nisms different from simple wave-particle interaction for getting rid of the excess energy in the
bulk flow that cannot be dissipated by any classical anomalous dissipation. Above the critical
Mach number the simplest efficient way of energy dissipation is rejection of the in-flowing
excess energy from the shock by reflecting a substantial part of the incoming plasma back
upstream. The non-thermal processes for dissipating excess energy include
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• Particle acceleration to very high energies
• Generation of strong, complex magnetic fields
• Significant heating of the plasma.

To show how the critical Mach number of a shock arises from the Rankine-Hugoniot relations
we consider the strictly perpendicular case with vanishing upstream pressure 𝑃1 = 0. The
explicit jump conditions become very simple in this case:

𝑛1𝑣1 = 𝑛2𝑣2
𝑣1𝐵1 = 𝑣2𝐵2

𝑛1𝑣21 + 𝐵2
1

2𝜇0𝑚
= 𝑛2𝑣22 + 𝑃2

𝑚 + 𝐵2
2

2𝜇0𝑚
𝑣21
2 + 𝐵2

1
𝜇0𝑚𝑛1

= 𝑣22
2 + 𝛾

𝛾 − 1
𝑃2
𝑚𝑛2

+ 𝐵2
1

𝜇0𝑚𝑛1

where 𝐵 is the only existing tangential component of the magnetic field here, and 𝛾 = 5/3 is the
adiabatic index (valid for fast = adiabatic transitions across the shock). This is the simplest
imaginable case of an MHD shock, and it is easy to solve these equations. Figure 17.1 shows the
resulting relation between the normalised downstream flow 𝑣2/𝑣1 and downstream sound speed
𝑐𝑠2/𝑣1 = √𝛾𝑃2/𝑛2/𝑣1 as function of upstream Alfvén Mach number 𝑀𝐴 = 𝑣1

√𝜇0𝑚𝑛1/𝐵1.

The two curves in the figure cross each other at the critical Mach number which in the
present case is 𝑀𝑐 = 2.76 and where the downstream sound speed exceeds the flow speed.
Below the critical Mach number the downstream flow is still supersonic (though clearly sub-
magnetosonic!). Only above the critical Mach number the downstream flow velocity falls below
the downstream sound speed. There is thus a qualitative change in the shock character above
it that is not contained in the Rankine-Hugoniot conditions.

The determination of the critical Mach number poses an interesting problem. The finite
magnetic field compression ratio sets an upper limit to the rate of resistive dissipation that is
possible in an MHD shock. Plasmas possess several dissipative lengths, depending on which
dissipative process is considered. Any nonlinear wave that propagates in the plasma should
steepen as long, until its transverse scale approaches the longest of these dissipative scales.
Then dissipation sets on and limits its amplitude.

Thus, when the wavelength of the fast magnetosonic wave approaches the resistive length, the
magnetic field decouples from the wave by resistive dissipation, and the wave speed becomes
the sound speed downstream of the shock ramp. The condition for the critical Mach number is
then given by 𝑣𝑛2 = 𝑐2𝑠. Similarly, for the slow-mode shock, because of its different dispersive
properties, the resistive critical-Mach number is defined by the condition 𝑣1𝑛 = 𝑐1𝑠2. Since
these quantities depend on wave angle, they have to be solved numerically. Prior studies showed
that critical fast-mode Mach number varies between 1 and 3, depending on the upstream
plasma parameters and flow angle to the magnetic field. It is usually called first critical Mach

2so it depends on the upstream sound speed?
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Figure 17.1: Dependence of the downstream normalised flow 𝑉2/𝑉1 and sound 𝑐𝑠2 velocities on
the upstream Alfvén Mach number for an ideal MHD perpendicular shock with
zero upstream pressure 𝑃2 = 0. The crossing of the two curves defines the critical
Mach number which is 𝑀𝑐 = 2.76.
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number, because there is theoretical evidence in simulations for a second critical Mach number,
which comes into play when the shock structure becomes time dependent, whistlers accumulate
at the shock front and periodically cause its reformation. The dominant dispersion is then
the whistler dispersion. An approximate expression for this second or whistler critical Mach
number is

𝑀2𝑐 ∝ (𝑚𝑖
𝑚𝑒

)
1/2

cos 𝜃𝐵𝑛

where the constant of proportionality depends on whether one defines the Mach number with
respect to the whistler-phase or group velocities. For the former it is 1/2, and for the latter
√27/64 [Oka+, 2006].

It is clear that it is the smallest critical Mach number that determines the behaviour of the
shock. In simple words: 𝑀 > 1 is responsible for the existence of the shock under the condition
that an obstacle exists in the flow, which is disturbed in some way such that fast waves can
grow, steepen and form shocks. When, in addition, the flow exceeds the next lowest Mach
number for a given 𝜃𝐵𝑛 the shock at this angle will make the transition into a supercritical
shock and under additional conditions, which have not yet be ultimately clarified, will start
reflecting particles back upstream. If, because of some reason, this would not happen, the flow
might have to exceed the next higher critical Mach number until reflection becomes possible.
In such a case the shock would become metastable in the region where the Mach number
becomes supercritical, will steepen and shrink in width until other effects and – ultimately –
reflection of particles can set on.

17.1.4 Parallel Shock

The first special case is the so-called parallel shock in which both the upstream and downstream
plasma flows are parallel to the magnetic field, as well as perpendicular to the shock front. In
other words,

V1 = (𝑉1, 0, 0), V2 = (𝑉2, 0, 0)
B1 = (𝐵1, 0, 0), B2 = (𝐵2, 0, 0)

(17.4)

Substitution into Equation 17.2 yields

𝐵2
𝐵1

= 1
𝜌2
𝜌1

= 𝑟
𝑣2
𝑣1

= 𝑟−1

𝑝2
𝑝1

= 𝑅

(17.5)
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with
𝑟 = (𝛾 + 1)𝑀2

1
2 + (𝛾 − 1)𝑀2

1

𝑅 = 1 + 𝛾𝑀2
1 (1 − 𝑟−1) = (𝛾 + 1)𝑟 − (𝛾 − 1)

(𝛾 + 1) − (𝛾 − 1)𝑟

(17.6)

Here, 𝑀1 = 𝑣1/𝑣𝑠1, where 𝑣𝑠1 = √(𝛾𝑝1/𝜌1) is the upstream sound speed. Thus, the upstream
flow is supersonic if 𝑀1 > 1, and subsonic if 𝑀1 < 1. Incidentally, as is clear from the above
expressions, a parallel shock is unaffected by the presence of a magnetic field. In fact, this type
of shock is identical to that which occurs in neutral fluids, and is, therefore, usually called a
hydrodynamic shock.

It is easily seen from Equation 17.4 that there is no shock (i.e., no jump in plasma parameters
across the shock front) when the upstream flow is exactly sonic: i.e., when 𝑀1 = 1. In other
words, 𝑟 = 𝑅 = 1 when 𝑀1 = 1. However, if 𝑀1 ≠ 1 then the upstream and downstream
plasma parameters become different (i.e., 𝑟 ≠ 1, 𝑅 ≠ 1) and a true shock develops. In fact, it
is easily demonstrated that

𝛾 − 1
𝛾 + 1 ≤ 𝑟 ≤ 𝛾 + 1

𝛾 − 1
0 ≤ 𝑅 ≤ ∞

𝛾 − 1
2 𝛾 ≤ 𝑀2

1 ≤ ∞

(17.7)

Note that the upper and lower limits in the above inequalities are all attained simultaneously.

The previous discussion seems to imply that a parallel shock can be either compressive (i.e.,
𝑟 > 1) or expansive (i.e., 𝑟 < 1). Is there a preferential direction across the shock? In
other words, can we tell the upstream and the downstream? Yes, with the additional physics
principle of the second law of thermodynamics. This law states that the entropy of a closed
system can spontaneously increase, but can never spontaneously decrease. Now, in general,
the entropy per particle is different on either side of a hydrodynamic shock front. Accordingly,
the second law of thermodynamics mandates that the downstream entropy must exceed the
upstream entropy, so as to ensure that the shock generates a net increase, rather than a net
decrease, in the overall entropy of the system, as the plasma flows through it.

The (suitably normalized) entropy per particle of an ideal plasma takes the form

𝑆 = ln( 𝑝
𝜌𝛾)

Hence, the difference between the upstream and downstream entropies is

⌊𝑆⌉ = ln𝑅 − 𝛾 ln 𝑟
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Now, using Equation 17.6,

𝑟d⌊𝑆⌉
𝑑𝑟 = 𝑟

𝑅
𝑑𝑅
𝑑𝑟 − 𝛾 = 𝛾(𝛾2 − 1)(𝑟 − 1)2

[(𝛾 + 1)𝑟 − (𝛾 − 1)][(𝛾 + 1) − (𝛾 − 1)𝑟]

Furthermore, it is easily seen from Equation 17.7 that d⌊𝑆⌉/𝑑𝑟 ≥ 0 in all situations of physical
interest. However, ⌊𝑆⌉ = 0 when 𝑟 = 1, since, in this case, there is no discontinuity in plasma
parameters across the shock front. We conclude that ⌊𝑆⌉ < 0 for 𝑟 < 1, and ⌊𝑆⌉ > 0 for
𝑟 > 1. It follows that the second law of thermodynamics requires hydrodynamic shocks to be
compressive: i.e., 𝑟 ≡ 𝜌2/𝜌1 > 1. In other words, the plasma density must always increase
when a shock front is crossed in the direction of the relative plasma flow. It turns out that
this is a general rule which applies to all three types of MHD shock. In the shock rest frame,
the shock is associated with an irreversible (since the entropy suddenly increases) transition
from supersonic to subsonic flow.

The upstream Mach number, 𝑀1, is a good measure of shock strength: i.e., if 𝑀1 = 1 then
there is no shock, if 𝑀1 − 1 ≪ 1 then the shock is weak, and if 𝑀1 ≫ 1 then the shock is
strong. We can define an analogous downstream Mach number, 𝑀2 = 𝑉2/(𝛾 𝑝2/𝜌2)1/2. It is
easily demonstrated from the jump conditions that if 𝑀1 > 1 then 𝑀2 < 1. In other words, in
the shock rest frame, the shock is associated with an irreversible (since the entropy suddenly
increases) transition from supersonic to subsonic flow. Note that 𝑟 ≡ 𝜌2/𝜌1 → (𝛾 +1)/(𝛾 − 1),
whereas 𝑅 ≡ 𝑝2/𝑝1 → ∞, in the limit 𝑀1 → ∞. In other words, as the shock strength
increases, the compression ratio, 𝑟, asymptotes to a finite value, whereas the pressure ratio,
𝑃 , increases without limit. For a conventional plasma with 𝛾 = 5/3, the limiting value of the
compression ratio is 4: i.e., the downstream density can never be more than four times the
upstream density. We conclude that, in the strong shock limit, 𝑀1 ≫ 1, the large jump in the
plasma pressure across the shock front must be predominately a consequence of a large jump
in the plasma temperature, rather than the plasma density. In fact, the definitions of 𝑟 and 𝑅
imply that

𝑇2
𝑇1

≡ 𝑅
𝑟 → 2𝛾(𝛾 − 1)𝑀2

1
(𝛾 + 1)2 ≫ 1

as 𝑀1 → ∞. Thus, a strong parallel, or hydrodynamic, shock is associated with intense plasma
heating.

As we have seen, the condition for the existence of a hydrodynamic shock is 𝑀1 > 1, or 𝑉1 >
𝑉𝑆 1. In other words, in the shock frame, the upstream plasma velocity, 𝑉1, must be supersonic.
However, by Galilean invariance, 𝑉1 can also be interpreted as the propagation velocity of the
shock through an initially stationary plasma. It follows that, in a stationary plasma, a parallel,
or hydrodynamic, shock propagates along the magnetic field with a supersonic velocity.

17.1.5 Perpendicular Shock

The second special case is the so-called perpendicular shock in which both the upstream and
downstream plasma flows are perpendicular to the magnetic field, as well as the shock front.
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In other words,
V1 = (𝑉1, 0, 0), V2 = (𝑉2, 0, 0)
B1 = (0, 𝐵1, 0), B2 = (0, 𝐵2, 0)

(17.8)

Substitution into Equation 17.2 yields

𝐵2
𝐵1

= 𝑟
𝜌2
𝜌1

= 𝑟
𝑣2
𝑣1

= 𝑟−1

𝑝2
𝑝1

= 𝑅

(17.9)

where
𝑅 = 1 + 𝛾𝑀 2

1 (1 − 𝑟−1) + 𝛽−1
1 (1 − 𝑟2) (17.10)

and 𝑟 is a real positive root of the quadratic

𝐹(𝑟) = 2 (2 − 𝛾) 𝑟2 + 𝛾 [2 (1 + 𝛽1) + (𝛾 − 1)𝛽1𝑀2
1 ]𝑟 − 𝛾 (𝛾 + 1) 𝛽1 𝑀2

1 = 0 (17.11)

Here, 𝛽1 = 2𝜇0𝑝1/𝐵2
1.

Now, if 𝑟1 and 𝑟2 are the two roots of Equation 17.11 then

𝑟1𝑟2 = −𝛾(𝛾 + 1)𝛽1𝑀2
1

2(2 − 𝛾)

Assuming that 𝛾 < 2, we conclude that one of the roots is negative, and, hence, that Equa-
tion 17.11 only possesses one physical solution: i.e., there is only one type of MHD shock
which is consistent with Equation 17.8. Now, it is easily demonstrated that 𝐹(0) < 0 and
𝐹(𝛾 + 1/𝛾 − 1) > 0. Hence, the physical root lies between 𝑟 = 0 and 𝑟 = (𝛾 + 1)/(𝛾 − 1).
Using similar analysis to that employed in the previous subsection, it is easily demonstrated
that the second law of thermodynamics requires a perpendicular shock to be compressive: i.e.,
𝑟 > 1. It follows that a physical solution is only obtained when 𝐹(1) < 0, which reduces to

𝑀 2
1 > 1 + 2

𝛾 𝛽1

This condition can also be written
v2
1 > v2

𝑠1 + v2
𝐴1

where 𝑣𝐴1 = 𝐵1/√(𝜇0𝜌1) is the upstream Alfvén speed. 𝑣+1 = (𝑣 2
𝑆 1 + 𝑣 2

𝐴1)1/2 can be rec-
ognized as the velocity of a fast wave propagating perpendicular to the magnetic field (Sec-
tion 7.8.4). Thus, the condition for the existence of a perpendicular shock is that the relative
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upstream plasma velocity must be greater than the upstream fast wave velocity. Incidentally,
it is easily demonstrated that if this is the case then the downstream plasma velocity is less
than the downstream fast wave velocity. We can also deduce that, in a stationary plasma, a
perpendicular shock propagates across the magnetic field with a velocity which exceeds the
fast wave velocity.

In the strong shock limit, 𝑀1 ≫ 1, Equation 17.10 and Equation 17.11 become identical
to Equation 17.6. Hence, a strong perpendicular shock is very similar to a strong hydrody-
namic shock (except that the former shock propagates perpendicular, whereas the latter shock
propagates parallel, to the magnetic field). In particular, just like a hydrodynamic shock, a
perpendicular shock cannot compress the density by more than a factor (𝛾 + 1)/(𝛾 − 1). How-
ever, according to Equation 17.9, a perpendicular shock compresses the magnetic field by the
same factor that it compresses the plasma density. It follows that there is also an upper limit
to the factor by which a perpendicular shock can compress the magnetic field.

17.1.6 Oblique Shock

Let us now consider the general case in which the plasma velocities and the magnetic fields on
each side of the shock are neither parallel nor perpendicular to the shock front. It is convenient
to transform into the so-called de Hoffmann-Teller frame in which |v1 × B1| = 0, or

𝑣𝑥1𝐵𝑦1 − 𝑣𝑦1𝐵𝑥1 = 0 (17.12)

In other words, it is convenient to transform to a frame which moves at the local E×B velocity
of the plasma. The key idea is to extract the velocity component perpendicular to B1 from
v1. One possibility is to just remove the perpendicular part:

vdHT = v1 − (v1 ⋅ b1)b1
v′
1 = v1 − vdHT = (v1 ⋅ b1)b1

Note that the transformation is not unique, since one can always add a parallel velocity com-
ponent. Although the above transformation is correct, it introduces two issues:

1. The ram pressure 𝜌𝑉 2
𝑛 is changed between the two coordinates.

2. Equation 17.15 may not possess a valid solution given certain parameters (e.g. MA1 =
5, 𝜃1 = 65∘ will give 𝑟 < 1.)

To fix this, we can use another transformation:

vdHT = v1 −
𝑉𝑥
𝐵𝑥

B

v′
1 = v1 − vdHT = 𝑉𝑥

𝐵𝑥
B
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A nice property of this transformation is that the normal velocity component is kept the same,
so is the ram pressure. Therefore, we can apply the same quantities in the lab frame as in the
de Hoffmann-Teller frame.

Taking Equation 17.12 into the 2nd jump condition of Equation 17.2 gives

𝑣𝑥2𝐵𝑦2 − 𝑣𝑦2𝐵𝑥2 = 0 (17.13)

or |v2 × B2| = 0. Thus, in the de Hoffmann-Teller frame, the upstream plasma flow is
parallel to the upstream magnetic field, and the downstream plasma flow is also parallel to the
downstream magnetic field. Furthermore, the magnetic contribution to the jump condition
Equation 17.2 (last eq.) becomes identically zero, which is a considerable simplification.

Equation 17.12 and Equation 17.13 can be combined with the general jump conditions Equa-
tion 17.2 to give3

𝜌2
𝜌1

= 𝑟
𝐵𝑥2
𝐵𝑥1

= 1

𝐵𝑦 2
𝐵𝑦 1

= 𝑟 𝑣21 − 𝑣2𝐴1
𝑣21 − 𝑟 𝑣2𝐴1

𝑣𝑥2
𝑣𝑥1

= 1
𝑟

𝑣𝑦 2
𝑣𝑦 1

= 𝑣21 − 𝑣2𝐴1
𝑣21 − 𝑟 𝑣2𝐴1

𝑝2
𝑝1

= 1 + 𝛾𝑣21(𝑟 − 1)
𝑣2𝑠1𝑟

[cos2 𝜃1 −
𝑟𝑣2𝐴1 sin2 𝜃1[(𝑟 + 1)𝑣21 − 2𝑟𝑣2𝐴1]

2(𝑣21 − 𝑟 𝑣2𝐴1)2
]

(17.14)

where 𝑣𝑥,1 = 𝑣1 cos 𝜃1 is the component of the upstream velocity normal to the shock front,
and 𝜃1 is the angle subtended between the upstream plasma flow and the shock front normal.45

Finally, given the compression ratio, 𝑟, the square of the normal upstream velocity, 𝑣 2
1 , is a

real root of a cubic equation known as the shock adiabatic:6

0 =(𝑣21 − 𝑟𝑣2𝐴1)2{[(𝛾 + 1) − (𝛾 − 1)𝑟]𝑣21 cos2 𝜃1 − 2𝑟𝑣2𝑠1}
− 𝑟 sin2 𝜃1𝑣21𝑣2𝐴1{[𝛾 + (2 − 𝛾)𝑟]𝑣21 − [(𝛾 + 1) − (𝛾 − 1)𝑟]𝑟 𝑣2𝐴1}

(17.15)

3One way to define the tangential direction ̂𝑡 is to use v𝑡1 as a reference: v𝑡1 = v1 − (v1 ⋅ �̂�)�̂�. Then
̂𝑡 = v𝑡1/|v𝑡1|. Note that both the normal and tangential components are signed numbers.

4The shock normal points from downstream to upstream, and the plasma flow points from upstream to
downstream. Usually we take an angle smaller than 90∘, so the definition would be 𝜃1 = cos−1(−v1 ⋅ �̂�/|v1|).

5Note that the velocity is defined in the dHT frame, not the lab frame! dHT is used here simply because
the jump conditions are easier to solve. Also note that the jump conditions solved under the dHT frame is
different from the lab frame!

6This equation is only valid in the dHT frame. In the lab frame, there shall be another equation for solving
the compression ratio r from upstream conditions. However, the two must give identical results for the
uniqueness of shock.
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As before, the second law of thermodynamics mandates that 𝑟 > 1.
Weak shock limit

Let us first consider the weak shock limit 𝑟 → 1. In this case, it is easily seen that the three
roots of the shock adiabatic reduce to the slow, intermediate (or Shear-Alfvén), and fast waves,
respectively, propagating in the normal direction to the shock front:

𝑣 2
1 = 𝑣 2

−1 ≡ 𝑣 2
𝐴1 + 𝑣 2

𝑆 1 − [(𝑣𝐴1 + 𝑣𝑆 1)2 − 4 cos2 𝜃1 𝑣 2
𝑆 1 𝑣 2

𝐴1]1/2
2

𝑣 2
1 = cos2 𝜃1 𝑣 2

𝐴1

𝑣 2
1 = 𝑣 2

+1 ≡ 𝑣 2
𝐴1 + 𝑣 2

𝑆 1 + [(𝑣𝐴1 + 𝑣𝑆 1)2 − 4 cos2 𝜃1 𝑣 2
𝑆 1 𝑣 2

𝐴1]1/2
2

We conclude that slow, intermediate, and fast MHD shocks degenerate into the associated
MHD waves in the limit of small shock amplitude. Conversely, we can think of the various
MHD shocks as nonlinear versions of the associated MHD waves. It is easily demonstrated
that

𝑣+1 > cos 𝜃1𝑣𝐴1 > 𝑣−1

In other words, a fast wave travels faster than an intermediate wave, which travels faster than
a slow wave. It is reasonable to suppose that the same is true of the associated MHD shocks,
at least at relatively low shock strength. It follows from Equation 17.14 that 𝐵𝑦2 > 𝐵𝑦1 for
a fast shock, whereas 𝐵𝑦 2 < 𝐵𝑦 1 for a slow shock. For the case of an intermediate shock,
we can show, after a little algebra, that 𝐵𝑦 2 → −𝐵𝑦 1 in the limit 𝑟 → 1. We can conclude
that (in the de Hoffmann-Teller frame) fast shocks refract the magnetic field and plasma flow
(recall that they are parallel in our adopted frame of the reference) away from the normal to
the shock front, whereas slow shocks refract these quantities toward the normal. Moreover,
the tangential magnetic field and plasma flow generally reverse across an intermediate shock
front. This is illustrated in ?@fig-mhd-shock-rest-frame.

When 𝑟 is slightly larger than unity it is easily demonstrated that the conditions for the
existence of a slow, intermediate, and fast shock are 𝑣1 > 𝑉−1, 𝑣1 > cos 𝜃1 𝑉𝐴1, and 𝑣1 > 𝑉+1,
respectively.

Strong shock limit

Let us now consider the strong shock limit, 𝑣 2
1 ≫ 1. In this case, the shock adiabatic yields

𝑟 → 𝑟𝑚 = (𝛾 + 1)/(𝛾 − 1), and

𝑣 2
1 ≃ 𝑟𝑚

𝛾 − 1
2𝑣𝑆1 sin2 𝜃1 [𝛾 + (2 − 𝛾) 𝑟𝑚] 𝑣2𝐴1

𝑟𝑚 − 𝑟

There are no other real roots. The above root is clearly a type of fast shock. The fact that
there is only one real root suggests that there exists a critical shock strength above which the
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slow and intermediate shock solutions cease to exist. (In fact, they merge and annihilate one
another.) In other words, there is a limit to the strength of a slow or an intermediate shock.
On the other hand, there is no limit to the strength of a fast shock. Note, however, that the
plasma density and tangential magnetic field cannot be compressed by more than a factor
(𝛾 + 1)/(𝛾 − 1) by any type of MHD shock.

𝜃1 = 0
Consider the special case 𝜃1 = 0 in which both the plasma flow and the magnetic field are
normal to the shock front. In this case, the three roots of the shock adiabatic are

𝑣21 = 2𝑟 𝑣2𝑆1
(𝛾 + 1) − (𝛾 − 1) 𝑟

𝑣21 = 𝑟 𝑣2𝐴1
𝑣21 = 𝑟 𝑣2𝐴1

We recognize the first of these roots as the hydrodynamic shock discussed in Section 17.1.4.
This shock is classified as a slow shock when 𝑉𝑆 1 < 𝑣𝐴1, and as a fast shock when 𝑉𝑆 1 > 𝑣𝐴1.
The other two roots are identical, and correspond to shocks which propagate at the velocity
𝑣1 = √𝑟 𝑣𝐴1 and “switch-on” the tangential components of the plasma flow and the magnetic
field: it can be seen from Equation 17.14 that 𝑣𝑦 1 = 𝐵𝑦 1 = 0 whilst 𝑣𝑦 2 ≠ 0 and 𝐵𝑦 2 ≠ 0 for
these types of shock.

There we have “switch-on” and “switch-off” shocks which refer to the generation and elimi-
nation of tangential components of the plasma flow and the magnetic field. Incidentally, it
is also possible to have a “switch-off” shock which eliminates the tangential components of
the plasma flow and the magnetic field. According to Equation 17.14, such a shock prop-
agates at the velocity 𝑣1 = cos 𝜃1 𝑣𝐴1

7. Switch-on and switch-off shocks are illustrated in
?@fig-shock-switch-on-off.

𝜃1 = 𝜋/2
Consider another special case 𝜃1 = 𝜋/2. As is easily demonstrated, the three roots of the shock
adiabatic are

𝑣 2
1 = 𝑟(2𝑣2𝑆1 + [𝛾 + (2 − 𝛾) 𝑟] 𝑣2𝐴1

(𝛾 + 1) − (𝛾 − 1) 𝑟 )

𝑣 2
1 = 0

𝑣 2
1 = 0

The first of these roots is clearly a fast shock, and is identical to the perpendicular shock
discussed in Section 17.1.5, except that there is no plasma flow across the shock front in this
case. (IS IT BECAUSE OF THE HT FRAME?) The fact that the two other roots are zero

7This is a very strong indication that Alfvén waves are involved in switch-on/off shocks!
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indicates that, like the corresponding MHD waves, slow and intermediate MHD shocks do not
propagate perpendicular to the magnetic field.

MHD shocks have been observed in a large variety of situations. For instance, shocks are
known to be formed by supernova explosions, by strong stellar winds, by solar flares, and by
the solar wind upstream of planetary magnetospheres.

17.1.7 Switch-On and Switch-Off Shocks

Parallel shocks in MHD should, theoretically, behave exactly like gasdynamic shocks, not
having any upstream tangential magnetic field component and should also not have any down-
stream tangential field. This conclusion does not hold rigourously, however, since plasmas
consist of charged particles which are sensitive to fluctuations in the field and can excite vari-
ous waves in the plasma via electric currents which then become the sources of magnetic fields.
The kinetic effects in parallel and quasi-parallel shocks play an important role in their physics
and are well capable of generating tangential fields at least on scales shorter than the ion
scale.

However, even in MHD as we have seen in the previous subsection, one stumbles across the
interesting fact that this kind of shocks must have peculiar properties. The reason is that they
are not, as in gasdynamics, the result of steepened sound waves, in which case they would
simply be purely electrostatic shocks. At the contrary, the waves propagating parallel to the
magnetic field are Alfvén and magnetosonic waves. Alfvén waves contain transverse magnetic
field components. These transverse wave fields, in a parallel shock, are in fact tangential to the
shock. Hence, if a purely parallel shock steepens, the transverse Alfvén waves do steepen as
well, and the shock after the transition from upstream to downstream switches on a tangential
magnetic component which originally was not present. Such shocks are called switch-on shocks.
Similarly one can imagine the case that a tangential component behind the shock is by the same
process switched off by an oppositely directed switch-on field, yielding a switch-off shock.

The problem of whether or not such shocks exist in MHD is related to the question whether
or not an Alfvén wave steepens nonlinearly when propagating into a shock. To first order this
steepening for an ordinary Alfvén wave is zero. However, to second order a wave trailing the
leading Alfvén wave feels its weak transverse magnetic component. This trailing wave therefore
propagates slightly oblique to the main magnetic field and thus causes a second order density
compression which in addition to generating a shock-like plasma compression changes the
Alfvén velocity locally. In the case when the trailing wave is polarised in the same direction
as the leading wave it also increases the transverse magnetic field component downstream of
the compression thereby to second order switching on a tangential magnetic component. A
whole train of trailing waves of same polarisation will thus cause strong steepening in both the
density and tangential magnetic field.

Clearly, this kind of shocks is a more or less exotic case of MHD shocks whose importance is
not precisely known, with very rare cases of observation.
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17.2 Double Adiabatic Theory

The classical approach by Chew, Goldberger, and Low (Chew, Goldberger, and Low 1956)
utilizes the MHD framework by assuming isotropic distributions parallel and perpendicular to
the magnetic field, which results in scalar pressures on the two sides of the shock. This is now
known as the CGL theory.

When we shift to the MHD with anisotropic pressure tensor

𝑃𝑖𝑗 = 𝑝⟂𝛿𝑖𝑗 + (𝑝∥ − 𝑝⟂)𝐵𝑖𝐵𝑗/𝐵2

where 𝑝⟂ and 𝑝∥ are the pressures perpendicular and parallel w.r.t. the magnetic field, re-
spectively. For the strong magnetic field approximation, the two pressures are related to the
plasma density and the magnetic field strength by two adiabatic equations,

d
d𝑡(

𝑝∥𝐵2

𝜌3 ) = 0
d
d𝑡(

𝑝⟂
𝜌𝐵) = 0

This is also known as the double adiabatic theory, which is also what many people remember
to be the key conclusion from the CGL theory. (These are constants at a fixed location in
time: it is not correct to apply these across the shock!) Here I want to emphasize the meaning
of adiabatic again: this assumes zero heat flux. If the system is not adiabatic, the conservation
of these two quantities related to the parallel and perpendicular pressure is no longer valid,
and additional terms may come into play such as the stochastic heating.

The general jump conditions for discontinuities in a collisionless anisotropic magnetoplasma
in the CGL approximation were derived by (Abraham-Shrauner 1967).

The general jump conditions for an anisotropic plasma are given by (Hudson 1970)

⌊𝜌𝑣𝑛⌉ = 0
⌊𝑣𝑛B𝑡 − v𝑡𝐵𝑛⌉ = 0

⌊𝑝⟂ + (𝑝∥ − 𝑝⟂)
𝐵2

𝑛
𝐵2 + 𝐵2

𝑡
8𝜋 + 𝜌𝑣2𝑛⌉ = 0

⌊𝐵𝑛B𝑡
4𝜋 (

4𝜋(𝑝∥ − 𝑝⟂)
𝐵2 − 1) + 𝜌𝑣𝑛v𝑡⌉ = 0

⌊𝜌𝑣𝑛(
𝜖
𝜌 + 𝑣2

2 + 𝑝⟂
𝜌 + 𝐵2

𝑡
4𝜋𝜌) + 𝐵2

𝑛𝑣𝑛
𝐵2 (𝑝∥ − 𝑝⟂)

−B𝑡 ⋅ v𝑡𝐵𝑛
4𝜋 (1 −

4𝜋(𝑝∥ − 𝑝⟂)
𝐵2 )⌉ = 0

⌊𝐵𝑛⌉ = 0
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where 𝜌 is the mass density, 𝑣 and 𝐵 are the velocity and magnetic field strength. Subscripts
𝑡 and 𝑛 indicate tangential and normal components with respect to the discontinuity. (THIS
IS IN CGS UNITS!) Quantities 𝑝⟂ and 𝑝∥ are the elements of the plasma pressure tensor
perpendicular and parallel with respect to the magnetic field. Quantity 𝜖 is the internal
energy, 𝜖 = 𝑝⟂ + 𝑝∥/2, and ⌊𝑄⌉ = 𝑄2 − 𝑄1, where subscripts 1 and 2 signify the quantity
upstream and downstream of the discontinuity. These equations refer to the conservation of
physical quantities, i.e. the mass flux, the tangential component of the electric field, the normal
and tangential components of the momentum flux, the energy flux, and, finally, the normal
component of the magnetic field. To solve the jump equations for anisotropic plasma conditions
upstream and downstream of the shock, one has to use an additional equation, since the set of
equations is underdetermined. One common choice is the magnetic field/density jump ratio.

The following derivations follow (Erkaev, Vogl, and Biernat 2000). Let us introduce two
dimensionless parameters, 𝐴𝑠 and 𝐴𝑚, which are determined for upstream conditions as

𝐴𝑠 = 𝑝⟂1
𝜌1𝑣21

𝐴𝑚 = 1
𝑀2

𝐴

where 𝑀𝐴 is the upstream Alfvén Mach number. For common solar wind conditions, both of
these parameters are quite small (∼ 0.01).
For shocks, the tangential components of the electric and magnetic fields are coplanar (Equa-
tion 17.3). Thus, the components of the magnetic field upstream of the shock are given as
𝐵𝑛1 = 𝐵1 cos 𝜃1 and 𝐵𝑡1 = 𝐵1 sin 𝜃1, where 𝜃1 is the angle between the magnetic field vector
and the vector �̂� normal to the discontinuity. Similarly, the components of the bulk velocity
upstream of the shock are chosen as 𝑣𝑛1 = 𝑣1 cos𝛼 and 𝑣𝑡1 = 𝐵1 sin𝛼, where � the angle be-
tween the bulk velocity and the normal component of the velocity. Furthermore, a parameter
𝜆 is used to denote the pressure anisotropy

𝜆 = 𝑝⟂/𝑝∥
and another parameter 𝑟 is used to denote the ratio of density

𝑟 ≡ 𝜌2
𝜌1

= 𝑣𝑛1
𝑣𝑛2
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17.2.1 Perpendicular Shock

For a perpendicular shock, 𝐵𝑛 = 0, we have the conservation relations reduce to

⌊𝜌𝑣𝑛⌉ = 0
⌊𝑣𝑛B𝑡⌉ = 0

⌊𝑝⟂ + 𝐵2
𝑡

8𝜋 + 𝜌𝑣2𝑛⌉ = 0
⌊𝜌𝑣𝑛v𝑡⌉ = 0

⌊𝜌𝑣𝑛(
𝜖
𝜌 + 𝑣2

2 + 𝑝⟂
𝜌 + 𝐵2

𝑡
4𝜋𝜌)⌉ = 0

The quantities downstream of the discontinuity are

𝐵𝑡2 = 𝑟𝐵𝑡1
𝑣𝑡2 = 𝑣𝑡1
𝑝⟂2 = 𝑝⟂1 +

𝐵2
𝑡1

8𝜋 (1 − 𝑟2) + 𝜌1𝑣2𝑛1(1 − 1
𝑟 )

Substituting these into the energy equation leads to

2𝜆1(3𝜆2 + 1)𝜉3 − 𝜆1(4𝜆2 + 1)(2𝐴𝑆 +𝐴𝑀 + 2)𝜉2
+𝜆2[2𝜆1(4𝐴𝑆 + 1 + 2𝐴𝑀) + 2𝐴𝑆]𝜉 + 𝐴𝑀𝜆1 = 0

where 𝜉 = 1/𝑟.
Now we can do some simple estimations. Assume we have isotropic upstream solar wind with
𝑛 = 2amu/cc, v = [600, 0, 0]km/s, B = [0, 0,−5]nT in GSM coordinates, and 𝑇 = 5 × 105K.
We want to estimate the downstream anisotropy given a density/tangential magnetic field
jump of 3.

KeyNotes.shock_estimation()

Another thing to note is that, if you set the jump ratio to 4 (maximum value when 𝛾 = 5/3)
in the above calculations, the downstream anisotropy will become 0.6. This indicates that
under this set of upstream conditions, the jump ratio shall never be close to 4 if the anisotropy
𝑇⟂/𝑇∥ > 1!
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17.3 Parallel Shock

From MHD or double adiabatic theory, parallel shocks are more special in that the magnetic
field strength remains unchanged so the equations effectively describe pure gasdynamic solu-
tions. (Kuznetsov and Osin 2018) presents a simplified solution in a 1D parallel shock case
with parallel and perpendicular thermal energy heat fluxes 𝑆∥ and 𝑆⟂ included. Note again
the original CGL theory assumes 0 heat fluxes.

However, as have been indicated in Section 17.1.7, this does not cover the real physics involved
into parallel shocks which must be treated on the basis of kinetic theory and with the simulation
tool at hand. These shocks possess an extended foreshock region with its own extremely
interesting dynamics for both types of particles, electrons and ions, reaching from the foreshock
boundaries to the deep interior of the foreshock. Based mostly on kinetic simulations, the
foreshock is the region where dissipation of flow energy starts well before the flow arrives
at the shock. This dissipation is caused by various instabilities excited by the interaction
between the flow and the reflected particles that have escaped to upstream from the shock.
Interaction between these waves and the reflected and accumulated particle component in
the foreshock causes wave growth and steeping, formation of shocklets and pulsations and
causes continuous reformation of the quasi-parallel shock that differs completely from quasi-
perpendicular shock reformation. It is the main process of maintaining the quasi-parallel shock
which by its nature principally turns out to be locally nonstationary and, in addition, on the
small scale making the quasi-parallel shock close to becoming quasi-perpendicular for the
electrons. This process can be defined as turbulent reformation, with transient phenonmena
like hot flow anomalies, foreshock bubbles, and the generation of electromagnetic radiation.
Foreshock physics is important for particle acceleration.

The turbulent nature implies that the quasi-parallel shock transition is less sharp than the
quasi-perpendicular shock transition and thus less well defined; there exists an extended tur-
bulent foreshock instead of a shock foot. This foreshock consists of an electron and an ion
foreshock. The main population is a diffuse ion component. The turbulence in the foreshock
is generated by the reflected and accelerated foreshock particle populations. An important
point in quasi-parallel shock physics is the reformation of the shock which works completely
differently from quasi-perpendicular shocks; here it is provided by upstream low-frequency
electromagnetic waves excited by the diffuse ion component. Steeping of these waves during
shockward propagation and addition of the large amplitude waves at the shock transition re-
forms the shock front. The old shock front is expelled downstream where it causes downstream
turbulence. During the reformation process the shock becomes locally quasi-perpendicular for
the ions supporting particle reflection.

17.3.1 Turbulent Reformation

Lucek+ [2002] checked this expectation by determining the local shock-normal angle 𝜃𝐵𝑛 and
comparing it with the prediction estimated from magnetic field measurements by the ACE
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Figure 17.2: The patchwork model of Schwartz and David (1991) of a quasi-parallel super-
critical shock reformation. Left: Magnetic pulsations (SLAMS) grow in the ion
foreshock and are convected toward the shock where they accumulate, thereby
causing formation of an irregular shock structure. Note also the slight turning of
the magnetic field into a direction that is more perpendicular to the shock surface
with the shock surface itself becoming very irregular. Right: The same model
with the pulsations being generated in the relatively broad ULF-wave-unstable
region in greater proximity to the ion-foreshock boundary. When the ULF waves
evolve to large amplitude and form localised structures these are convected to-
ward the shock, grow, steepen, overlap, accumulate and lead to the build up of
the irregular quasi-parallel shock structure which overlaps into the downstream
direction.
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spacecraft which was located farther out in the upstream flow. The interesting result is that
during the checked time-interval of passage of the quasi-parallel shock the prediction for the
shock normal was around 20 − 30∘, as expected for quasi-parallel shocks. However, this value
just set a lower bound on the actually measured shock normal angle. The measured 𝜃𝐵𝑛 was
highly fluctuating around much larger values and, in addition, showed a tendency to be close
to 90∘. It strengthens the claim that quasi-parallel shocks are locally, on the small scale, very
close to perpendicular shocks, a property that they borrow from the large magnetic waves
by which they are surrounded. In fact, we may even claim that locally, on the small scale
(≤ 𝒪(𝑑𝑖)), quasi-parallel shocks are quasi-perpendicular.

Thus, the quasi-parallel shock is the result of a build-up from upstream waves which contin-
uously reorganise and reform the shock. The shock transition region turns out to consist of
many embedded magnetic pulsations (SLAMS) of very large amplitudes. These pulsations
have steep flanks and quite irregular shape, exhibit higher frequency oscillations probably
propagating in the whistler mode while sitting on the feet or shoulders of the pulsations.

Another interesting property of magnetic pulsations in the shock transition region is the electric
cross-SLAMS potential, which corresponds to a steep pressure gradient. The pulsations are
subject to a fairly large number of high frequency, Debye scale structures in the electric field.
These intense nonlinear electrostatic electron plasma waves indicates that the quasi-parallel
shocks are sources of electron acceleration into beams which are capable to move upstream
along the magnetic field over a certain distance and excite electron plasma waves at intensity
high enough to enter into the nonlinear regime, forming solitons and electron holes (BGK
modes). This is possible only if quasi-parallel shocks are quasi-perpendicular as well on the
electron scale.

17.3.2 Parallel Shock Particle Reflection

There are two possible mechanisms:

• A quasi-parallel shock is capable of generating a large cross-shock potential, or it is
capable of stochastically – or nearly stochastically – scattering ions in the shock transition
region in pitch angle and energy in such a way that part of the incoming ion distribution
can escape upstream.

• On a scale that affects the ion motion, a quasi-parallel shock close to the shock transition
becomes sufficiently quasi-perpendicular that ions are reflected in the same way as if they
encountered a quasi-perpendicular shock.

17.4 Instabilities and Waves

In the context of collisionless shocks the instabilities of interest can be divided into two classes.
The first class contains those waves which can grow themselves to become a shock. It is clear
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that these waves will be of low frequency and comparably large scale because otherwise they
would not evolve into a large macroscopic shock. The primary candidates are magnetosonic,
Alfvén and whistler modes. A number of waves can form secondarily after an initial seed shock
ramp and grow in some way out of one of these wave modes: these are ion modes which have
now been identified to be responsible for structuring, shaping and reforming the shock. In fact
real oblique shocks — which are the main class of shocks in interplanetary space and probably
in all space and astrophysical objects — cannot survive without the presence of these ion waves
which can therefore be considered the wave modes that really produce shocks in a process of
taking and giving between shock and waves.

The second class includes waves that accompany the shock and provide anomalous transport
coefficients like anomalous collision frequencies, friction coefficients, heat conductivity and
viscosity. These waves are also important for the shock as they contribute to entropy generation
and dissipation. However, they are not primary in the sense that they are not shock-forming
waves.

Among them there is another group that only carries away energy and information from the
shock. These are high-frequency waves, mostly electrostatic in nature, produced by electrons
or when electromagnetic they are in the free-space radiation modes. In the latter case they
carry the information from remote objects as radiation in various modes, radio or x-ray to
Earth, informing of the existence of a shock. In interplanetary space it is only radio waves
which fall into this group as the radiation measure of the heliospheric shocks is too small to
map them into x-rays.

Here we restrict mostly to low frequency EM waves in warm plasma, 𝜔 ≤ 𝜔𝑐𝑖, while only
mention the high frequency EM waves in the end. Such waves are excited by plasma streams
or kinetic anisotropies in one or the other way. A simple summary is given in Table 17.2.

Table 17.2: Types of instabilities and waves related to shocks

Mode Wave Type Handedness Other Properties
Firehose Alfvén left Parallel prefered anisotropy

Ion-Ion Beam Fast right Cool beam
Ion cyclotron Alfvén left Warm beam

KAW Alfvén right Electron, parallel electric
field

Whistler Alfvén right Hall term, electron
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17.4.1 Ion Instabilities 𝜔 ≤ 𝜔𝑐𝑖

17.4.1.1 Firehose mode

The simplest instability known which distorts the magnetic field by exciting Alfvén waves that
propagate along the magnetic field is the firehose mode. The wave excited are ordinary Alfvén
waves, however, and are not suited for shock formation.

When the ion beam is fast and cold it does not go into resonance because its velocity is too
high. In this case all ions participate in a nonresonant instability which in fact is a thermal
firehose mode where the ion beam has sufficient energy to shake the field line. This mode
propagates antiparallel to the ion beam, has small phase speed and negative helicity. This
mode has large growth rate for large 𝑛𝑏/𝑛𝑒 and 𝑣𝑏/𝑣𝐴 simply because then there are many
beam ions and the centrifugal force is large while the beam velocity lies outside any resonant
wave speed. This instability becomes stronger when the ion beam is composed of heavier ions
as the larger mass of these increases the centrifugal force effect.

17.4.1.2 Kinetic Alfvén waves

KAWs (Section 7.9.4) possess a finite 𝐸∥ which can accelerate electrons; in the other way,
electron moving along the magnetic field in the opposite direction become retarded and feed
their energy into KAWs.

Normally this is likely to be a minor effect, as the interaction of ions which are reflected from
a solitary pulse and move back upstream ahead of the pulse will cause a stronger instability.
The reflected ions will represent a beam that is moving against the initial plasma inflow which
by itself is another ion beam neutralised by the comoving electrons. The free energy presented
in the two counter-streaming beams leads to various instabilities as viewed by Gary (1993).

17.4.1.3 Kinetic growth rate

At low frequencies it suffices for our purposes of understanding shock physics to deal with a
three-component plasma consisting of two ion species and one neutralising electron component
which we assume to follow a Maxwellian velocity distribution. Moreover, we assume that the
drifting ion components are Maxwellians as well. In conformity with the above remarks on a
resonant instability we assume that the dominant ion component has large density 𝑛𝑖 ≫ 𝑛𝑏,
and the second component represents a weak fast beam of density 𝑛𝑏 propagating on the ion-
electron background with velocity 𝑣𝑏 ≫ 𝑣𝑖 ≈= 0. Following Gary (1993) it is convenient to
distinguish the three regimes:

1. cool beams (0 < 𝑣 < 𝑣𝑏)
2. warm beams (𝑣 ∼ 𝑣𝑏)
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3. hot beams (𝑣 ≫ 𝑣𝑏)

Figure 17.3 shows the beam configurations for these three cases and the location of the wave
resonances respectively the position of the unstable frequencies.

Figure 17.3: The three cases of ion beam-plasma interaction and the location of the unstable
frequencies. Shown is the parallel (reduced) distribution function 𝐹𝑖(𝑘∥𝑣∥), where
for simplicity the (constant) parallel wavenumber 𝑘∥ has been included into the
argument. Right handed resonant modes (RH) are excited by a cool not too fast
beam. When the beam is too fast the interaction becomes nonresonant. When
the beam is hot, a resonant left hand mode (LH) is excited. In addition the effect
of temperature anisotropy is shown when a plateau forms on the distribution
function (after Gary 1993).

17.4.1.4 Cold Ion Beam: Right-Hand Instability

Assume that the ion beam is thermally isotropic and cool, i.e. its velocity relative to the bulk
plasma is faster than its thermal speed. In this case a right-handed resonant instability occurs.
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In the absence of a beam 𝑣𝑏 = 0 the parallel mode is a right-circularly polarised magnetosonic
wave propagating on the lowest frequency whistler dispersion branch with 𝜔 ≈ 𝑘∥𝑣𝐴. In
presence of a drift this wave becomes unstable, and the fastest growing frequency is at frequency
𝜔 ≃ 𝑘∥𝑣𝑏 −𝜔𝑐𝑖. This mode propagates parallel to the beam, because 𝜔 > 0, 𝑘∥ > 0, and 𝑣𝑏 > 0.
The numerical solution of this instability for densities 0.01 ≤ 𝑛𝑏/𝑛𝑖 ≤ 0.1 at the wave-number
𝑘∥ of fastest growth rate identifies a growth rate of the order of the wave frequency 𝛾 ∼ 𝜔
and

𝛾𝑚 ≃ 𝜔𝑐𝑖 (
𝑛𝑏
𝑛𝑒

)
1/3

for the maximum growth rate 𝛾𝑚, where 𝑛𝑒 = 𝑛𝑖+𝑛𝑏 is the total density from quasi-neutrality.
This instability drives waves propagating together with the beam in the direction of the ion
beam on the plasma background which has been assumed at rest. If applied for instance, to
shock reflected ions then for 2% reflected ions the maximum growth rate is 𝛾𝑚 ∼ 0.2𝜔𝑐𝑖, and
𝑣𝑏 ∼ 1.2𝜔𝑐𝑖/𝑘∥, 𝑘∥ ∼ 0.2𝜔𝑐𝑖/𝑣𝐴 which gives 𝑣𝑏 ∼ 6𝑣𝐴. In the solar wind the Alfvén velocity
is about 𝑣𝐴 ≈ 30 km/s. Hence the velocity difference between shock reflected ions and solar
wind along the magnetic field should be roughly ∼ 180 km/s.8 The thermal velocity of the ion
beam must thus be substantially less than this value, corresponding to a thermal beam energy
less than 𝑇𝑏 ≪ 100 eV which in the solar wind, for instance, is satisfied near the tangential
field line. The solar wind travels at 300–1200 km/s. Complete reflection should produce beam
speeds twice these values.9

The cyclotron resonance condition associated with the generated fast magnetosonic mode is

𝜔 = 𝑣𝑏𝑘∥ − 𝜔𝑐𝑖 (17.16)

where 𝑣𝑏 is the beam velocity and 𝜔𝑐𝑖 the ion gyrofrequency. It can be approximated as
𝜔 = 𝑣𝐴𝑘∥.

17.4.1.5 Warm Ion Beam: Left-Hand Instability

When the temperature of the ion beam increases and the background ions remain to be cold,
then beam ions appear on the negative velocity side of the bulk ion distribution and go into
resonance there with the left-hand polarised ion-Alfvén wave. The maximum growth rate is a
fraction of the growth rate of the right-hand low frequency whistler mode.10 Nevertheless it
can excite the Alfvén-ion cyclotron wave which also propagates parallel to the beam. For this
instability the beam velocity must exceed the Alfvén speed 𝑣𝑏 > 𝑣𝐴.

8If the typical Vlasiator simulation values are used, 𝐵 = 5nT, 𝑛 = 106/cc, 𝑣𝐴 = 109 km/s, Δ𝑣 ∼ 650 km/s.
9The statement in (Balogh and Treumann 2013) is hard to follow. Maybe what they tried to argue is that it

is the perpendicular portion of the shock that creates these reflected ions and leads to the instability. Later
in the book they argued that on a small scale quasi-parallel shocks become perpendicular.

10so literally the Alfvénic branch?
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At oblique propagation both the right and left hand instabilities have smaller growth rates. But
interestingly, it has been shown by Goldstein et al. (1985) that the fastest growing modes then
appear for oblique k and harmonics of the ion cyclotron frequency 𝜔 ∼ 𝑛𝜔𝑐𝑖, 𝑛 = 1, 2, ....11

17.4.2 Electron Instabilities and Radiation 𝜔 ∼ 𝜔𝑝𝑒

Other than ion beam excited instabilities electron-beam instabilities are not involved in direct
shock formation (unless the electron beams are highly relativistic which in the entire helio-
sphere is not the case). The reason is that the frequencies of electron instabilities are high.
However, just because of this reason they are crucial in anomalous transport being responsible
for anomalous collision frequencies and high frequency field fluctuations. The reason is that
the high frequency waves lead to energy loss of the electrons retarding them while for the heav-
ier ions they represent a fluctuating background scattering them. In this way high frequency
waves may contribute to the basic dissipation in shocks even though this dissipation for super-
critical shocks will not be sufficient to maintain a collisionless shock or even to create a shock
under collisionless conditions. This is also easy to understand intuitively, because the waves
need time to be created and to reach a substantial amplitude. This time in a fast stream is
longer than the time the stream needs to cross the shock. So waves will not accumulate there;
rather the fast stream will have convected them downstream long before they have reached
substantial amplitudes for becoming important in scattering.

When we are going to discuss electromagnetic waves which can be excited by electrons we
also must keep in mind that such waves can propagate only when there is an electromagnetic
dispersion branch in the plasma under consideration. These electromagnetic branches in (𝜔,k)-
space are located at frequencies below the electron cyclotron frequency 𝜔𝑐𝑒. The corresponding
branch is the whistler mode branch. Electrons will (under conditions prevailing at shocks) in
general not be able to excite electromagnetic modes at higher frequencies than 𝜔𝑐𝑒. We have
seen before that ion beams have been able to excite whistlers at low frequencies but above the
ion-cyclotron frequency. This was possible only because of the presence of the high frequency
electron whistler branch as a channel for wave propagation. EM waves excited by electrons
propagate on the whistler branch or its low frequency Alfvénic extension, both of which are
right-handed. They also excite a variety of electrostatic emissions.

17.4.3 Whistlers

Gary (1993) has investigated the case of whistler excitation by an electron beam. He finds from
numerical solution of the full dispersion relation including an electron beam in parallel motion
that with increasing beam velocity 𝑣𝑏 the real frequency of the unstable whistler decreases,
i.e. the unstably excited whistler shifts to lower frequencies on the whistler branch while

11In the early Vlasiator paper 2014, the simulated RH growth rate is lower than theory, even though in a 1D3V
almost parallel configuration.
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remaining in the whistler range 𝜔𝑐𝑖 < 𝜔 < 𝜔𝑐𝑒. Both the background electrons and beam
electrons contribute resonantly. The most important finding is that the whistler mode for
sufficiently large 𝛽𝑖 ∼ 1 (which means low magnetic field), 𝑛𝑏/𝑛𝑒 and 𝑇𝑏/𝑇𝑒 has the lowest
beam velocity threshold when compared with the electrostatic electron beam instabilities as
shown in Figure 17.4. This finding implies that in a relatively high-� plasma a moderately
dense electron beam will first excite whistler waves. In the shock environment the conditions
for excitation of whistlers should thus be favourable whenever an electron beam propagates
across the plasma along the relatively weak magnetic field. The electrons in resonance satisfy
𝑣∥ = (𝜔−𝜔𝑐𝑒)/𝑘∥ and, because 𝜔 ≪ 𝜔𝑐𝑒 the resonant electrons move in the direction opposite
to the beam. Enhancing the beam temperature increases the number of resonant electrons
thus feeding the instability.

On the other hand, increasing the beam speed shifts the particles out of resonance and de-
creases the instability. Hence for a given beam temperature the whistler instability has a
maximum growth rate a few times the ion cyclotron frequency.

17.5 Shock Particle Reflection

The process of particle reflection from a shock wave is one of the most important processes
in the entire physics of collisionless shocks. However, the mechanism of particle reflection has
not yet been fully illuminated.

Particle reflection is required in supercritical shocks as it is the only process that can compen-
sate for the incapability of dissipative processes inside the shock ramp to digest the fast inflow
of momentum and energy into the shock. Shock particle reflection is not dissipative by itself
even though in a fluid picture which deals with moments of the distribution function it can
be interpreted as kind of an ion viscosity, i.e. it generates an anomalous viscosity coefficient
which appears as a factor in front of the second derivative of the ion velocity in the ionic
equation of motion. As such it also appears in the ion heat-transport equation. The kinematic
ion viscosity can be expressed as

𝜇vis = 𝑚𝑖𝑛𝜈𝑖𝜆mfp ≃ 𝑃𝑖/2𝜔𝑐𝑖

through the ion pressure 𝑃𝑖 and the ion-cyclotron frequency 𝜔𝑐𝑖 when replacing the mean free
path through the ion gyro-radius. In this sense shock particle reflection constitutes by itself
a very efficient non-dissipative dissipation mechanism. However, its direct dissipative action
is to produce real dissipation as far as possible upstream of the shock in order to dissipate as
much energy of motion as remains to be in excess after formation of a shock ramp, dissipation
inside the ramp, and reflection of ion back upstream. The shock does this by inhibiting a
substantial fraction of inflow ions to pass across the shock from upstream into the downstream
region. It is sending these ions back into the upstream region where they cause a violently
unstable upstream ion beam-plasma configuration which excites a large amplitude turbulent
wave spectrum that scatters the uninformed plasma inflow, heats it and retards it down to
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Figure 17.4: The regions of instability of the electron beam excited whistler mode in density
and beam velocity space for two different � compared to the ion acoustic and
electron beam modes. Instability is above the curves. The whistler instability
has the lowest threshold in this parameter range (after Gary 1993).
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the Mach number range that can be digested by the shock. In this way the collisionless shock
generates a shock transition region that extends far upstream with the shock ramp degrading
to the role of playing a subshock at the location where the ultimate decrease of the Mach
number from upstream to downstream takes place.

Shock reflection has another important effect on the shock as the momentum transfer from the
reflected particle component to the shock retards the shock in the region of reflection thereby
decreasing the effective Mach number of the shock.

17.5.1 Specular Reflection

Specular reflection of ions from a shock front is the simplest case to be imagined. It requires
that the ions experience the shock ramp as an impenetrable wall. This can be the case when
the shock itself contains a positive reflecting electric potential which builds up in front of the
approaching ion. Generation of this electric potential is not clarified yet. In a very naive
approach one assumes that in flowing magnetised plasma a potential wall is created as the
consequence of charge separation between electrons and ions in penetrating the shock ramp.
It occurs over a scale typically of the spatial difference between an ion and an electron gyro-
radius, because in the ideal case the electrons, when running into the shock ramp, are held
temporarily back in the steep magnetic field gradient over this distance while the ions feel the
magnetic gradient only over a scale longer than their gyro-radius and thus penetrate deeper
into the shock transition.

• Reflection from Shock Potential

Due to this simplistic picture the shock ramp should contain a steep increase in the elec-
tric potential ΔΦ which will reflect any ion which has less kinetic energy 𝑚𝑖𝑉 2

𝑁/2 < 𝑒ΔΦ
(Figure 17.5).

• Mirror Reflection

Another simple possibility for particle reflection from a shock ramp in magnetised plasma is
mirror reflection. An ion approaching the shock has components 𝑣𝑖∥. Assume a curved shock
like Earth’s bow shock. Close to its perpendicular part where the upstream magnetic field
becomes tangential to the shock the particles approaching the shock with the stream and
moving along the magnetic field with their parallel velocities experience a mirror magnetic
field configuration that results from the converging magnetic field lines near the perpendicular
point (Figure 17.5). Conservation of the magnetic moment 𝜇 = 𝑇𝑖⟂/𝐵 implies that the particles
become heated adiabatically in the increasing field; they also experience a reflecting mirror
force −𝜇∇∥𝐵 which tries to keep ions away from entering the shock along the magnetic field.
Particles will mirror at the perpendicular shock point and return upstream when their pitch
angle becomes 90◦ at this location. (??? Leroy & Mangeney, 1984; Wu, 1984)
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Figure 17.5: The two cases of shock reflection. Left: Reflection from a potential well Φ(𝑥).
Particles of energy higher than the potential energy 𝑒Φ can pass while lower energy
particles become reflected. Right: Reflection from the perpendicular shock region
at a curved shock wave as the result of magnetic field compression. Particles move
toward the shock like in a magnetic mirror bottle, experience the repelling mirror
force and for large initial pitch angles are reflected back upstream.

Specular reflection from shocks is the extreme case of shock particle reflection. Other mech-
anisms like turbulent reflection are, however, not well elaborated and must in any case be
investigated with the help of numerical simulations.

17.5.2 Consequences of Shock Reflection

How far the reflected ions return upstream depends on the direction of the magnetic field
with respect to the shock, i.e. on the shock normal angle 𝜃𝐵𝑛. For perpendicular shocks the
reflected ions only pass just one gyro-radius back upstream. Seeing the convection electric
field E = −vflow × B they become accelerated along the shock forming a current, the velocity
of which in any case exceeds the inflow velocity (which is zero in the perpendicular direction)
and for sufficiently cold ions also the ion acoustic velocity 𝑐𝑖𝑎 in which case the ion-beam
plasma instability will be excited in the shock foot region where the ion current flows. This
may generate anomalous collision in the shock foot region. Moreover, since the excited waves
accelerate electrons along the magnetic field other secondary instabilities can arise as well.

In quasi-perpendicular and oblique shocks the ions can escape along the magnetic field. In this
case an ion two-stream situation arises between the upstream beam and the plasma inflow with
the consequence of excitation of a variety of electromagnetic and electrostatic instabilities. In
addition, however, an ion-electron two-stream situation is caused between the upstream ions
and the inflow electrons which because of the large upstream electron temperatures probably
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excites mainly ion-acoustic modes but can also lead to Buneman two-stream mode excitation.
These modes contribute to turbulence in the upstream foreshock region creating a weakly
dissipative state in the foreshock where the plasma inflow becomes informed about the presence
of the shock. The electromagnetic low frequency instabilities on the other hand, which are
excited in this region, will grow to large amplitude, form localised structures and after being
convected by the main flow towards the shock ramp interact with the shock and modify the
shock profile or even contribute to shock formation and shock regeneration.

17.6 Shock Particle Acceleration

In the context of cosmic rays that have been observed in the interstellar space, medium energy
particles refer to ~ few GeV ions and ~ few MeV electrons. Above these ranges relativistic
shocks must be considered. Near the Earth’s bow shock the solar wind hydrogen kinetic energy
is ~ 1 keV; ~ 10 keV is about the low threshold for energetic ions. Here we limit our discussions
first to the non-relativistic case.

Figure 17.6 shows schematically the process of particle acceleration. Based on early estimations
by Fermi (1949), a large number of shock crossings and reflections back and forth is required
for the particles to reach energetic cosmic ray level. The scattering process is a stochastic
process that is assumed to conserve energy; in particular they should not become involved
into excitation of instabilities which consume part of their motional energy. The only actual
dissipation that is allowed in this process is dissipation of bulk motional energy from where
the few accelerated particles extract their energy gain. This dissipation is also attributed to
direct particle loss by either convective transport or the limited size of the acceleration region.
Thus this mechanism works until the gyro-radius of the accelerated particle becomes so large
that it exceeds the size of the system.

The stochastic process implies that the basic equation that governs the process is a phase
space diffusion equation in the form of a Fokker-Planck equation

𝜕𝐹(p,x, 𝑡)
𝜕𝑡 + v ⋅ ∇𝐹(p,x, 𝑡) = 𝜕

𝜕p ⋅ D𝑝𝑝 ⋅ 𝜕𝐹(p,x, 𝑡)
𝜕p , D𝑝𝑝 = 1

2 ⟨ΔpΔp
Δ𝑡 ⟩

where Δp is the variation of the particle momentum in the scattering process which happens
in the time interval Δ𝑡, and the angular brackets indicate ensemble averaging. D𝑝𝑝 is the
momentum space diffusion tensor. It is customary to define 𝜇 = cos𝛼 as the cosine of the
particle pitch angle 𝛼 and to understand among 𝐹(𝑝, 𝜇) the gyro-phase averaged distribution
function, which depends only on 𝑝 = |p| and 𝜇.

The dependence on the gyro-radius imposes a severe limitation on the acceleration mechanism,
i.e. the injection problem. In order to experience a first scattering, i.e. in order to being ad-
mitted to the acceleration process, the particle must initially already possess a gyro-radius
much larger than the entire width of the shock transition region. Only when this condition is
given, the shock will behave like an infinitesimally thin discontinuity separating two regions of
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Figure 17.6: Schematic of the acceleration mechanism of a charged particle in reflection at a
quasi-parallel (𝜃𝐵𝑛 < 45∘) supercritical shock. The upstream plasma flow (left,
V1 ≫ V2) contains the various upstream plasma modes: upstream waves, shock-
lets, whistlers, pulsations. The downstream (right) is turbulent. The energetic
particle that is injected at the shock to upstream is reflected in an energy gain-
ing collision with upstream waves, moves downstream where it is reflected in an
energy loosing collision back upstream. It looses energy because it overtakes the
slow waves, but the energy loss is small. Returning to upstream it is scattered
a second time again gaining energy. Its initially high energy is successively in-
creased until it escapes from the shock and ends up in free space as an energetic
Cosmic Ray particle. The energy gain is on the expense of the upstream flow
which is gradually retarded in this interaction. However, the number of energetic
particles is small and the energy gain per collision is also small. So the retar-
dation of the upstream flow is much less than the retardation it experiences in
the interaction with the shock-reflected low energy particles and the excitation of
upstream turbulence.
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vastly different velocities such that the particle when crossing back and forth over the shock
can become aware of the bulk difference in speed and take an energetic advantage of it. This
restriction rules out any particles in the core of the upstream inflow distribution from partici-
pation in the acceleration process: in order to enter the Fermi shock-acceleration mechanism a
particle must be pre-accelerated or pre-heated until its gyro-radius becomes sufficiently large.
This condition poses the injection problem, where an unresolved seed population of energetic
particles are needed for further acceleration, that has not yet been resolved.

Foreshock transients (Section 17.7), especially HFAs and FBs, can accelerate particles and
contribute to the primary shock acceleration. These can form secondary shocks which leads to
several possible acceleration mechanisms; they can also cause local magnetic reconnection that
accelerate particles. The interaction with foreshock transients provides a possible solution to
Fermi’s injection problem and increase the acceleration efficiency of primary shocks.

1. As foreshock transients convect with the upstream flow, particles enclosed within their
boundary and the primary shock can experience Fermi acceleration.

2. Secondary shocks have also been observed to accelerate upstream particles on their own
through the shock drift acceleration (SDA)12 and even to form a secondary foreshock.

3. Secondary shocks can also capture and further energize primary shock-accelerated elec-
trons through betatron acceleration.

4. Magnetic reconnection inside foreshock transients contributes to the electron and ion
acceleration/heating.

Another problem awakens attention is that how the shocks are modulated by the presence of
energetic particles.

In terms of particle acceleration the shock appears as a boundary between two independent
regions of different bulk flow parameters which are filled with scattering centres for the particles
as sketched in Figure 17.7. Theoretically ((Balogh and Treumann 2013)) any particle which
returns from downstream to upstream is accelerated in the upstream flow, even in the absence
of any upstream turbulence and scatterings. If the upstream medium is magnetised and
is sufficiently extended to host the upstream gyration orbit, pick-up ion energization can
happen via the convection electric field E = −V × B all along their upstream half-gyrocircles.
Alternatively, the upstream turbulence can also cause ion energization.

17.7 Foreshock Transients

This section provides a list and a very short description of foreshock transients based on obser-
vations including hot flow anomalies (HFAs), spontaneous hot flow anomalies (SHFAs), fore-
shock bubbles (FBs), foreshock cavities, foreshock cavitons, foreshock compressional bound-
12The essence of SDA is that the electric field increases in the middle of the shock! The linked animation shows

a perpendicular shock scenario where SDA is not present if there is no increase of the electric field in the
shock. However, the question remains: why does the electric field increase?
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Figure 17.7: Cartoon of the diffusive shock acceleration (left) and shock heating mechanisms
[after an sketch by M. Scholer and Hoshino]. In diffusive shock acceleration the
particle is scattered around the shock being much faster than the shock. The
requirement is the presence of upstream waves and downstream turbulence or
waves. In shock heating the particle is a member of the main particle distribution,
is trapped for a while at the shock and thereby thermalised and accelerated until
leaving the shock.
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aries, density holes, and Short Large-Amplitude Magnetic structures (SLAMs). Table 17.3
shows a comparison of their characteristics after (Zhang et al. 2022).

17.7.1 Hot Flow Anomaly

HFAs are characterized by a low field strength and low density core with heated plasma and
substantial flow deflection with sizes of several RE. HFAs are typically driven by a solar
wind tangential discontinuity (TD) that intersects the bow shock with solar wind convection
electric field pointing inward on at least one side of the TD. Such a TD can locally trap
foreshock ions leading to the HFA formation while propagating along the bow shock surface.
HFAs may accelerate particles efficiently through Fermi acceleration, i.e., bouncing between
the converging HFA boundary and the bow shock. The observed energetic ions may also have
escaped from the outer magnetosphere.

One of the most remarkable properties of HFAs is the strong deflection of the solar wind
bulk flow which can be large enough that inside an HFA the flow can actually show a sunward
component. A transient region of lower density in the solar wind interacting with the fast shock
can cause the disruption of the fast shock and leads to a new shock that actually travels into
the upstream direction with plasma behind this new shock having a much smaller momentum
density and velocity than the original solar wind.

17.7.2 Spontaneous Hot Flow Anomaly

SHFAs have the same characteristics as HFAs except that they are not associated with any
solar wind discontinuities. They form intrinsically in the quasi-parallel regime, likely due to
the interaction between foreshock cavitons and the bow shock.

In order to distinguish SHFAs from cavitons in simulations, an additional empirical criterion of
SHFA having 𝛽 > 10 in at least 60% of the transient region has been used. It is chosen in order
to not make assumptions on the level of heating and flow deflection inside the transients. A
value of 10 indicates that the transients are dominated by the plasma instead of the magnetic
field, and it is significantly above the typical � in the surrounding foreshock (𝛽 ∼ 1 − 4).

17.7.3 Foreshock Bubble

When backstreaming foreshock ions interact with a solar wind rotational discontinuity (RD)
that does not necessarily intersect the bow shock, FBs form upstream of the RD and convecting
anti-sunward with it. Later observations and simulations found that TDs can also drive FBs.
FBs are also characterized by a heated, tenuous core with significant flow deflection. Different
from HFAs and SHFAs, the expansion of FBs is super-fast-magnetosonic and dominantly in the
sunward direction. Because of the sunward super-fast-magnetosonic expansion, a shock forms
upstream of the core, and the FB size in the expansion direction can reach 5-10 RE, larger
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Table 17.3: Comparison of foreshock transient phenomena at the bow shocks

Table 17.4: Basic foreshock transient properties
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Table 17.5: Foreshock transients generation mechanisms

Generation mechanism
HFA Interaction of IMF discontinuities with the bow shock
SHFA Interaction of foreshock cavitons with the bow shock
FB Kinetic interactions between suprathermal, backstreaming ions and incident

SW plasma with embedded IMF discontinuities that move through and alter
the ion foreshock

Cavity Antisunward moving slabs of magnetic field lines that connect to the bow
shock that are sandwiched between broader regions of magnetic field lines
that remain unconnected to the bow shock

Caviton Nonlinear interaction of ULF waves
FCB Backstreaming ions result in increased pressure within the foreshock region

leading to its expansion against the pristine SW and the generation of FCBs
Density Hole Possibly due to backstreaming particles interacting with the original SW
SLAMS Nonlinear wave steepening
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than typical HFAs and SHFAs. In addition to their significant dynamic pressure perturbations,
FBs are also efficient particle accelerators due to the presence of the shock (e.g., shock drift
acceleration and Fermi acceleration as the shock converges towards the bow shock).

17.7.4 Foreshock Cavity

Foreshock cavities are characterized by low density, low field strength core regions with high
density, high field strength compressional boundaries on two sides. But different from HFAs,
the flow deflection inside foreshock cavities is rather weak and plasma heating is not significant.
When slabs of magnetic field lines connected to the bow shock are bounded by broader regions
of magnetic field lines that remain unconnected to the bow shock, only the slabs are filled with
energized particles reflected from the bow shock. The presence of foreshock particles enhanced
the thermal pressure, causing an expansion on two sides. Such an expansion decreases the
plasma density and magnetic field strength inside the slabs and increases the density and field
strength at two boundaries, i.e., a foreshock cavity forms.

17.7.5 Foreshock Caviton

Foreshock cavitons are also characterized by a core region with low density and field strength
bounded by two boundaries with high density and field strength, without clear heating and
flow deflection. Their sizes are about one RE. They form due to the nonlinear evolution
of two types of waves: the parallel propagating right- or left-hand polarized waves and the
obliquely propagating linearly polarized fast magnetosonic waves. Thus, foreshock cavitons
are embedded in foreshock ULF waves, whereas foreshock cavities are isolated due to their
different formation mechanisms.

17.7.6 Foreshock Compressional Boundary

FCBs have enhanced density and field strength. They occur at the boundary between the
foreshock and the pristine solar wind. Because of the high thermal pressure due to the presence
of foreshock ions, the foreshock region expands into the ambient pristine solar wind, leading to
the formation of an FCB. FCBs are sometimes associated with local density and field strength
depletion on their foreshock side. FCBs can form under either steady or nonsteady IMF
conditions.

17.7.7 SLAMS and Shocklets

Short Large-Amplitude Magnetic Structures (SLAMS) are magnetic pulsations with ampli-
tudes at least two times the ambient magnetic field strength. SLAMS have typical spatial
scales up to many ion gyroradii (where the thermal ion gyroradius is typically 160 km in
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the solar wind) and grow rapidly with time scales of seconds. Shocklets are also magnetic
structures (nonlinearly steepened magnetosonic waves), but differ from SLAMS in terms of
amplitude, spatial scale, growth rate, and propagation angle.

17.7.8 Density Hole

Density holes are characterized by similarly shaped magnetic holes with enhanced density
and field strength at one or both edges. The definition of density holes overlaps with HFAs,
SHFAs, FBs, foreshock cavities, and foreshock cavitons, but in a broader sense. Lu et al.
(2022) showed statistically that �66% of 411 density holes cannot be categorized by any of
these foreshock transient types. Therefore, it is necessary to make density holes a separate
category. A better definition of density holes is needed to definitely distinguish them from
other foreshock transient types, which requires further studies. The formation could be due
to the interaction between backstreaming particles and the original solar wind (Parks et al.
2006).

17.8 Subcritical Shocks

Subcritical shocks have Mach numbers between 1 and 𝑀𝑐 which can be described by the com-
bined action of dispersion and dissipation present in dispersive waves in collisionless plasmas.
Subcritical shocks have been believed to be rare in space; they were mostly restrictedly asso-
ciated to heavy mass loading of the solar wind as is the case in the vicinity of comets and
Venus and Mars as the unmagnetised planets, in particular at Venus with its dense atmosphere.
However, they might be much more frequent simply due to the properties of dispersive waves
which nonlinearly are capable of steeping and evolving into shocks.

Evolution of subcritical shocks in the latter case is now quite well understood, even though the
generation of anomalous resistance and anomalous dissipation below the critical Mach number
still poses many unresolved problems. It is well established that the subcritical shock evolves
through the various phases of steeping of a low frequency magnetosonic wave the character
of which has been identified of being on the whistler mode branch. This steeping process is
completely non-collisional. The modes propagate against the upstream flow, forming a train of
localised wave modes where the steeping is produced by sideband generation of higher spatial
harmonics all propagating (approximately) at the same phase (group) velocity such that their
amplitudes are in phase and superimpose on the mother wave. When the gradient length
of the leading wave packet becomes comparable to the dissipation scale 𝐿𝑑, dissipation sets
on. At this time the smaller scale higher harmonic sidebands either outrun the leading wave
packet ending up as standing, spatially damped precursor wave modes in front of the shock,
or forming a spatially damped trailing wake of the packet. This depends on whether the
dispersion is convex or concave (sign of 𝜕2𝜔/𝜕𝑘2). This dispersive effect limits the amplitude
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of the shock. At the same time the ramp is formed out of the wave packet by the dissipation
generated inside the shock.

Generation of dissipation is most likely due to electron current instabilities of the shock ramp
current on a scale that is shorter than the ion inertial scale. So far the instability has not yet
been identified, but we have given strong arguments that it is the modified two stream insta-
bility which signs responsible. The anomalous collision rate is at the lower hybrid frequency in
the shock ramp, quite high in this case and sufficient for providing the necessary dissipation
for entropy generation, shock heating and compression. In addition, other small scale effects
might occur which we have only given a hint on but not discussed in depth.

17.9 Location of Shocks

In the observation comparison paper (Slavin and Holzer 1981) for quasi-perpendicular shocks,
they concluded that the variations in shock stand-off distance and shape are ordered by the
sonic Mach number 𝑀𝑠 and not other Mach numbers involve magnetic field. In other words,
they think the bow shock is a gasdynamic structure.

However, even in neutral fluid theory, the determination of shock location as well as shape is
still an ongoing research. Imagine the simplest scenario where there is a static ball in the air
with infinite mass. Assuming purely homogenous air with known density, velocity and pressure
in the upstream, can you tell me the exact location of shock stand-off distance with pen and
paper?

On top of that, the introduction of EM field complicates the story. Especially in the case of a
parallel shock, the plasmas get “shocked” both upstream and downstream, and the stand-off
distance of the shock may not be a single point theoretically. In some sense, normal magnetic
field to the boundary “thickens” the shock front.

17.10 Earth Bow Shock

Using data from the AMPTE/IRM spacecraft, (Hill et al. 1995) have shown that the double
adiabatic equations do not hold in the magnetosheath. Moreover, the thermal behaviour of
the magnetosheath is studied by (Phan et al. 1996) using WIND spacecraft data. They report
that most parts of the magnetosheath are marginally mirror unstable: electron observations
showed 𝑇𝑒⟂/𝑇𝑒∥ ∼ 1.3 in the magnetosheath.
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18 Magnetosphere

The big picture when considering the interaction of the solar wind and the magnetosphere is
as follows:

1. Is there something that can penetrate from the solar wind into the magnetosphere?
2. Is there something that can be triggered from the interaction?
3. Is a physical process internally or externally driven?

18.1 Earth’s Magnetic Environment

In the first approximation the Earth’s magnetic field is that of a magnetic dipole (Section 3.8).
The dipole axis is tilted 11◦ from the direction of the Earth’s rotation axis. The current
circuit giving rise to the magnetic field is located in the liquid core about 1200–3400 km from
the center of the planet. The current system is asymmetric displacing the dipole moment from
the center, which together with inhomogeneous distribution of magnetic matter above the core
gives rise to large deviations from the dipole field on the surface. The pure dipole field on the
surface would be 30 µT at the dipole equator and 60 µT at the poles. However, the actual
surface field exceeds 66 µT in the region between Australia and Antarctica and is weakest,
about 22 µT, in a region called South Atlantic Anomaly (SAA).

18.1.1 Basic Structures

In the frame of reference of the Earth the solar wind is supermagnetosonic, exceeding the
local magnetosonic speed 𝑣𝑚𝑠 = √𝑣2𝑠 + 𝑣2𝐴, where 𝑣𝑠 is the sound speed, 𝑣𝐴 is the Alfvén
speed. Because fluid-scale perturbations cannot propagate faster than 𝑣𝑚𝑠, this leads to a
formation of a collisionless shock front, called the bow shock, upstream of the magnetosphere.
Under typical solar wind conditions the apex of the shock in the solar direction is about 3
𝑅𝐸 upstream of the magnetopause. The shock converts a considerable fraction of solar wind
kinetic energy to heat and electromagnetic energy. The irregular shocked flow region between
the bow shock and the magnetopause is called the magnetosheath.
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18.1.2 The Dipole Field

The dipole field is an idealization where the source current is assumed to be confined into a
point at the origin. The source of planetary and stellar dipoles is a finite, actually a large,
current system within the celestial body. Such fields, including the Terrestrial magnetic field,
are customarily represented as a multipole expansion: dipole, quadrupole, octupole, etc. When
moving away from the source, the higher multipoles vanish faster than the dipole making the
dipole field a good starting point to consider the motion of charged particles. In the dipole
field charged particles behave adiabatically as long as their gyro radii are smaller than the
gradient scale length of the field (Section 4.8) and their orbits are not disturbed by collisions
or time-varying electromagnetic field.

For the geomagnetic field it is customary to define the spherical coordinates in a special way.
The dipole moment (mE) is in the origin and points approximately toward geographic south,
tilted 11◦ as mentioned above. Similar to the geographic coordinates the latitude (𝜆) is zero
at the dipole equator and increases toward the north, whereas the latitudes in the southern
hemisphere are negative. The longitude (𝜙) increases toward the east from a given reference
longitude. In magnetospheric physics the longitude is often given as the magnetic local time
(MLT). In the dipole approximation MLT is determined by the flare angle between two planes:
the dipole meridional plane containing the subsolar point on the Earth’s surface, and the dipole
meridional plane which contains a given point on the surface, i.e., the local dipole meridian.
Magnetic noon (MLT = 12 h) points toward the Sun, midnight (MLT = 24 h) anti-sunward.
Magnetic dawn (MLT = 6 h) is approximately in the direction of the Earth’s orbit around the
Sun.

The SI-unit of 𝑚E is A m2. Sometimes it is convenient to replace 𝑚E by 𝑘0 = 𝜇0𝑚E/4𝜋, which
is also customarily called dipole moment. The strength of the terrestrial dipole moment varies
slowly. A sufficiently accurate approximation is

𝑚E = 8 × 1022 Am2

𝑘0 = 8 × 1015 Wbm (SI ∶ Wb = Tm2)
= 8 × 1025 Gcm3 (Gaussianunits, 1G = 10−4 T)
= 0.3G𝑅3

E (𝑅E ≃ 6378 km)

The last expression is convenient in practice because the dipole field on the surface of the
Earth (at 1 𝑅E) varies in the range 0.3–0.6 G.

Outside its source, the dipole field is a curl-free potential field B = −∇𝜓, where the scalar
potential is given by

𝜓 = −k0 ⋅ ∇
1
𝑟 = −𝑘0

sin𝜆
𝑟2

yielding
B = 1

𝑟3 [3(k0 ⋅ ̂𝑟) ̂𝑟 − k0]
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The components of the magnetic field are

𝐵𝑟 = −2𝑘0
𝑟3 sin𝜆

𝐵𝜆 = 𝑘0
𝑟3 cos𝜆

𝐵𝜙 = 0

and its magnitude is
𝐵 = 𝑘0

𝑟3 (1 + 3 sin2 𝜆)1/2

The equation of a magnetic field line is

𝑟 = 𝑟0 cos2 𝜆

where 𝑟0 is the distance where the field line crosses the equator. The length element of the
magnetic field line element is

d𝑠 = (d𝑟2 + 𝑟2d𝜆2)1/2 = 𝑟0 cos𝜆 (1 + 3 sin2 𝜆)1/2 d𝜆

This can be integrated in a closed form, yielding the length of the dipole field line 𝑆𝑑 as a
function of 𝑟0

𝑆𝑑 ≈ 2.7603𝑟0 (18.1)

The curvature radius 𝑅𝐶 = |d2r/d𝑠2|−1 of the magnetic field is an important parameter for
the motion of charged particles. For the dipole field the radius of curvature is

𝑅𝑐(𝜆) =
𝑟0
3 cos𝜆

(1 + 3 sin2 𝜆)3/2

2 − cos2 𝜆

Any dipole field line is determined by its (constant) longitude 𝜙0 and the distance where the
field line crosses the dipole equator. This distance is often given in terms of the L-parameter

𝐿 = 𝑟0/𝑅𝐸 (18.2)

For a given L the corresponding field line reaches the surface of the Earth at the (dipole)
latitude

𝜆𝑒 = arccos 1√
𝐿

For example, L = 2 (the inner belt) intersects the surface at 𝜆𝑒 = 45∘ , L = 4 (the heart of
the outer belt) at 𝜆𝑒 = 60∘ and L = 6.6 (the geostationary orbit) at 𝜆𝑒 = 67.1∘.
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The dipole field line length in Equation 18.1 was calculated from the dipole itself. Now we
can calculate also the dipole field line length from a point on the surface to the surface on the
opposite hemisphere to be

𝑆𝑒 ≈ (2.7755𝐿 − 2.1747)𝑅𝐸

which is a good approximation when 𝐿 ≳ 2.
The field magnitude along a given field line as a function of latitude is

𝐵(𝜆) = [𝐵𝑟(𝜆)2 +𝐵𝜆(𝜆)2]
1/2 = 𝑘0

𝑟30
(1 + 3 sin2 𝜆)1/2

cos6 𝜆

For the Earth
𝑘0
𝑟30

= 0.3
𝐿 G = 3 × 10−5

𝐿3 T

The actual geomagnetic field has considerable deviations from the dipolar field because the
dipole is not quite in the center of the Earth, the source is not a point, and the electric con-
ductivity of the Earth is not uniform. The geomagnetic field is described by the International
Geomagnetic Reference Field (IGRF) model, which is regularly updated to reflect the slow
secular variations of the field, i.e., changes in timescales of years or longer.

18.1.3 Current Systems

The Earth’s magnetosphere is the region where the near-Earth magnetic field controls the
motion of charged particles. It is formed by the interaction between the geodipole and the
solar wind. The deformation of the field, caused by the variable solar wind pressure, sets
up time-dependent magnetospheric current systems that dominate deviations from the dipole
field in the outer radiation belt and beyond.

The solar wind plasma cannot easily penetrate to the Earth’s magnetic field and the outer
magnetosphere is essentially a cavity around which the solar wind flows. The cavity is bounded
by a flow discontinuity called the magnetopause. The shape and location of the magnetopause
is determined by the balance between the solar wind plasma pressure and the magnetospheric
magnetic field pressure. The nose, or apex, of the magnetopause is, under average solar wind
conditions, at the distance of about 10 𝑅𝐸 from the center of the Earth but can be pushed to
the vicinity of the geostationary distance (6.6 𝑅𝐸) during periods of large solar wind pressure.
In the dayside the dipole field is compressed toward the Earth, whereas in the nightside the
field is stretched to form a long magnetotail. The deviations from the curl-free dipole field
correspond to electric current systems according to Ampère’s law J = ∇× B/𝜇0.

Figure 18.1 is a sketch of the magnetosphere with the main large-scale magnetospheric cur-
rent systems. Individual looks at different currents in detail are presented in Figure 18.4,
Figure 18.5, and Figure 18.6, with more explanations in this review.
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Figure 18.1: The magnetosphere and the large scale magnetospheric current systems.

The current system on the dayside magnetopause shielding the Earth’s magnetic field from the
solar wind is known as the Chapman–Ferraro current (Figure 18.2). In the first approximation
the Chapman–Ferraro current density JCF can be expressed as

JCF = BMS
𝐵2

MS
×∇𝑃dyn (18.3)

where BMS is the magnetospheric magnetic field and 𝑃dyn the dynamic pressure of the solar
wind. Because the interplanetary magnetic field (IMF) at the Earth’s orbit is only a few nan-
oteslas, the magnetopause current must shield the magnetospheric field to almost zero just
outside the current layer. Consequently, the magnetic field immediately inside the magne-
topause doubles: about one half comes from the Earth’s dipole and the second half from the
magnetopause current. In plasma physics this is known as the diamagnetic current caused by
the pressure gradient (Equation 5.53, Equation 5.55).

If the plasma pressure is anisotropic, the current density perpendicular to the magnetic field
J⟂ in a static system can be written

J⟂ = B
𝐵2 × [∇𝑝⟂ + (𝑝∥ − 𝑝⟂)

(B ⋅ ∇)B
𝐵2 ] (18.4)

where 𝑝∥ and 𝑝⟂ are plasma pressure, parallel and perpendicular to the magnetic field, respec-
tively. Equation 18.4 can be simplified to Equation 18.3 in the isotropic case.
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Figure 18.2: The Chapman-Ferraro dayside magnetopause currents are shown as a green-
shaded surface on a simple wire diagram of the magnetopause. The Earth is
the small sphere at the axis origin, and the Sun is to the lower left.
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The Chapman–Ferraro model describes a teardrop-like closed magnetosphere that is com-
pressed in the dayside and stretched in the nightside, but not very far. Since the 1960s
spacecraft observations have shown that the nightside magnetosphere, the magnetotail, is very
long, extending far beyond the orbit of the Moon. This requires a mechanism to transfer en-
ergy from the solar wind into the magnetosphere to keep up the current system that sustains
the tail-like configuration.

In Figure 18.1, the overwhelming fraction of the magnetospheric volume consists of tail lobes,
connected magnetically to the polar caps in the ionized upper atmosphere, known as the
ionosphere. The polar caps are bounded by auroral ovals. Consequently, in the northern lobe
the magnetic field points toward the Earth, in the southern away from the Earth. To maintain
the lobe structure, there must be a current sheet between the lobes where the current points
from dawn to dusk. This cross-tail current is embedded within the plasma sheet and closes
around the tail lobes forming the nightside part of the the magnetopause current.

The cusp-like configurations of weak magnetic field above the polar regions known as polar
cusps do not connect magnetically to magnetic poles, but instead to the southern and northern
auroral ovals at noon, because the entire magnetic flux enclosed by the ovals is connected to
the tail lobes. Tailward of the cusps the Chapman–Ferraro current and the tail magnetopause
current smoothly merge with each other. Figure 18.1 also illustrates the westward flowing ring
current (RC) and the magnetic field-aligned currents (FAC) connecting the magnetospheric
currents to the horizontal ionospheric currents in auroral regions at an altitude of about 100
km. FACs are mainly carried by electrons. They were first suggested to explain the variations
of magnetic field measured on the ground in the polar regions.

Based on the magnetosphere-ionosphere current continuity, the field-aligned current 𝐽∥ (posi-
tive if flowing into the ionosphere) is related to the magnetic field and plasma pressure in the
magnetosphere (Grad, 1964; Tverskoy, 1982; Vasyliunas, 1970) as (???)

𝐽∥ = 𝐵𝑖
𝐵𝑒

�̂� ⋅ (∇𝑊 ×∇𝑃) (18.5)

where 𝑊 = ∫ d𝑠
𝐵 is the magnetic flux tube volume, d𝑠 is the element of magnetic field line

length, 𝐵 is the magnetic field along the field line and the integration is taken between the
two conjugate points, 𝑃 is the plasma pressure, 𝐵𝑖 and 𝐵𝑒 are the magnetic fields in the
ionosphere and equatorial plane, respectively. The gradients are evaluated in the equatorial
plane. The formation of a FAC requires the existence of a hot plasma pressure gradient along
the isosurfaces of the magnetic flux tube volume W, azimuthal plasma pressure gradient. If
the azimuthal gradient is directed outward indicating that the pressure peaks are not around
midnight but close to dawn and dusk, Region 1 field-aligned current can be generated in the
plasma sheet, as shown in Figure 18.5.

The magnetospheric current systems can have significant temporal variations, which makes
the mathematical description of the magnetic field complicated. A common approach is to
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Figure 18.3: The tail current with closure via return current on magnetopause shown in light
blue on the wire diagram of the magnetopause, as in Figure 18.2.
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Figure 18.4: The symmetric ring current (eastward and westward, in brown and blue, respec-
tively) including the cut ring currents on the dayside (in yellow). The viewing
perspective is the same as in Figure 18.2 but now zoomed in closer to the Earth.
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Figure 18.5: Region 1 field-aligned currents, shown as the red bands, including the two possible
closure paths: directly to the magnetopause and via the far tail plasma sheet.

537



Figure 18.6: Region 2 field-aligned currents and partial ring current, shown in purple and the
banana current, shown in orange. The view here is shifted to be from the evening
sector.
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apply some of the various models developed by Nikolai Tsyganenko (Tsyganenko 2013).1

For illustrative purposes simpler models are sometimes useful. For example, the early time-
independent model of Mead (1964) reduces in the magnetic equatorial (𝑟, 𝜙) plane to

𝐵(𝑟, 𝜙) = 𝐵𝐸 (𝑅𝐸
𝑟 )

3
[1 + 𝑏1

𝐵𝐸
( 𝑟
𝑅𝐸

)
3
− 𝑏2

𝐵𝐸
( 𝑟
𝑅𝐸

)
4
cos𝜙]

where 𝐵𝐸 is the equatorial dipole field on the surface of the Earth (approximately 30.4 µT =
30,400 nT) and � is the longitude east of midnight. The cos𝜙 term describes the azimuthal
asymmetry due to the dayside compression and nightside stretching of the field. The coeffi-
cients 𝑏1 and 𝑏2 depend on the distance of the subsolar point of the magnetopause 𝑅𝑠 (in units
of 𝑅𝐸), which, in turn, depends on the upstream solar wind pressure

𝑏1 = 25( 10
𝑅𝑠

)
3

nT

𝑏2 = 2.1( 10
𝑅𝑠

)
4

nT

This model is fairly accurate during quiet and moderately disturbed times at geocentric dis-
tances 1.5–7 𝑅𝐸.

18.1.4 Geomagnetic Activity Indices

The intensity and variations of magnetospheric and ionospheric current systems are tradi-
tionally described in terms of geomagnetic activity indices. The indices are calculated from
ground-based magnetometer measurements. As different indices describe different features of
magnetospheric currents, there is no one-to-one correspondence between them. The choice of
a particular index depends on physical processes being investigated.

The most widely used indices for global storm levels are Dst, Kp, and AE.

18.1.4.1 Dst

The Dst index aims at measuring the intensity of the ring current. It is calculated once an
hour as a weighted average of the deviation from the quiet level of the horizontal magnetic
field component (H) measured at four low-latitude stations distributed around the globe. Ge-
omagnetic storms are defined as periods of strongly negative Dst index, signalling enhanced
westward the ring current. The more negative the Dst index is, the stronger is the storm.
There is no canonical lower threshold for the magnetic perturbation beyond which the state of

1Tsyganenko models are available at Community Coordinated Modeling Center.
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the magnetosphere is to be called a storm and identification of weak storms is often ambiguous.
As an empirical classification, we call storms with Dst from –50 to –100 nT moderate, from
–100 to –200 nT intense, and those with Dst < −200 nT big. A similar 1-min index derived
from a partly different set of six low-latitude stations (SYM–H) is also in use.

Dst has contributions from all currents in addition to the ring current. These include the
magnetopause and cross-tail currents, as well as induced currents in the ground due to rapid
temporal changes of ionospheric currents. Large solar wind pressure pushes the magnetopause
closer to the Earth forcing the magnetopause current to increase to be able to shield a locally
stronger geomagnetic field from the solar wind. The effect is strongest on the dayside where
the magnetopause current flows in the direction opposite to the ring current. The pressure
corrected Dst index can be defined as

Dst∗ = Dst − 𝑏√𝑃dyn + 𝑐 (18.6)

where 𝑃dyn is the solar wind dynamic pressure and b and c are empirical parameters, whose
exact values depend on the used statistical analysis methods, e.g., 𝑏 = 7.26nTnPa−1/2 and
𝑐 = 11 nT as determined by O’Brien and McPherron (2000).

The contribution from the dawn-to-dusk directed tail current to the Dst index is more difficult
to estimate. During strong activity the cross-tail current intensifies and moves closer to the
Earth, enhancing the nightside contribution to Dst. The estimates of this effect on Dst vary
in the range 25–50%. Furthermore, fast temporal changes in the ionospheric currents induce
strong localized currents in the ground, which may contribute up to 25% to the Dst index.

18.1.4.2 Kp

Another widely used index is the planetary K index, Kp. Each magnetic observatory has its
own K index and Kp is an average of K indices from 13 mid-latitude stations. It is a quasi-
logarithmic range index expressed in a scale of one-thirds: 0, 0+, 1−, 1, 1+,…, 8+, 9−, 9. Kp
is based on mid-latitude observations and thus more sensitive to high-latitude auroral current
systems and to substorm activity than the Dst index. Kp is a 3-h index and does not reflect
rapid changes in the magnetospheric currents.

18.1.4.3 AE

The fastest variations in the current systems take place at auroral latitudes. To describe the
strength of the auroral currents the auroral electrojet indices (AE) are commonly used. The
standard AE index is calculated from 11 or 12 magnetometer stations located under the average
auroral oval in the northern hemisphere. It is derived from the magnetic north component
at each station by determining the envelope of the largest negative deviation from the quiet
time background, called the AL index, and the largest positive deviation, called the AU index.
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The AE index itself is AE = AU − AL (all in nT). Thus AL is the measure of the strongest
westward current in the auroral oval, AU is the measure of the strongest eastward current, and
AE characterizes the total electrojet activity. AE, AU, AL are typically given with 1-min time
resolution.

As the auroral electrojets flow at the altitude of about 100 km, their magnetic deviations
on the ground are much larger than those caused by the ring current. For example, during
typical substorm activations AE is in the range 200–400 nT and can during strong storms
exceed 2000 nT, whereas the equatorial Dst perturbations exceed −200 nT only during the
strongest storms.

18.2 Particles

Typical densities of the unperturbed solar wind at 1 AU extend from about 3 cm−3 in the
fast (∼ 750 km s−1) to about 10 cm−3 in the slow (∼ 350 km s−1) solar wind, again with large
deviations.

18.2.1 Outer Magnetosphere

The outer magnetosphere can be considered to begin at distances of about 7–8 𝑅𝐸 where
the nightside magnetic field becomes increasingly stretched. Table 18.1 summarizes typical
plasma parameters in the mid-tail region, at about 𝑋 = −20𝑅𝐸 from the Earth. Here 𝑋 is
the Earth-centered coordinate along the Earth–Sun line, positive toward the Sun. The tail
lobes are almost empty, particle number densities being of the order of 0.01 cm−3. The central
plasma sheet where the cross-tail current is embedded (Figure 18.1) is, in turn, a region of
hot high-density plasma. It is surrounded by the plasma sheet boundary layer with density
and temperature intermediate to values in the central plasma sheet and tail lobes. The field
lines of the boundary layer connect to the poleward edge of the auroral oval. The actual
numbers differ considerably from the typical values under changing solar wind conditions and,
in particular, during strong magnetospheric disturbances.

Table 18.1: Typical values of plasma parameters in the mid-tail

Magnetosheath Tail lobe
Plasma sheet

boundary

Central
plasma
sheet

𝑛(cm−3) 8 0.01 0.1 0.3
𝑇𝑖(eV) 150 300 1000 4200
𝑇𝑒(eV) 25 50 150 600
𝐵(nT) 15 20 20 10

𝛽 2.5 0.0003 0.1 6
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Table 18.1 also includes typical parameters in the magnetosheath at the same X-coordinate.
The magnetosheath consists of solar wind plasma that has been compressed and heated by the
Earth’s bow shock. It has higher density and lower temperature than observed in the outer
magnetosphere. Table 18.1 shows that, while the magnetic field magnitude is rather similar
in all regions shown, plasma beta (the ratio between the kinetic and magnetic field pressures),
is a useful parameter to distinguish between different regions.

18.2.2 Inner Magnetosphere

The inner magnetosphere is the region where the magnetic field is quasi-dipolar. It is populated
by different spatially overlapping particle species with different origins and widely different
energies: the ring current, the radiation belts and the plasmasphere (Chapter 20). The ring
current and radiation belts consist mainly of trapped particles in the quasi-dipolar field drifting
due to magnetic field gradient and curvature effects around the Earth, whereas the motion and
spatial extent of plasmaspheric plasma is mostly influenced by the corotation and convection
electric fields.

The ring current arises from the azimuthal drift of energetic charged particles around the Earth;
positively charged particles drifting toward the west and electrons toward the east. Basically
all drifting particles contribute to the ring current. The drift currents are proportional to the
energy density of the particles and the main ring current carriers are positive ions in the energy
range 10–200 keV, whose fluxes are much larger than those of the higher-energy radiation belt
particles. The ring current flows at geocentric distances 3–8 𝑅𝐸, and peaks at about 3–4 𝑅𝐸.
At the earthward edge of the ring current the negative pressure gradient introduces a local
eastward diamagnetic current, but the net current remains westward.

During magnetospheric activity the role of the ionosphere as the plasma source of ring current
enhances, increasing the relative abundance of oxygen (O+) and helium (He+) ions in the
magnetosphere. As a result a significant fraction of ring current can at times be carried by
oxygen ions of atmospheric origin. The heavy-ion content furthermore modifies the properties
of plasma waves in the inner magnetosphere, which has consequences on the wave–particle
interactions with the radiation belt electrons.

The plasmasphere is the innermost part of the magnetosphere. It consists of cold (∼ 1 eV)
and dense (≳ 103 cm−3) plasma of ionospheric origin. The existence of the plasmasphere was
already known before the spaceflight era based on the propagation characteristics of lightning-
generated and man-made very low-frequency (VLF) waves. The plasmasphere has a relatively
clear outer edge, the plasmapause, where the proton density drops several orders of magnitude.
The location and structure of the plasmapause vary considerably as a function of magnetic
activity (Figure 18.7). During magnetospheric quiescence the density decreases smoothly at
distances from 4–6 𝑅𝐸, whereas during strong activity the plasmapause is steeper and pushed
closer to the Earth.
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Figure 18.7: Plasma density in the night sector organized by the activity index Kp. Kp <
1+ corresponds to a very quiet magnetosphere, whereas Kp = 4-5 indicates a
significant activity level, although not yet a big magnetic storm. The L-shell is
defined in Equation 18.2. [Chappell (1972)]
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The location of the plasmapause is determined by the interplay between the sunward convection
of plasma sheet particles and the plasmaspheric plasma corotating with the Earth. By adding
the convective and corotational electric fields to the guiding center motion of charged particles
we find that an outward bulge called plasmaspheric plume develops on the duskside around
18 h magnetic local time (MLT). Plasmaspheric plumes are most common and pronounced
during geomagnetic storms and substorms, but they can exist also during quiet conditions
(e.g., Moldwin+ 2016). During geomagnetic storms the plume can expand out to geostationary
orbit and bend toward earlier MLT.

Figure 18.8 shows global observations of the plasmasphere taken by the EUV instrument on-
board the IMAGE satellite before and after a moderate geomagnetic storm in June 2000.
Before the storm the plasmasphere was more or less symmetric. After the storm the plasma-
sphere was significantly eroded leaving a plume extending from the dusk toward the dayside
magnetopause. When traversing the plume, the trapped radiation belt electrons, otherwise
outside the plasmapause, encounter a colder and higher-density plasma with plasma wave envi-
ronment similar to the plasmasphere proper. Consequently, the influence of the plasmasphere
on radiation belt particles extends beyond its nominal boundary depicted in Figure 18.7.

Figure 18.8: Plasmapheric plume and plasmaspheric erosion as observed by the IMAGE EUV
instrument. The picture is taken from above the northern hemisphere and the
Sun is to the right. (Goldstein+2004)
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The plasma parameters in the plasmasphere, in the plume and at the plasmapause are critical
to the generation and propagation of plasma waves that, in turn, interact with the energetic
particles in the ring current and radiation belts. Thus, the coldest and the hottest compo-
nents of the inner magnetosphere are intimately coupled to each other through wave–particle
interactions.

18.2.3 Cosmic Rays

In addition to ion and electron radiation belts another important component of corpuscular
radiation in the near-Earth space consists of cosmic rays. The kinetic energies of a large
fraction of cosmic ray particles are so large that the geomagnetic field cannot trap them.
Instead, the particles traverse through the Earth’s magnetosphere without much deflection
of their trajectories. Some of them hit the atmosphere interacting with nuclei of atmospheric
atoms and molecules causing showers of elementary particles being possible to detect on ground.
Those with highest energies can penetrate all the way to the ground.

The spectrum of cosmic ray ions at energies below about 1015 eV per nucleon in the near-Earth
space has three main components:

• Galactic cosmic rays (GCR), whose spectrum peaks at energies above 100 MeV per
nucleon, are most likely accelerated by supernova remnant shock waves in our galaxy.

• Solar cosmic rays (SCR) are accelerated by coronal and interplanetary shocks related to
solar eruptions. Their energies are mostly below 100 MeV per nucleon and a fraction of
them can become trapped in the inner radiation belt.

• Anomalous cosmic rays (ACR) are ions of solar origin captured and accelerated by the
heliospheric termination shock, where the supersonic solar wind becomes subsonic before
encountering the interstellar plasma, or in the heliosheath outside the heliopause. Some
of the ions are injected back toward the Sun. Near the Earth the ACR spectrum peaks at
about 10 MeV per nucleon and thus the particles can become trapped in the geomagnetic
field.

Although the galactic cosmic rays cannot directly be trapped into the radiation belts, they
contribute indirectly to the inner belt composition through the Cosmic Ray Albedo Neutron
Decay (GRAND) mechanism. The cosmic ray bombardment of the atmosphere produces
neutrons that move in all directions. Although the average neutron lifetime is 14 min 38
s, during which a multi-MeV neutron either hits the Earth or escapes far away from the
magnetosphere, a small fraction of them decay to protons while still in the inner magnetosphere
and may become trapped in the inner radiation belt.

Below about 10 GeV GCR and ACR fluxes are modulated by the 11- and 22-year solar cycles,
so they provide quasi-stationary background radiation in the timescales of radiation belt ob-
servations. The arrivals of SCRs are, in turn, transient phenomena related to solar flares and
coronal mass ejections.
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The cosmic ray electrons also have galactic and solar components. Furthermore, the magneto-
sphere of Jupiter accelerates high-energy electrons escaping to the interplanetary space. These
Jovian electrons can be observed near the Earth at intervals of about 13 months when the
Earth and Jupiter are connected by the IMF.

Supernova shock waves are the most likely sources of the accelerated GCR electrons, whereas in
the acceleration of SCR and Jovian electrons also other mechanisms besides shock acceleration
are important, in particular inductive electric fields associated with magnetic reconnection in
solar flares and the Jovian magnetosphere.

The acceleration and identity of the observed very highest-energy cosmic rays up to about
3×1020 eV remain enigmatic. It should not be possible to observe protons with energies higher
than 6 × 1019 eV, known as the Greisen–Zatsepin–Kuzmin cutoff, unless they are accelerated
not too far from the observing site. Above the cutoff the interaction of protons with the blue-
shifted cosmic microwave background produces pions that carry away the excessive energy. It
is possible that the highest-energy particles are nuclei of heavier elements. This is, for the
time being, an open question.

18.3 Magnetospheric Dynamics

Strong solar wind forcing drives storms and more intermittent substorms in the magnetosphere.
They are primarily caused by various large-scale heliospheric structures such as interplanetary
counterparts of coronal mass ejections (CMEs/ICMEs)2, stream interaction regions (SIRs) of
slow and fast solar wind flows, and fast solar wind supporting Alfvénic fluctuations. ICMEs are
often preceded by interplanetary fast forward shocks and turbulent sheath regions between the
shock and the ejecta, which all create their distinct responses in the magnetosphere. Because
fast solar wind streams originate from coronal holes, which can persist over several solar
rotations, the slow and fast stream pattern repeats in 27-day intervals and SIRs are often
called co-rotating interaction regions (CIRs). However, stream interaction region is a physically
more descriptive term. SIRs may gradually evolve to become bounded by shocks, but fully
developed SIR shocks are only seldom observed sunward of the Earth’s orbit. The duration of
these large-scale heliospheric structures near the orbit of the Earth varies from a few hours to
days. On average, the passage of a sheath region past the Earth takes 8–9 h and the passage
of an ICME or SIR about 1 day. The fast streams typically influence the Earth’s environment
for several days.

2Both acronyms are commonly used. We call the ejection CME when it is observed in the Solar corona and
ICME further away in the interplanetary space.
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18.3.1 Magnetospheric Convection

Magnetospheric plasma is in a continuous large-scale advective motion, which in this context
is, somewhat inaccurately, called magnetospheric convection. The convection is most directly
observable in the polar ionosphere, where the plasma flows from the dayside across the polar
cap to the nightside and turns back to the dayside through the morning and evening sector
auroral region. The non-resistive ideal magnetohydrodynamics (MHD) is a fairly accurate
description of the large-scale plasma motion above the resistive ionosphere. In ideal MHD the
magnetic field lines are electric equipotentials and the electric field E and plasma velocity V
are related to each other through the simple relation

E = −V × B

Consequently, the observable convective motion, or alternatively the electric potential, in the
ionosphere can be mapped along the magnetic field lines to plasma motion in the tail lobes
and the plasma sheet. As the electric field in the tail plasma sheet points from dawn to dusk
and the magnetic field to the north, the convection brings plasma particles from the nightside
plasma sheet toward the Earth where a fraction of them become carriers of the ring current
and form the source population for the radiation belts.

In ideal MHD the plasma and the magnetic field lines are said to be frozen-in to each other.
This means that two plasma elements that are connected by a magnetic field line remain so
when plasma flows from one place to another. It is convenient to illustrate the motion with
moving field lines, although the magnetic field lines are not physical entities and their motion
is just a convenient metaphor. A more physical description is that the magnetic field evolves
in space and time such that the plasma elements maintain their magnetic connection.

The convection is sustained by solar wind energy input into the magnetosphere. The input is
weakest, but yet finite, when the interplanetary magnetic field (IMF) points toward the north,
and is enhanced during southward pointing IMF. If the magnetopause were fully closed, plasma
would circulate inside the magnetosphere so that the magnetic flux tubes crossing the polar cap
from dayside to nightside would reach to the outer boundary of the magnetosphere where some
type of viscous interaction with the anti-sunward solar wind flow would be needed to maintain
the circulation. The classical (collisional) viscosity on the magnetopause is vanishingly small,
but finite gyro radius effects and wave–particle interactions give rise to some level of anomalous
viscosity3. It is estimated to provide about 10% of the momentum transfer from the solar wind
to the magnetosphere.

The magnetosphere is, however, not fully closed. In the same year, when Axford and Hines
presented their viscous interaction model, Dungey (1961) explained the convection in terms of
magnetic reconnection. The Dungey cycle begins with a violation of the frozen-in condition
at the dayside magnetopause current sheet. A magnetic field line in the solar wind is cut and

3This is one of many examples of the questionable use of word “anomalous”. There is nothing anomalous in
wave–particle interactions or processes beyond fluid description.
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reconnected with a terrestrial field line. Reconnection is most efficient for oppositely directed
magnetic fields, as is the case in the dayside equatorial plane when the IMF points southward,
but remains finite under other orientations. Subsequent to the dayside reconnection the solar
wind flow drags the newly-connected field line to the nightside and the part of the field line that
is inside the magnetosphere becomes a tail lobe field line. Consequently, an increasing amount
of magnetic flux is piling up in the lobes. At some distance far in the tail the oppositely
directed field lines in the northern and southern lobes reconnect again across the cross-tail
current layer. At this point the ionospheric end of the field line has reached the auroral
oval near local midnight. Now the earthward outflow from the reconnection site in the tail
drags the newly-closed field line toward the Earth. The return flow cannot penetrate to the
plasmasphere corotating with the Earth and the convective flow must proceed via the dawn
and dusk sectors around the Earth to the dayside. In the ionosphere the flow returns toward
the dayside along the dawnside and duskside auroral oval. Once approaching the dayside
magnetopause, the magnetospheric plasma provides the inflow to the dayside reconnection
inside of the magnetopause. Note that the resistive ionosphere breaks the frozen-in condition of
ideal MHD and it is not reasonable to use the picture of moving field lines in the atmosphere.

The increase in the tail lobe magnetic flux and strengthening of plasma convection inside the
magnetosphere during southward IMF have a strong observational basis. Calculating the east-
west component of the motion-induced solar wind electric field (𝐸 = 𝑉 𝐵south) incident on
the magnetopause and estimating the corresponding potential drop over the magnetosphere,
some 10% of the solar wind electric field is estimated to “penetrate” into the magnetosphere
as the dawn-to-dusk directed convection electric field. Note that E = −V × B is not a causal
relationship indicating whether it is the electric field that drives the magnetospheric convection,
or convection that gives rise to the motion-induced electric field. The ultimate driver of the
circulation is the solar wind forcing on the magnetosphere.

The plasma circulation is not as smooth as the above discussion may suggest. If the recon-
nection rates at the dayside magnetopause and nightside current sheet balance each other, a
steady-state convection can, indeed, arise. This is, however, seldom the case since the changes
in the driving solar wind and in the magnetospheric response are faster than the magneto-
spheric circulation timescale of a few hours. Reconnection may cause significant erosion of the
dayside magnetospheric magnetic field placing the magnetopause closer to the Earth than a
simple pressure balance consideration would indicate. The changing magnetic flux in the tail
lobes causes expansion and contraction of the polar caps affecting the size and shape of the
auroral ovals.

Furthermore, the convection in the plasma sheet has been found to consist of intermittent
high-speed bursty bulk flows (BBF) with almost stagnant plasma in between (Angelopoulos et
al. 1992). It is noteworthy that while BBFs are more frequent during high auroral activity,
they also appear during auroral quiescence. BBFs have been estimated to be the primary
mechanism of earthward mass and energy transport in regions where they have been observed.
Thus the high-latitude convection observed in the ionosphere corresponds to an average of the
BBFs and slower background flows in the outer magnetosphere.
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18.3.2 Geomagnetic Storms

As illustrated in Figure 18.9, the storms are periods of most dynamic evolution of radiation
belts. They often, but not always, commence with a significant positive deviation in the
horizontal component of the magnetic field (H) measured on the ground (Figure 18.10), called
storm sudden commencement (SSC). An SSC is a signature of an ICME-driven shock and the
associated pressure pulse arriving at the Earth’s magnetopause. SSCs are also observed during
pressure pulses related to SIRs or to ICMEs that are not sufficiently fast to drive a shock in
the solar wind but still disturb and pile-up the solar wind ahead of them. If the solar wind
parameters are known, the pressure effect can be removed from the Dst index as given by
Equation 18.6.

Storms in the magnetosphere can also be driven by low-speed ICMEs and SIRs without a
significant pressure pulse. SIR-driven storms occur if the field fluctuations have sufficiently
long periods of strong enough southward magnetic field to sustain global convention electric
field to enhance the ring current. Thus there are storms without a clear SSC signature in the
Dst index. On the other hand, a shock wave hitting the magnetopause is not always followed
by a geomagnetic storm, in particular, if the IMF points dominantly toward the north during
the following solar wind structure. In such cases the positive deviation in the magnetograms
is called a sudden impulse (SI), after which the Dst index returns close to its background level
with small temporal variations only. If the dynamic pressure remains at enhanced level, Dst
can maintain positive deviation for some period.

After the SSC an initial phase of the storm begins. It is characterized by a positive deviation of
Dst, typically a few tens of nT. The initial phase is caused by a combination of predominantly
northward IMF and high dynamic pressure. The phase can have very different durations
depending on the type and structure of the solar wind driver. It can be very brief if the storm
is driven by an ICME with a southward magnetic field following immediately a sheath with
predominantly southward magnetic field. In such a case the storm main phase, which is a
period characterized by a rapid decrease of the H component of the equatorial magnetic field,
starts as soon as the energy transfer into the magnetosphere has become strong enough. If the
sheath has a predominantly northward IMF, the main phase will not begin until a southward
field of the ejecta enhances reconnection on the dayside magnetopause.

If there is no southward IMF either in the sheath or in the ICME, no regular global storm is
expected to take place. However, pressure pulses/shocks followed by northward IMF can cause
significant consequences to the radiation belt environment, as they can shake and compress
the magnetosphere strongly and trigger a sequence of substorms (Section 18.3.3).

During the storm main phase, the enhanced energy input from the solar wind leads to ener-
gization and increase of the number of ring current carriers in the inner magnetosphere, as
the enhanced magnetospheric convection transports an increasing amount of charged particles
from the tail to the ring current region. Here substorms, discussed below, have important
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Figure 18.9: Outer radiation belt response to solar and magnetospheric activity from the SAM-
PEX satellite and Van Allen Probes observations over a period of more than two
solar cycles. The uppermost panel shows 27-day window-averaged relativistic (>2
MeV) electron fluxes at geostationary orbit, the second panel the monthly mini-
mum of the Dst index, and the third panel the yearly window-averaged sunspot
number (black) and weekly window-averaged solar wind speed (red). The spec-
trogram in the lowest panel is a composite of 27-day window-averaged SAMPEX
observations of relativistic (�2 MeV) electron fluxes until September 2012 and Van
Allen Probes REPT observations of (�2.1 MeV) electron fluxes after 5 September
2012. The shift from SAMPEX to Van Allen Probes is visible in the change of
sensitivity to particle flux in the slot region (Li et al. 2017)

550



Figure 18.10: The horizontal component (H) of the magnetic field measured at four low-
latitude stations during a magnetic storm on 15 May 1997. An ICME-driven
solar wind shock hit the magnetosphere on 15 May at about 02 UT causing the
storm sudden commencement which is indicated by a sudden positive jump of
the H component at all stations (thick blue line). The main phase of the storm
started after 06 UT as indicated by the strong negative deviation in the H com-
ponent. The solid vertical lines give the UT midnight and the tick-marks on the
horizontal axis are given for each 3 h.
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contribution, as they inject fresh particles from the near-Earth tail. The ring current enhance-
ment is typically asymmetric because not all current carrying ions are on closed drift paths but
a significant fraction of them passes the Earth on the evening side and continue toward the
dayside magnetopause. This is illustrated in Figure 18.10 where the Honolulu and Kakioka
magnetometers show the steepest main phase development when these stations were in the
dusk side of the globe.

When energy input from the solar wind ceases, the energetic ring current ions are lost faster
than fresh ones are supplemented from the tail. The Dst index starts to return toward the
background level. This phase is called the recovery phase. It is usually much longer than the
main phase, because the dominating loss processes of the ring current carriers: charge exchange
with the low-energy neutral atoms of the Earth’s exosphere, wave–particle interactions, and
Coulomb collisions, are slower than the rapid increase of the current during the main phase.
As ICMEs last typically 1 day, storms driven by ICMEs trailed by a slow wind tend to have
relatively short recovery phases, whereas storms driven by SIRs and ICMEs followed by a fast
stream can have much longer recovery phases. This is because Alfvénic fluctuations, i.e., large-
amplitude MHD Alfvén waves, in fast streams interacting with the magnetospheric boundary
lead to triggering substorms, which inject particles to the inner magnetosphere. This can
keep the ring current populated with fresh particles up to or longer than a week. The ring
current development can also be more complex, often resulting in multi-step enhancement of
Dst or events where Dst does not recover to quiet-time level between relatively closely-spaced
intensifications. This typically occurs when both sheath and ICME ejecta carry southward
field or when the Earth is impacted by multiple interacting ICMEs.

18.3.3 Substorms

Magnetospheric substorm is a transient solar-wind energy storage and release process within
the magnetotail. It can inject fresh particles in the energy range from tens to a few hundred
keV from the tail plasma sheet into the inner magnetosphere. After being injected to the
quasi-dipolar magnetosphere, charged particles start to drift around the Earth, contributing
to the ring current and radiation belt populations. The injections have a twofold role: They
provide particles to be accelerated to high energies. Simultaneously the injected electrons and
protons drive waves that can lead to both acceleration and loss of radiation belt electrons and
ring current carriers.

Magnetospheric substorms result from piling of tail lobe magnetic flux in the near-to-mid-tail
region during enhanced convection. The details of the substorm cycle are still debated after
more than half a century of research. Observationally it is clear that substorms encompass
global configurational changes in the magnetosphere, namely the stretching of the near-Earth
nightside magnetic field and related thinning of the plasma sheet during the flux pile-up
(substorm growth phase), followed by a relatively rapid return of the near-Earth field toward
a dipolar shape (expansion phase), and a slower return to a quiet-time stretched configuration
associated with thickening of the plasma sheet (recovery phase). A substorm cycle typically
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lasts 2–3 h. The strongest activity occurs following the onset of the expansion phase: The
cross-tail current in the near-Earth tail disrupts and couples to the polar region ionospheric
currents through magnetic field-aligned currents forming the so-called substorm current wedge.
This leads to intense precipitation of magnetospheric particles causing the most fascinating
auroral displays. During geomagnetic storms the substorm cycle may not be equally well-
defined. For example, a new growth phase may begin and the onset of the next expansion may
follow soon after the previous expansion phase.

A widely used, though not the only, description of the substorm cycle is the so-called near-
Earth neutral line model (NENL model, for a review, see Baker et al. (1996)). In the model
the current sheet is pinched off by a new magnetic reconnection neutral line once enough flux
has piled up in the tail. The new neutral line forms somewhere at distances of 8–30 𝑅𝐸 from
the Earth, which is much closer to the Earth than the far-tail neutral line of the Dungey
cycle. Earthward of the neutral line plasma is pushed rapidly toward the Earth. Tailward of
the neutral line plasma flows tailward, and together with the far-tail neutral line, a tailward
moving structure called plasmoid forms. Sometimes recurrent substorm onsets can create
a chain of plasmoids. While it is common to illustrate the plasmoid formation using two-
dimensional cartoons in the noon–midnight meridional plane, the three-dimensional evolution
of the substorm process in the magnetotail is far more complex. In reality a plasmoid is a
magnetic flux rope whose two-dimensional cut looks like a closed loop of magnetic field around
a magnetic null point.

As pointed out in Section 18.3.2, the plasma flow in the central plasma sheet is not quite
smooth and a significant fraction of energy and mass transport takes place as bursty bulk
flows (BBFs). The BBFs are thought to be associated with localized reconnection events in
the plasma sheet roughly at the same distances from the Earth as the reconnection line of the
NENL model. They create small flux tubes called dipolarizing flux bundles (DFBs). The name
derives from their enhanced northward magnetic field component 𝐵𝑧 corresponding to a more
dipole-like state of the geomagnetic field compared to a more stretched configuration. Once
created, DFBs surge toward the Earth due to the force caused by magnetic curvature tension
in the fluid picture. They are preceded by sharp increases of 𝐵𝑧 called dipolarization fronts.
DFBs are also associated with large azimuthal electric fields, up to several mV m−1, which are
capable of accelerating charged particles to high energies. Whether the braking of the bursty
bulk flows and coalescence of dipolarization fronts closer to the Earth cause the formation of
the substorm current wedge, or not, is a controversial issue.

The NENL model has been challenged by the common observation that the auroral substorm
activation starts at the most equatorward arc and expands thereafter poleward. Another model
proposed is the current disruption (CD) model, which is built upon plasma instabilities. In the
CD model, a three-dimensional plasma instability grows first near the Earth in the transition
region between the stretched tail and the dipolar inner magnetosphere. This instability drives
steepening waves, leading to current disruption as the tail current cannot be sustained within
a strongly oscillating geometry. The current disruption then launches tailward-propagating
waves, which later trigger reconnection, plasmoid and fast flows. An easy way to think about
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these two models is that NENL is “outside-in”, while CD is “inside-out”. As both the current
disruption and the plasma release from reconnection occur in only a few minutes, albeit roughly
100,000 km apart, it is challenging to uncover why and how the current disruption and plasmoid
ejection take place. Setting aside the debate between competing explanations, what is essential
is that the substorm expansions dipolarize the tail magnetic field configuration having been
stretched during the growth phase and inject fresh particles into the inner magnetosphere. The
particle injections can be observed as dispersionless, meaning that injected particles arrive to
the observing spacecraft simultaneously at all energies, or dispersive when particles of higher
energies arrive before those of lower energies. Because the dispersion arises from energy-
dependent gradient and curvature drifts of the particles, a dispersionless injection suggests
that the acceleration occurs relatively close to the observing spacecraft, whereas dispersive
arrival indicates acceleration further away from the observation when the particle distribution
has had time to develop dispersion due to energy-dependent drift motion.

Dispersionless substorm injections are typically observed close to the midnight sector at geo-
stationary orbit (6.6 𝑅𝐸) and beyond, but have been found all the way down to about 4
𝑅𝐸 (Friedel, Korth, and Kremser 1996). The injection sites move earthward as the substorm
progresses and are also controlled by geomagnetic activity, although the extent of the disper-
sionless region is unclear, both in local time and radial directions. Neither have the details of
acceleration of the injected particles been fully resolved. It has been suggested to be related
both to betatron and Fermi acceleration associated with earthward moving dipolarization
fronts. Another important aspect of dipolarization fronts for radiation belts is their brak-
ing close to Earth, which can launch magnetosonic waves that can effectively interact with
radiation belt electrons.

18.4 ULF Waves

Ultra-low frequency (ULF) waves refer to waves within frequency range [0.001, 10] Hz. The
name does not tell us anything about their physical origin, but simply observational fact.
At Earth’s magnetosphere, this frequency range overlaps largely with the MHD waves. This
is the reason why early pioneers in space physics relied on MHD theory for large spatial
and temporal scales to explain the physics behind these waves, albeit some deviations and
deficiencies which require more refined models such as the Vlasov description. ULF waves
permeate the near-Earth plasma environment and play an important role in its dynamics,
for example in transferring energy from the solar wind to the magnetosphere or accelerating
electrons in the Earth’s radiation belts.

ULF waves were originally called micropulsations or magnetic pulsations since they were first
observed by ground magnetometers. ULF pulsations are classified into two types: pulsa-
tions continuous (Pc) and pulsations irregular (Pi) with several subclasses (Pc1–5 and Pi1–2)
according to their frequencies and durations. The division is based on their physical and
morphological properties, and the boundaries are not strict.
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Notation Period Range [s] Property
Pc1 0.2 - 5 EMIC
Pc2 5 - 10 EMIC, Mirror
Pc3 10 - 45 Foreshock, FLR, Mirror
Pc4 45 - 150 FLR
Pc5 150 - 600 SW, FLR

Pi1 1 - 40
Pi2 40 - 150

With respect to polarization, field line resonant ULF waves can be categorized into three
modes: compressional (Δ𝐵∥, Δ𝐸𝜙)4, poloidal (Δ𝐵𝑟, Δ𝐸𝜙), and toroidal (Δ𝐵𝜙, Δ𝐸𝑟). Here,
𝐵𝑟 (𝐸𝑟), 𝐵∥, and 𝐵𝜙 (𝐸𝜙) are the radial, parallel (or compressional), and azimuthal compo-
nents in the local magnetic field system, respectively. Referring to the basic MHD theory,
the compressional modes are fast modes, whereas the poloidal and toriodal modes are Alfvén
modes. The perturbed EM fields are related by B1 = k

𝜔 × E1. Think of a closed field line
near the equatorial plane inside the magnetosphere: if the wave vector k is along the field line,
i.e. k = (0, 0, 𝑘𝑧), then there will be two cases for the EM field: poloidal where E1 in ̂𝜙, B1 in
̂𝑟 and toroidal where E1 in ̂𝑟, B1 in ̂𝜙. If the wave vector k is perpendicular to the field line,

i.e. k = (𝑘𝑥, 0, 0), since there is no 𝐸∥ in MHD, we only have one option E1 in ̂𝜙 and B1 in ̂𝑧.
A phase shift is allowed, and actually in real observations (e.g. THEMIS) it is rare that you
can find B and E changing in-phase. These classifications are summarised in Table 12.1.

18.4.1 Pc1 & Pc2

• Usually observed in the noon-afternoon MLT sector, easily detectable when following
sudden impulses (SI) produced by sudden changes in the pressure of the solar wind
plasma.

• A sudden compression of the magnetosphere by increased solar wind pressure causes
maximum distortion of the quiet magnetospheric plasma near noon at high latitudes. It
is on the fieldlines which thread this disturbed plasma that one is most likely to witness
ULF emissions.

• Conversely, as suggested by Hirasawa (1981) sudden rarefactions of the magnetosphere
would be expected to quench ULF wave growth by reducing the anisotropy and 𝛽 of the
plasma. (INTERESTING ONE, SHOULD CHECK AT SOMETIME!)

• Delay of 1-3 mins between the occurance of SI and the onset of the ULF emission
(ground-based magnetometers)[^growth_rate]

4In the literature sometimes the compressional mode is called the compressional poloidal mode, and the poloidal
mode refers to both the compressional and Alfvénic poloidal mode.

555



• Drive the trapped proton radiation, greatly enhanced eV energy range protons along the
B field, and energization of keV range protons caused by betatron acceleration (Arnoldy
et al. 2005).

At Earth, Electromagnetic ion cyclotron (EMIC) waves are typically observed in Pc1 and Pc2
range. In the outer radiation belt, the frequency typically ranges between 0.1 to 5 Hz. The
preferential region of occurrence of EMIC waves is known to be the afternoon magnetic local
time (MLT) sector from �12:00 to �18:00 MLT in the region near the plasmapause and the
plasmaspheric plume.

EMIC waves are normally excited by a temperature anisotropic (𝑇⟂ > 𝑇∥) distribution of hot
(∼ 1 − 100 keV) ions. They are preferentially generated in regions where hot anisotropic ions
and cold dense plasma populations spatially overlap (Figure 18.11).

Figure 18.11: Schematic sketch of chorus/EMIC wave excitation regions, denoted by dots, on
the noon-midnight meridian plane.

The excited EMIC waves can result in the energization and loss of magnetospheric particles.
Through resonant wave-particle interactions, EMIC waves are able to accelerate cold ions into
the thermal (∼ 1 eV−1 keV) energy range in the direction perpendicular to the ambient mag-
netic field, and cause the pitch angle scattering loss of hot ions in the ring current. Particularly,
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EMIC waves can also resonantly interact with relativistic electrons and result in pitch angle
scattering of the electrons.

Newly excited EMIC waves are often transverse and left-hand polarized, consistent with the
direction of ion gyration in the magnetic field (well, no surprise). After being generated, EMIC
waves can be guided along the magnetic field lines and propagate from the source region to
other magnetic latitudes. Spacecraft measurements have shown that EMIC wave propagation
is almost exclusively away from the equator at latitudes greater than about 11∘, with minimal
reflection at the ionosphere.

Some waves may even experience a polarization reversal where the wave frequency 𝑓 is equal
to the crossover frequency 𝑓𝑐𝑜 during their higher-latitude propagation and then be reflected
where 𝑓 equals the bi-ion hybrid frequency 𝑓𝑏𝑖 at an even higher latitude. As a result, their
polarization is crossed over from a left-hand to a right-hand or linear mode. These waves
could undergo multiple equatorial crossings along magnetic flux tubes without a large radial
or azimuthal drift. Because of their successive passes through the equatorial wave growth
region, the waves are expected to be drastically amplified by continuing to obtain energy from
the energetic protons. Nevertheless, Horne and Thorne argued that in the absence of density
gradients, significant wave amplifications can only occur on the first equatorial pass because
wave normal angles become large after the initial pass; wave damping by thermal heavy ions
also makes it impossible for the same EMIC wave packet to bounce through its source region
multiple times.

Mirror Instability & Ion Cyclotron Instability

Already, early observations in the 1970s have shown that the magnetosheath is populated by
intense magnetic field fluctuations at time sclaes from 1 s to 10 s of seconds. Later research
based primarily on data from ISEE and AMPTE satellites has shown that the mirror mode
waves (Section 10.2) and kinetic Alfvén ion cyclotron (AIC) waves (i.e. EMIC waves) constitute
a large majority of magnetosheath ULF waves:

1. AIC/EMIC are found predominantly near the bow shock and in the plasma depletion
layer5 (Song, Russell, and Gary 1994; Hubert et al. 1998).

2. Mirror mode waves dominate in the central and downstream magnetosheath but can
occur immediately downstream of quasi-perpendicular shocks too. (Hubert et al. 1989)

3. ULF waves are generally stronger in the dayside magnetosheath.
4. More frequency EMIC wave occurrence during quasi-parallel shocks.

The ion cyclotron instability responsible for the generation of AIC waves often grows under
the same conditions as the mirror instability and in the linear approximation should dominate
in lower 𝛽 plasmas. The mirror instability, on the other hand, should dominate in high ion 𝛽
plasmas (Lacombe and Belmont 1995). Since the initial confirmation of the existence of mirror
modes in the Earth’s magnetosheath, they have been observed throughout the heliosphere. A

5The plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma
density and higher magnetic field compared to the corresponding upstream magnetosheath value.
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long-standing puzzle in space plasmas is the fact that mirror modes are often the dominant
coherent magnetic structures even for low 𝛽 plasmas.

People tried to find an answer to this puzzle. A bunch of studies in late 1980s and early 1990s
(e.g. [Gary+]) argued that the presence of He++ tends to increase the EMIC threshold while
the mirror mode growth is less affected by the presence of He++ ions. Yoshiharu Omura and
his student Shoji presented another possibility in 2009 with hybrid PIC simulations that even
though EMIC modes have higher linear growth rate, they saturates an an earlier stage than
the mirror modes, especially in higher dimensions (by comparing 2D and 3D results), so that
mirror mode waves can gain more free energy from temperature anisotropy.

18.4.2 Pc3 & Pc4

As already noted above, in the beginning when people proposed the ULF wave Pc divisions,
many underlying physics are still unclear. The boundaries are chosen based on the observation
data back then and does not necessarily contain any physical meaning.

ULF waves in the Pc3 range, with periods between 10-45 s, are a common feature of the
dayside magnetosphere, where they are frequently observed both by spacecraft and ground-
based observatories. They are thought to originate from the ion foreshock, extending upstream
of the Earth’s quasi-parallel bow shock (the angle between IMF and shock normal 𝜃𝐵𝑛 ≤ 45∘).
There, ULF waves in the Pc3 frequency range are produced by ion beam instabilities, due to
the interaction of shock-reflected suprathermal ions with the incoming solar wind.

For the foreshock-related Pc3/4 waves, we have the following picture. After foreshock waves
are generated, they propagate through the magnetosheath (with very few observations) and
reach the magnetopause. They enter the dayside magnetopause and travel antisunward into
the magnetosphere as compressional Pc3 fluctuations, transporting the wave energy towards
the nightside. In the inner magnetosphere, they may couple to Alfvénic field line resonances
(FLRs), where their frequency matches the eigenmodes of the Earth’s magnetic field lines. Pc3
FLRs was observed at low latitudes and Pc4 at midlatitudes [Yumoto+, 1985]. The amplitude
of the compressional mode decays when moving further into the magnetosphere, yet they can
sometimes be observed all the way to the midnight sector. Compressional Pc3 wave power
associated with transmitted foreshock waves is confined near the equator. Statistical study
also shows that equatorial Pc3 wave power is stronger in the prenoon or noon sector (under
various geomagnetic activity levels), consistent with the foreshock extending upstream of the
dawn flank bow shock for a Parker-spiral IMF orientation. However, contrary to Pc5 pulsations
(150-600 s), Pc3 wave activity does not show a clear correlation with the level of geomagnetic
disturbances.

Also, note that not all Pc3 waves are related to foreshock waves, thus we may have different
survey results about the distribution of Pc3 waves. This hints the fact that we are far from
understanding the whole physical mechanism of wave generation.
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Figure 18.12: Mirror mode waves vs. EMIC waves in the magnetosphere.
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There are several mechanisms by which Pc3-4 ULF waves may propagate to high latitudes:

• Harmonics of fundamental mode Pc5 resonances. Such harmonics would be expected to
exhibit the same form of amplitude and phase properties that characterize FLRs and
should occur at the same time as the fundamental.

• Cavity modes (Chapter 12).
• Fast mode waves propagate without mode conversion through the magnetosphere directly

to the ionosphere. Such waves are subject to refraction and diffraction on their passage
through the magnetosphere and may be directed to high latitudes via Fermat’s Principle
(???).

• Transistor model that invokes beams of precipitating electrons [Engebretson+ 1991] (???).
The transistor model requires no wave mode coupling or wave propagation across field
lines, rather the modulated precipitation of electrons in response to pressure fluctuations
in the magnetosheath. The latter are attributed to the upstream ion-cyclotron resonance
mechanism. The modulated electron beams convey wave information from the outer
magnetosphere region containing the parent population of trapped electrons, to the near-
cusp ionosphere. The resultant periodic precipitation would modulate the ionospheric
conductivity and hence ionospheric currents equatorward of the cusp. Overhead field
lines could then be excited by these modulated currents equatorward of the cusp, with
the same frequency as the modulated electrons. Engebretson likened this behavior to
that of a transistor, where a small base current modulates a larger flow from collector to
emitter. These ULF waves are characterized by noise-like appearance and low coherence
lengths.

18.4.3 Pc5

We learned from ground, ionospheric, and space observations about the existence of only one
or at least a few resonant field line vibrations (i.e. eigenoscillations) in the Pc5 range in the
magnetosphere. As the Alfvén velocity is varying in the radial direction and as most sources
of magnetospheric hydromagnetic waves are broadband sources, the resonance condition can
be matched at an infinite number of geomagnetic field lines. Thus, every field line should be
in resonance for a broad enough energy source. Therefore the observational fact of “magic”
frequencies requires a magnetospheric frequency selection rule. (Kivelson and Southwood
1985) suggested that perturbations due to a broadband source at, e.g., the magnetopause first
couple to the discrete eigenoscillations of global compressional eigenmodes. These narrow band
compressional modes then couple to Alfvénic perturbations due to the field line resonance
mechanism. The global modes thus select the frequency components participating in the
resonant coupling. An alternative way of selection has been proposed by [Fujita+, 1996],
who demonstrated that the K-H instability at the surface of a non-uniform magnetospheric
plasma introduces dispersive properties of the unstable waves, which then gives rise to a
narrower source spectrum. Thus, the field line resonance concept as outlined in Chapter 12
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is able to explain the major features of observed resonant ULF pulsations in the terrestrial
magnetosphere.

18.4.4 Sinks

According to (D. Southwood and Hughes 1983), possible sinks of ULF wave energy include at
least three mechanisms:

• damping through ionospheric Joule heating,
• generalized Landau damping, and
• mode coupling.

By comparing the effects of Landau damping, Joule heating, and waveguide propagation,
later researchers found from case studies that Joule heating and magnetospheric waveguide
propagation are insufficient to account for the observed decay rate of ULF wave energy; Landau
damping of the wave due to drift-bounce resonance with energetic ions was probably stronger,
and more efficient when heavy ions such as 𝑂+ are present.

18.4.5 Interaction with Energetic Particles

18.4.5.1 Resonance

A widely used theory of energetic particle modulation by ULF transverse waves was developed
by (D. J. Southwood and Kivelson 1981, 1981). In their theory, particles experience the wave-
carried electric field during their drift-bounce motion and their energy is accordingly changed.
The drift-bounce resonance of energetic particles is determined from

Ω−𝑚𝜔𝑑 = 𝑁𝜔𝑏 (18.7)

where 𝑁 is an integer (normally ±1,±2 or 0), 𝑚 represents the azimuthal mode number of the
ULF wave, and Ω,𝜔𝑑 and 𝜔𝑏 are the wave frequency and particle drift and bouce frequencies,
respectively. 𝑁 = 0 is known as the drift resonance whereas 𝑁 ≠ 1 is the drift-bounce
resonance. Because of the known energy dependence of 𝜔𝑑 and 𝜔𝑏, the resonance energy can
be calculated if the wave properties (Ω and 𝑚) are known. Observations from MMS and
Cluster can be found in the review paper by Zong, Rankin, and Zhou (2017).

For particles of charge 𝑞 experiencing drift motion in a ULF wave, the kinetic energy 𝑊
changes at the following rate:

d𝑊A
d𝑡 = 𝑞E ⋅ vd (18.8)

where subscript A signifies an average over many gyration periods, E is the wave associated
electric field, and vd is the magnetic gradient and curvature drift velocity. For an equatorially
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mirroring particle (vanishing curvature drift) in Earth’s magnetic dipole field, the drift velocity
vd can be approximated in the nonrelativistic limit by

vd = − 3𝐿2𝑊
𝑞𝐵E𝑅E

̂𝑒𝜙 (18.9)

where ̂𝑒𝜙 is defined eastward, 𝑅E is Earth’s radius, 𝐿 is the L-shell parameter (radial distance
in 𝑅E of the equatorial crossing point a field line), and 𝐵E is the equatorial magnetic field on
Earth’s surface. ULF waves propagate in the azimuthal direction with the wave-associated
electric field given by

E = 𝐸𝜙 exp 𝑖(𝑚𝜙 − 𝜔𝑡) ̂𝑒𝜙 (18.10)

where 𝜙 is the magnetic longitude (increasing eastward), 𝑚 is the azimuthal wave number,
and 𝜔 is the wave angular frequency. From (Equation 18.8, Equation 18.9, Equation 18.10)
the average rate of change of the particle energy is thus given by the following equation:

d𝑊A
d𝑡 = −3𝐿2𝑊

𝐵E𝑅E
⋅ 𝐸𝜙 exp 𝑖(𝑚𝜙 − 𝜔𝑡) (18.11)

which should be integrated along the particle drift orbit to 𝑡 = −∞ to achieve an energy gain
𝛿𝑊A from waves. Here, the particle’s drift orbit is assumed to be unperturbed (despite the
energy change of the particle from the waves) with the angular drift frequency 𝜔d given by

𝜔d = d𝜙
d𝑡 = −3𝐿2𝑊

𝐵E𝑅2
E

(18.12)

An integration of Equation 18.11 backward in time along the particle’s drift orbit Equa-
tion 18.12 leaves a result that depends on the initial condition assuming the amplitude of
the sinusoidal waves remains constant. To circumvent this problem, Southwood and Kivelson
(1981) assumed the wave angular frequency 𝜔 is complex with a small, positive imaginary part
ℑ(𝜔) that represents a gradually growing wave signal. This assumption enables the particle to
see a sinusoid for a finite interaction time, which on integration of Equation 18.11 yields an
averaged particle energy gain (???)

𝛿𝑊A = −𝑖 ⋅ 3𝐿
2𝑊

𝐵E𝑅E

𝐸𝜙 exp 𝑖(𝑚𝜙 − 𝜔𝑡)
𝜔 −𝑚𝜔d

(18.13)

Drift resonance happens when the particle drifts at the same azimuthal speed as the wave
phase velocity, which indicates that 𝑚𝜔d = ℜ(𝜔) so that the denominator of Equation 18.13
becomes ℑ(𝜔) × 𝑖. This small imaginary term suggests that for resonant particles, 𝛿𝑊A must
oscillate at a large amplitude in antiphase with the wave electric field. For particles with lower
or higher energies (smaller or larger 𝜔d) the denominator is dominated by its real part and
the corresponding 𝛿𝑊A oscillations have much smaller amplitudes and are ±90∘ out-of-phase
with the wave electric field. In other words the amplitude 𝛿𝑊A of energy gain must shift in
phase by 180∘ as the resonance is crossed from low energy to high energy.
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An actual particle detector cannot measure 𝛿𝑊A directly, thus Southwood and Kivelson (1981)
discussed the associated variations of particle fluxes and phase space densities (PSDs) that
theoretical results can be compared directly with observational data. By assuming a negligible
gradient of pre-existing particle PSDs in the azimuthal direction, the wave-produced PSD
variations, 𝛿𝑓A, can be written as

𝛿𝑓A = 𝛿𝑊A [ 𝐿
3𝑊

𝜕𝑓(𝑊,𝐿)
𝜕𝐿 − 𝜕𝑓(𝑊,𝐿)

𝜕𝑊 ]

which shows that 𝛿𝑓A is proportional to 𝛿𝑊A provided there is a pre-existing finite PSD
gradient in energy and/or space. Here, the importance of spatial gradients in producing
PSD oscillations is emphasized, which is caused by back-and-forth convection of particles as a
response to the wave electric field. The PSD variations can be alternatively written as

𝛿𝑓A = −𝛿𝑊A
𝜕𝑓(𝑊, 𝜇)

𝜕𝑊 = 𝛿𝑊A
𝐿
3𝑊

𝜕𝑓(𝐿, 𝜇)
𝜕𝐿

where 𝜇 is assumed to be constant for adiabatic behavior of particles interacting with ULF
waves. The linear dependence of 𝛿𝑓A on 𝛿𝑊A suggests that the phase shift of particle PSDs
across theresonant energy should also be 180∘. Such a phase shift is thus treated as a charac-
teristic signature of ULF wave-particle drift resonance.

18.4.5.2 Particle trapping by compressional waves

The mirror force produced by the magnetic field-aligned component of compressional mode
ULF waves can also modulate energetic particle fluxes. Observational evidence from Van Allen
Probes can be found in the citations of Zong, Rankin, and Zhou (2017).

18.4.5.3 Fast acceleration of charged particles by ULF waves

The theory of drift-bounce resonance developed by Southwood and Kivelson (1981, 1981) is
valid for axisymmetric magnetic fields. In this case, particles experience the wave electric field
along their drift and bounce motion and suffer net energy gain or loss when the resonance
condition Equation 18.7 is satisfied, usually for 𝑁 = 0,±1,±2. Parallel electric fields are
neglected as they are usually small in collisionless plasma6. The rate of energy change of a
charged particle interacting with a ULF wave is expressed by

d𝑊
d𝑡 = 𝜇

𝜕𝐵∥
𝜕𝑡 + 𝑞E ⋅ vd

where E,vd and 𝜇 denote the wave electric field, particle drift velocity, and magnetic moment,
respectively. The first and second terms on the right-hand-side of the equation represent
acceleration due to the wave magnetic and electric fields, respectively.

6On the kinetic scale, this is not true!
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In an asymmetric compressed dipole field, a particle can resonant with low-m global toroidal
waves when the wave frequency satisfies 𝜔 = (𝑚±1)𝜔𝑑. For example, Elkington, Hudson, and
Chan (1999) showed that in a magnetic topology with noon-midnight asymmetry electrons
can gain energy from toroidal ULF waves; in other words, toroidal ULF waves can accelerate
energetic particles in he radiation belt region under strong solar wind pressure. However,
in the inner magnetosphere noon-midnight asymmetry becomes insignificant on low L-shells.
Acceleration of energetic electrons by toroidal mode ULF waves may, therefore, be limited to
the outer magnetosphere, while in the inner magnetosphere the poloidal mode is more likely
responsible. However, in the dayside outer magnetosphere the poloidal electric field of fast
mode wave may also accelerate energetic electrons.

18.4.6 EMIC Wave Events

(Usanova and Mann 2016)

EMIC waves are believed to be important for influencing the dynamics of energetic particles
in the inner magnetosphere, especially in relation to ring current and radiation belt dynamics.
In relation to the ring current, both the dynamical evolution of ion distributions along their
drift paths and effects from the solar wind can result in EMIC wave generation from unstable
ion distributions. EMIC waves often grow as a result of perpendicular temperature anisotropy,
with the ion dynamics and energy and pitch angle distributions in the ring current being modi-
fied significantly by the growth of the EMIC instability. EMIC waves are also hypothesized to
influence higher energy electrons in the Van Allen belts, through a Doppler-shifted cyclotron
resonance, including stimulating potential scattering loss into the atmosphere.

The prevalence of dayside EMIC activity during intervals of enhanced solar wind dynamic
pressure can be explained by three possible mechanisms, which can lead to the generation of
anisotropic proton distributions.

18.4.6.1 Bursty EMIC wave events

Short-term magnetospheric compressions can increase the 𝐴 = 𝑇⟂/𝑇∥ ratio through adiabatic
heating and can generate EMIC wave bursts during periods within which the magnetic field
strength is increasing (i.e. 𝑑𝐵/𝑑𝑡 > 0). In a dipole field, the resulting anisotropy is generated
if the magnetic field magnitude changes from the initial value 𝐵0 to the final value 𝐵,

𝐴 = ( 𝐵
𝐵0

)
1/3

(𝐴0 + 1) − 1

where 𝐴0 is the initial anisotropy (Olson and Lee 1983). I did not read carefully about the
original paper, but I feel like this is related to Equation 10.22 and betatron acceleration.
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18.4.6.2 Continuous EMIC waves events

Continuous EMIC waves events may be seen to last for several hours in ground-based magne-
tometer data, often occurring during intervals while the magnetosphere remains compressed
in response to a continuous period of enhanced solar wind dynamic pressure. There are two
proposed physical mechanisms which may result in the generation of this type of long-lasting
and continuous EMIC wave event.

Figure 18.13: Schematic illustrating mechanisms for continuous EMIC wave event: (a) drift
shell splitting and (b) Shabansky orbit [adapted from Usanova 2010b]. (a) Drift
path of 30∘ (orange) and 90∘ (red) pitch angle protons from the nightside to the
dayside magnetosphere; a schematic of the descreasing logarithm of proton flux
(green) as a function of radial distance from the Earth is also shown. (b) Trajec-
tory of a proton whose bounce trajectory changes from trapping between mirror
points spanning the equatorial plane to trapping between two off-equatorial min-
imum B regions, resulting in trajectories which do not cross the equatorial plane
in the dayside magnetosphere (also known as Shabansky orbits).

• Drift-Shell Splitting

Particles with different pitch-angles follow different drift paths, such that particles from dif-
ferent spatial locations can be brought together to create an unstable distribution. While in
a symmetric dipolar magnetic field all particles drift around the Earth at the same (initial)
equatorial distance, in a compressed magnetic field particles with near 90∘ pitch angles follow
lines of constant magnetic field (conserving magnetic moment), and particles with smaller
pitch-angles move along more circular orbits. This is known as drift-shell splitting, which is
illustrated by the schematic in Figure 18.13 a.
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Figure 18.13 a shows example drift paths of particles with pitch angles of 30∘ and 90∘ as they
drift from the nightside to the dayside in the magnetosphere. The drift paths of these two
particles intersect at the dayside subsolar magnetosphere, while the initial starting point of
their trajectories was located in the nightside magnetosphere in two different locations: for
a 30∘ pitch angle particle further away from the Earth and for a 90∘ pitch angle particle
closer to the Earth. In a situation where the flux of particles decreases with radial distance
from the Earth as shown in Figure 18.13 a the 90∘ pitch-angle particles drift closer to the
Earth, as compared to smaller pitch-angle particles, will have a larger flux. This leads to
an enhancement of the perpendicular temperature with respect to the parallel temperature
and makes the distribution temperature anisotropic (with 𝑇⟂ > 𝑇∥), and thereby potentially
unstable to EMIC waves. The drift trajectory splitting is more prominent for particles at
higher L-shells and for higher degrees of compression. Therefore, for the inner magnetosphere
this effect may be important only during intervals of highly increased solar wind dynamic
pressure.

• Shabansky Orbit

The outer L-shells of the compressed dayside magnetosphere can have two off-equatorial min-
ima in magnetic field strength, which are more pronounced during strong compressions, and
can be regarded as a compression-related feature of the reconfigured dayside magnetospheric
magnetic field. In such a field topology, particles with 90∘ pitch angles continue to drift through
the equator, but particles with lower pitch angles can mirror at high latitudes without passing
through the equator, executing so-called “Shabansky” orbits [Shabansky, 1971]. As particles
reach the 𝜕𝐵/𝜕𝑠 < 0 region near the dayside magnetopause, where 𝑆 is distance along the
magnetic field, they escape off-equator and execute repeated bounces and are trapped at mid-
latitudes. This is demonstrated in Figure 18.13 b which shows the full trajectory of a proton
drifting from the nightside to the dayside magnetosphere. These so-called Shabansky regions
can lead to the formation of enhanced temperature anisotropy in two different locations: in
the equatorial plane, where there is the absence of the lower pitch angle particles; and second,
in the trapped off-equatorial regions where particles’ pitch angle undergoes a net shift towards
a higher pitch angle. (???) As a result, the ion perpendicular temperature increases relative
to the parallel temperature, with the resulting temperature anisotropy potentially giving rise
to the growth of EMIC waves, especially in the off- equatorial regions. Similar to drift shell
splitting, when magnetosphere is strongly compressed by the solar wind the regions supporting
Shabansky orbits may move further inward, reaching locations inside geosynchronous orbit, to
become an important source of dayside temperature anisotropy in the inner magnetosphere.

18.5 Bow Shock

Bow shock is the shock (Chapter 17) resulted from the interaction of supersonic, super-Alfvénic
solar wind with the magnetosphere of an astrophysical object.
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18.5.1 Foreshock

The word “foreshock” is borrowed from geophysics for an earthquake that occurs before a
larger seismic event (the “mainshock”) and is related to it in both time and space. In space
physics, foreshock is the region upstream from the bow shock that is magnetically connected to
the bow shock and contains both solar wind plasma and also charged particles backstreaming
from the bow shock. It is typically associated with quasi-parallel shocks, as it is much easier
for charged particles to move freely along the normal direction of the shock if it is aligned
with B. If their speed relative to the ambient plasma is fast enough, plasma shocks without
Coulomb collisions cannot dissipate all the incoming plasmas; some of them have to “return”.
The counter-streaming between the foreshock plasma and the incoming plasma is very unstable
and thus excites many types of waves.

Figure 18.14 demonstrate the basic geometry of Earth’s foreshock. The slanted straight lines
are the magnetic field embedded in the solar wind that is flowing downward in the figure and
encounters the curved bow shock (green curve). The angle between the magnetic field and the
normal direction at the shock is denoted as 𝜃Bn. The portion of the bow shock where 𝜃Bn > 45∘
(i.e., the region to the left of the Earth in the figure) is termed the “quasi-perpendicular shock”,
while the region to the right, 𝜃Bn < 45∘, is the “quasi-parallel shock” that extends all the way
down to 𝜃Bn ∼ 0∘ - the “parallel shock”. At the shock near 𝜃Bn ∼ 90∘, some of the incoming
solar wind electrons, which have small gyroradii, are reflected and propagate back upstream
creating the region known as the “electron foreshock”. Some of the solar wind ions impinging
on the bow shock near 𝜃Bn ∼ 90∘ are also reflected, but because they have larger gyroradii,
quickly gyrate into the downstream. At somewhat smaller 𝜃Bn, but still associated with the
quasi-perpendicular bow shock, a fraction of the solar wind ions are also reflected and travel
back upstream along the magnetic field as well as being convected in the solar wind (V𝐸×𝐵 in
the figure) to form the quasi-perpendicular portion of the ion foreshock. Farther to the right
of the ion foreshock boundary shown in Figure 18.14, ions originating at the shock at even
smaller 𝜃Bn, e.g., on the quasi-parallel portion of the shock, also propagate upstream (dots
in the figure), generating larger amplitude waves in the magnetic field (blue wavy lines), to
form the quasi-parallel portion of the ion foreshock. These backstreaming ions may have been
from the solar wind and reflected at the shock or could have leaked out of the magnetosheath.
This process extends deep in the foreshock to 𝜃Bn ∼ 0∘, where the shock normal is essentially
parallel to the solar wind magnetic field.

The dominant wave mode in the ion foreshock is produced by the ion-ion beam right-hand
instability and has a typical period around 30 s in Earth’s foreshock. Their exact period
however varies significantly depending on the solar wind conditions, in particular the IMF
strength, between 10 and 80 s. One easy way to think about this is by remembering the
gyrofrequency 𝜔𝑐 = 𝑞𝐵/𝑚: the beam instabilities are associated with the cyclotron resonance,
and the gyrofrequency is directly related to 𝐵. Their wavelength is of the order of 1RE and they
are left-hand polarized in the spacecraft frame. Their intrinsic polarization is however right-
handed, indicative of a fast mode. The polarization reversal is due to the waves attempting
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Figure 18.14: Foreshock configuration showing incident solar wind magnetic field (blue lines),
impinging on the bow shock (green curved line), producing backstreaming ions
(yellow dots), leaked magnetosheath ions (red dots), and upstream waves (wavy
blue lines). The ion foreshock boundary is shown as the red line (Wilson III
2016). The foreshock boundary is the reflected ion trajectory tangent to the
shock surface, taking into account the combination of a field-aligned motion and
the solar wind convection electric field.
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to propagate sunward, while they are effectively carried earthward by the faster solar wind
flow. The fast mode is also consistent with the observed positively correlated magnetic field
strength and plasma density fluctuations.

The ion-ion right-hand resonant instability is driven by ion beams that are cold and fast,
streaming back from the bow shock along the magnetic field, characteristically produced in
the quasi-perpendicular portion of the foreshock. During the initial growth of the instability,
the excited electromagnetic waves have group velocities close to the beam speed, so that the
field energy propagates with the beam. The waves pitch-angle scatter the beam reducing the
free energy.

Electromagnetic ion beam instabilities with somewhat different properties are also found
deeper in the foreshock on magnetic field lines that connect to the nearly parallel portion
of the bow shock. Here the ion beams are slower and hotter and instead of being generated
by reflection at the shock, are more likely to result from heating and scattering of the cold
beam ions, processes related to the unsteady nature of the parallel shock, or from magne-
tosheath ions that leaked out into the foreshock. Other types of ion beam instabilities arise
elsewhere in space, e.g., in the plasma sheet boundary layer upstream of slow-mode shocks in
the magnetotail and in the vicinity of comets.

From spacecraft missions ISEE, Cluster and MMS, we have found two main populations of
backstreaming ions, termed reflected and diffuse. The reflected ions have a sharply peaked
energy spectrum and relatively collimated flow coming from the bow shock along the inter-
planetary magnetic field with number densities ∼ 1.5% of the solar wind. In contrast, the
diffuse ions have a much flatter energy spectrum and broad angular distributions, with lower
density ∼ 0.7% of the solar wind. These two populations occur in separate regions of the
foreshock, with reflected ions in the quasi-perpendicular portion and the diffuse ions in the
more nearly parallel portion of the foreshock, suggesting different mechanisms of origin and
acceleration. In between the reflected and diffuse ion populations, were intermediate ions that
had a crescent shape in velocity space, which corresponds to the gyro-phase bunched ions and
pitch-angle scattering by the generated waves. The reflected ions were so named, because
backstreaming beams of ions were observed traveling upstream in a direction determined by
the interplanetary magnetic field and the convection velocity (V𝐸×𝐵), consistent with simple
models of specular reflection at the bow shock.

Observations from ISEE also showed that there were usually weak waves occurring with re-
flected beam ions, while with diffuse ions large amplitude, compressive waves often occurred.
Obliquely propagating waves were also observed, often in the form of steepened waves, termed
shocklets. In addition, deeper in the foreshock Alfven waves were also generated in associated
with the diffuse ions. The location in the foreshock where the low frequency waves begin to
appear, is called ULF foreshock boundary, near the ion foreshock boundary. Another wave pro-
duced deep in the foreshock near the quasi-parallel bow shock is termed short large-amplitude
magnetic structures (SLAMS).
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The linear theory of beam instabilities in magnetized plasmas is developed by Peter Gary. He
numerically solved the complete dispersion relation for both electrostatic and electromagnetic
waves excited by various sorts of free energy: i.e., beams of electrons or ions, temperature
anisotropies in either the background or beam species, etc.7 In (Gary, Gosling, and Forslund
1981), he showed how a weak (~1% density) beam initially produces a low level of waves with
growth times > 25 s. Because the growth rate of the waves is small, the ion beam propagates a
long distance upstream from the bow shock before the waves grow to large amplitude. But in
the process of propagating upstream, the beam ions and the waves are convected deep into the
quasi-parallel portion of the foreshock, where they are slowed. The beam ions loses parallel
momentum as they are pitch-angle scattered by the waves, producing intermediate velocity
distributions (kidney shaped). This loss of energy and momentum by the beam, and the waves,
causes the solar wind to be deflected and slowed, as observed by Bame et al. (1980). Since the
compressibility (i.e., the density fluctuations computed from linear theory) of oblique waves8 is
significantly larger than for parallel propagation, oblique waves can grow and produce density
fluctuations in agreement with observations.

In Gary et al. (1984), four linear electromagnetic ion instabilities are compared (Section 17.4.1).
Numerical solutions of the linear dispersion relation are presented to show that for parallel
propagation the righthand resonant instability has a lower instability threshold than the non-
resonant instability unless the beam speed or beam density is sufficiently large. For hot ion
beams a left-hand resonant instability is also excited, and if there is a large temperature
anisotropy in the beam (𝑇𝑏,⟂ ≫ 𝑇𝑏,∥), a left-hand ion cyclotron instability is also possible.
Therefore, the deterministic factors for the driven instabilities would be

• beam density 𝑛𝑏
• beam velocity 𝑉𝑏 (w.r.t. 𝑉𝐴)
• beam temperature 𝑇𝑏
• beam pressure anisotropy

In Gary, Thomsen, and Fuselier (1986), linear theory of both the right-hand resonant and non-
resonant instabilities driven by an energetic, cool ion beam is used to calculate the phase angle
between the fluctuating velocity of the beam ions relative to the fluctuating magnetic field
in order to determine whether gyrophase bunching of the beam ions is observable. Distinct
gyrophase-bunched ions have been observed in the foreshock by ISEE. Peter’s linear calcula-
tions showed that for the non-resonant mode, the phase angle is ∼ 0∘, while for the resonant
mode it is ∼ 90∘ for the most unstable wavenumber. Both observations and simulations sup-
port the right-hand resonant instability for generating the observable gyrophase bunching for
the ion beam.

Despite all these achievements, a major problem remains — the observed ULF waves are
primarily propagating oblique to the magnetic field, contrary to linear theory that says the
parallel mode has the largest growth rate and thus in time will become the dominant mode.

7One important assumption is that all species are Maxwellians.
8I think parallel waves here means Alfvén waves, whereas oblique waves means fast waves.
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Measurements by Cluster (Eastwood et al. (2005)) indicate a mean angle of 21∘. An even more
interesting suggestion is given later by Strumik et al. (2015). In their foreshock simulations
they assume that the solar wind is essentially radial. They find that while parallel unstable
modes dominate, oblique waves are also generated, and when properly averaged over phase
space density, the “average” propagation direction is ∼ 20∘, consistent with Eastwood et al.
(2005).9

18.5.2 Transmission of Waves

An interesting question arises about the transmission of fast waves through the bow shock into
the downstream. A list of possible mechanisms are summarized in ?@fig-foreshock-wave-
transmission. (Turc et al. 2022) argued that the earthward magnetosonic disturbances
can then propagate to and disturb the magnetopause, whereas shock reformation and mode
conversion play only minor roles.

As usual in plasma physics, accompanying the ion foreshock we have electron foreshock at a
much smaller scale.

The formation of ion/electron foreshocks requires counter-streaming of ions and electrons,
respectively. Since there is only one velocity for each species in the electron/ion two-fluid
equations, it is not possible to trigger this instability in a multi-moment model. Theoretically
we may have an extremely simplified case where the ion counter-streaming is represented by
two ion fluids, but there are very few studies on this topic. The minimum requirement may
be gyrokinetics.

18.6 Magnetosheath

18.6.1 Jets

Magnetosheath jets are regions of enhanced dynamic pressure. Think of jets as raindrops in
the magnetosheath falling on the magnetopause. They are widely associated with the quasi-
parallel magnetosheath, suggesting that their origin is tied to the interactions between the
foreshock and the bow shock.

The formation of magnetosheath jets may be related to both external and internal drivings.

• External

– Solar wind pressure pulses
– Rotational discontinuities

• Internal
9So my feeling is that they tried to argue that the 20∘ deviation is purely a statistical bias, but not physics.

571



– Local ripples from foreshock turbulence could lead to the refraction and funneling
of plasma.

– Short large-amplitude magnetic structures (SLAMS), which are steepened foreshock
fluctuations in a short time-scale but large spatial scale.

18.7 Magnetosphere

18.7.1 Magnetopause

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding
plasma. The collision frequency of particles in the plasma in the interplanetary medium is
very low and the electrical conductivity is so high that it could be approximated to an infinite
conductor. A magnetic field in a vacuum cannot penetrate a volume with infinite conductiv-
ity. Chapman and Bartels (1940) illustrated this concept by postulating a plate with infinite
conductivity placed on the dayside of a planet’s dipole as shown in ?@fig-magnetopause-
schematic. The field lines on the dayside are bent. At low latitudes, the magnetic field lines
are pushed inward. At high latitudes, the magnetic field lines are pushed backwards and over
the polar regions. The boundary between the region dominated by the planet’s magnetic field
(i.e., the magnetosphere) and the plasma in the interplanetary medium is the magnetopause.
Since the solar wind is continuously flowing outward, the magnetopause above, below and to
the sides of the planet are swept backward into the geomagnetic tail as shown in the artist’s
concept. The region (shown in pink in the schematic) which separates field lines from the
planet which are pushed inward from those which are pushed backward over the poles is an
area of weak magnetic field or day-side cusp. Solar wind particles can enter the planet’s mag-
netosphere through the cusp region. Because the solar wind exists at all times and not just
times of solar flares, the magnetopause is a permanent feature of the space near any planet
with a magnetic field.

If one assumed that magnetopause was just a boundary between a magnetic field in a vacuum
and a plasma with a weak magnetic field embedded in it, then the magnetopause would be
defined by electrons and ions penetrating one gyroradius into the magnetic field domain. Since
the gyro-motion of electrons and ions is in opposite directions, an electric current flows along
the boundary.

18.7.1.1 Estimation of the standoff distance

The location of the magnetopause is determined by the pressure balance between the internal
magnetic field and external solar wind. As a first order estimation of the standoff distance
to the magnetopause, we neglect the internal magnetospheric thermal pressure and let the
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dynamic ram pressure from the solar wind being equal to the magnetic pressure from the
Earth’s magnetic field:10

(𝜌𝑣2)sw ≈ (4𝐵(𝑟)2
2𝜇0

)
m

where 𝜌 and 𝑣 are the density and velocity of the solar wind, and 𝐵(𝑟) is the magnetic field
strength of the planet in SI units.

Since the dipole magnetic field strength varies with distance as 1/𝑟3 the magnetic field strength
can be written as 𝐵(𝑟) = 𝐵0/𝑟3, where 𝐵0 is the planet’s magnetic moment, expressed in
[T ⋅ m3].

𝜌𝑣2 ≈ 2𝐵2
0

𝑟6𝜇0

𝑟 ≈ ( 2𝐵2
0

𝜇0𝜌𝑣2
)

1/6

The distance from Earth to the subsolar magnetopause varies over time due to solar activity,
but typical distances range from 6 − 15𝑅⊕. Empirical models (e.g. (Shue et al. 1997)) using
real-time solar wind data can provide a real-time estimate of the magnetopause location.

Table 18.3 summarizes the basic sizes of each planet in the solar system. Venus and Mars
do not have a planetary magnetic field and do not have a magnetopause. The solar wind
interacts with the planet’s atmosphere and a void is created behind the planet. In the case of
the Earth’s moon and other bodies without a magnetic field or atmosphere, the body’s surface
interacts with the solar wind and a void is created behind the body, often called wake. All
planets may show the effect of inductance, depending on the conductivity of the ionosphere or
ionosphere-like sphere. The interaction of IMF with a conductor induces current on the surface
of the conductor and create an induced magnetic field which opposes the external field from
penetrating into the conductor. This is a major contribution at Mars, a minor contribution at
Mercury and Ganymede, and somehow being negligible at other large planets.

Table 18.3: Solar system magnetopauses

Planet Magnetic Moment11 Standoff Distance12 Variance13

Mercury 0.0004 1.5 0
Venus 0 0 0
Earth 1 10 2
Mars 0 0 0

Jupiter 20000 42 25
Saturn 600 19 3
Uranus 50 25 0

10The reason for the factor of 4 is because the magnetic field strength just inside the magnetopause is twice
the dipole value for a planar magnetopause.
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Planet Magnetic Moment Standoff Distance Variance
Neptune 25 24 1.5

18.7.2 Transport of mass, momentum, and energy

Transport of mass, momentum, and energy at the magnetopause boundary drives much of
the magnetospheric dynamics and is thus an important topic in magnetospheric physics. The
amount of solar wind plasma and energy that enters the magnetosphere is regulated by the
orientation of the interplanetary magnetic field (IMF): during southward IMFs, the major pro-
cess is considered to be magnetic reconnections (Section 9.8), while during northward IMFs,
the processes include cusp reconnection, plasma mixing/reconnection in Kelvin-Helmholtz vor-
tices, and wave-particle diffusive processes in large-amplitude ULF waves at the magnetopause
boundary (?@sec-klr).

One of the more common spectral features at the magnetopause boundary is the sharp
transition in wave polarization from compressional, e.g., because of foreshock waves of the
quasi‐parallel bow shock, to transverse (Alfvén) waves from the magnetosheath to the bound-
ary layers. Mode conversion from compressional to Alfvén modes through the magnetopause
can efficiently transport and heat plasma across the boundary. Multipoint measurements have
verified that the dispersion of the broadband waves is consistent with the kinetic Alfvén waves
(KAWs) [Chaston+,2007, 2008]. KAWs also provide a natural explanation for the observed
dawn‐dusk asymmetry in plasma entry during northward IMF because they result from mode
conversion of compressional foreshock waves, which typically bathe the dawn flank for the
typical Parker spiral configuration.

According to linear theory, when an MHD fast mode compressional wave propagates across
in an inhomogeneous plasma, it is coupled with the shear Alfvén wave at the local Alfvén
resonance 𝜔 = 𝑘∥𝑉𝐴, with 𝜔 being the wave frequency. This process can be very efficient
when the fast wave propagates into a region where there is a sharp increase in the Alfvén
velocity such as at the magnetopause boundary where the magnetic field increases and density
decreases. Typically, the Alfvén velocity across the magnetopause increases by a factor of 10
such that an entire decade (in frequency) of wave power can be captured and localized in the
boundary layer leading to massive particle transport. In the MHD description, the coupling
occurs where the frequency matches the continuous spectrum and the wave becomes singular
corresponding to a pileup of compressional wave energy.

Singular behavior occurs at either the Alfvén resonance, 𝜔2 = 𝑘2
∥𝑣2𝐴, or at the sound resonance,

where the compressional wave couples with the Alfvén or sound wave that propagates only
11Normalized by Earth’s magnetic moment.
12Normalized by planet’s radii.
13in planet radii. The magnetosphere varies mainly in response to solar wind dynamic pressure and interplan-

etary magnetic field.
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along the magnetic field. In higher frequency cases, the Alfvén resonance condition is modified
because of the finite ion Larmor radius effects (Equation 12.27), where the Alfvén resonance
singularity can be removed by including non‐MHD effects such as electron inertia or ion Larmor
radius corrections in Equation 12.26. It can be shown that kinetic effects naturally arises
from the two-fluid/kinetic theory, including the coupling to KAWs. For more equations, see
Section 12.4.

At the resonance point, the fast wave solution is coupled to the KAW solution, and trans-
versely polarized Alfvén waves are expected to be generated and radiate away from the mode
conversion location. Because the group velocity of these waves is much smaller than the com-
pressional wave, the amplitude of the transverse fluctuations is typically much larger than the
amplitude of the compressional driver, consistent with magnetopause observations.

As been discussed in Chapter 12, when the azimuthal wave number 𝑚, or 𝑘𝑦 in the box model
is zero, there should be no mode coupling. However, this is not true if the finite-frequency
effect is considered (Section 12.4), as first noted by (1979).

18.7.3 Dungey Cycle

Dungey (1961) was the first to propose a cycle of magnetospheric convection driven by magnetic
reconnection at the dayside magnetosphere. Magnetic field connected on the dayside of Earth
is transported by the solar wind to the night side where it forms a long tail behind the Earth.
This transfer of flux to the nightside forces the magnetosphere to undergo systematic changes
in configuration that eventually lead to nightside magnetic reconnection, which returns flux
to the dayside along the flanks of the magnetosphere via the different response modes.

18.7.4 Vasyliunas Cycle

The Jovian equivalent to the Dungey cycle of the Earth’s magnetosphere, where the centrifugal
force plays a critical role in affecting the plasma convection.

18.7.5 Low-Latitude Boundary Layer

The Earth’s low-latitude boundary layer (LLBL) is the region where magnetosheath and magne-
tospheric plasmas are mixed along the magnetospheric side of the low-latitude magnetopause.
It has been suggested that three processes — magnetic reconnection at high-latitudes, the
Kelvin-Helmholtz instability, and Kinetic Alfvén waves — primarily contribute to the for-
mation, all of which have been observed by in-situ satellites inside the LLBL. Recent studies
further suggested that the couplings of these processes effectively enhance the formation rate.
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19 Ionosphere

Ionosphere is like a transition region from neutral gas to plasma. Therefore, collisions as well
as kinetic effects may become important. Section 6.8 presents some basic physics related to
the collisional effect in the ionosphere.

19.1 Current Systems

Electric fields associated with the viscous interaction and reconnection-driven plasma flow are
transmitted along field lines to the ionosphere where they drive currents through the ionosphere.
The high latitude FAC are known as region-1 currents, while the lower latitude currents are
called region-2 currents. The ionospheric current connecting these two FAC systems flows
parallel to the projected electric field and is called the Pedersen current. Since the Pedersen
current flows through a resistive ionosphere in the direction of the electric field it causes Ohmic
heating j ⋅ E > 0. The two shells of FAC form a solenoid so that the magnetic perturbations
they create are confined to the region between them and cannot be detected on the ground.
Because of the interaction of the motion of ionized gases with the neutral atmosphere, the
ions and electrons undergo different drift motion. Ions, due to higher collision rates with the
neutral atmosphere, have a component of motion perpendicular to the E × B drift direction,
while the electrons generally follow E×B. The non-dissipative (j ⋅E = 0) Hall current flows at
right angles to both the electric and magnetic fields. The magnetic effects of the Hall current
driven by the region-1 and 2 currents can be observed on the ground and are known as the
DP-2 current system.1

In the context of ionospheric energy dissipation, the different current systems can be classified
into two types based on how energy is processed.

1. If the ionospheric motion and dissipation is coupled directly to the solar wind, the system
is said to be “directly-driven”. The directly-driven process manifests itself as the DP-2
(two cell pattern) ionospheric current system.

2. If magnetic energy is first stored in the tail lobes and then released some time later,
driving additional convection and field-aligned and ionospheric currents, it is called “un-
loading”, and is associated with the DP-1 (substorm current wedge) current system.

1Region 1 & 2 currents are currents in the magnetosphere, not ionosphere.

576



Both processes cause precipitation of charged particles that also deposit energy in the atmo-
sphere.

The characteristic feature of the driven DP-2 current system is the existence of the eastward
and westward electrojets flowing toward midnight along the auroral oval. Rough measures
of the strength of these currents are the auroral upper (AU) and auroral lower (AL) indices.
These are respectively the largest positive northward magnetic perturbation (H) measured on
the ground under the eastward electrojet by any magnetic observatory in the afternoon to
dusk sector, and the largest negative southward perturbation measured in the late evening
to morning sector. Both AU and AL begin to grow in intensity soon after the IMF turns
southward and dayside reconnection begins. The characteristic feature of the unloading DP-1
current system is the sudden development of an additional westward current that flows across
the bright region of the expanding auroral bulge. This is the ionospheric segment of the
substorm current wedge. The onset of this current is recorded in the AL index as a sudden
decrease, corresponding to an increase in intensity of the westward current.

19.2 M-I Coupling

Ionospheric properties, principally conductivity, provide boundary conditions for magneto-
spheric convection, and the ionosphere is often treated as a passive part of the system. Es-
pecially during substorms, however, the boundary conditions change in a time-dependent and
spatially localized fashion, allowing ionospheric feedback that can alter the magnetospheric
dynamics. The coupling from the ionospheric perspective differs primarily in that the iono-
spheric conductance is anisotropic due to the influence of the neutral atmosphere, involving
Hall as well as Pedersen conductivity. These conductivities are altered both by the connecting
currents and the precipitating electrons associated with upward field-aligned currents, which
increase Pedersen conductivity and field line tying. An important role is also played by field-
aligned electric fields, set up locally, primarily in upward field-aligned current regions, which
are the cause of auroral intensifications and, specifically auroral arcs.

For magnetosphere simulations, the simplest inner boundary is treated as a conducting sphere
(Bnormal = 0, E = v = 0). However, this is often not realistic enough to reveal the nature.
In magnetosphere simulations, the location of tail main reconnection site will be closer to the
Earth by simply applying a conducting boundary. The next level extension is to employ a
magnetospheric-ionospheric electrostatic coupling model. This means that we seek nonzero E
and v at the inner boundary. The inner boundary, where the MHD quantities are connected
to the ionosphere, is taken to be a shell of radius 𝑟in (e.g. 𝑟in ∼ 3RE). The ionosphere locates
at 𝑟ion ∼ 1000 km ∼ 0.15RE. Ideally 𝑟in shall be as close to 𝑟ion as possible, but typically it is
restricted by computational limitations, such as extraneously high Alfvén speeds and very large
B field gradients closer to the Earth. Inside this shell we do not solve the governing equations
(MHD/PIC/Vlasov), but assume a static dipole field. The important physical processes within
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the shell are the flow of field-aligned currents (FACs) and the closure of these currents in the
ionosphere. At each time step,

1. The magnetospheric FACs are mapped along the field lines from the inner boundary to
the ionosphere assuming 𝑗∥/𝐵 = const., which are the input to the ionospheric potential
equation (Raeder, Walker, and Ashour-Abdalla 1995)

∇ ⋅ (ΣΣΣ ⋅ ∇Φ) = −𝑗∥ sin 𝐼 (19.1)

where ΣΣΣ is the conductance tensor, Φ is the electric potential, 𝑗∥ is the mapped FAC
density with the downward considered positive and corrected for flux tube convergence,
and 𝐼 is the inclination of the dipole field at the ionosphere, sin 𝐼 = cos(𝜋2 − 𝐼) = ̂𝑏 ⋅ ̂𝑟.
The derivation from the charge conservation can be found in Section 6.8.7. There is
another form derived by [Wolf 1983]:

∇⟂ ⋅ (𝜎𝑃/ cos2 𝛿 −𝜎𝐻 cos 𝛿
𝜎𝐻/ cos 𝛿 𝜎𝑃

) ⋅ ∇⟂Φ = 𝑗∥ cos 𝛿 (19.2)

where 𝛿 is the magnetic field dip angle:

cos 𝛿 = −2 cos 𝜃√
1 + 3 cos2 𝜃

for the northern hemisphere, where 𝜃 is the polar angle (magnetic colatitude). I DON’T
KNOW THE RELATION BETWEEN THESE TWO!

2. Equation 19.1 is solved on the surface of a sphere 𝑟 = 𝑟ion. Commonly there are two
types of boundary conditions: (1) Φ = 0 at the equator (Raeder, Walker, and Ashour-
Abdalla 1995), or (2) constant potential at or near the low‐latitude boundary (e.g. LFM,
BATSRUS). From here, one can either choose a static analytic model of Hall and Peder-
son conductance that accounts for multiple physics, or simply adopt a uniform Pederson
conductance, or the height-integrated conductivity, Σ𝑝 = 5Siemens, while the Hall con-
ductance Σ𝐻 is assumed to be zero. The latter one is simplified to solve

∇2Φ = −𝑗∥ sin 𝐼/Σ𝑝

A more realistic conductance requires considering EUV and diffuse auroral contributions (???)
as well. The solar EUV contribution to ΣΣΣ is considered constant in time, but naturally it varies
with the solar zenith angle. For example, the empirical formulas by [Moen and Brekke 1993]
can be used. The solar EUV radiation is approximated by the 10.7 cm radio flux (commonly
known as F10.7), a widely used proxy solar UV activity, whose standard values is taken to be
100 × 10−22 W/m2.

The total conductance can be then expressed as

Σ𝑃,𝐻 = √(Σ𝑒−
𝑃,𝐻)2 + (ΣUV

𝑃,𝐻)2
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This is because 𝜎𝑃,𝐻 ∝ 𝑛𝑒, which in a stationary state is proportional to the square root of
the production rate, and it is the production rates that can be summed linearly. (???)

Does this look well? Not yet. We know that while the high‐latitude ionospheric convection is
driven by the solar wind and magnetosphere interaction, at lower latitudes atmospheric neutral
winds start to dominate. The next level approximation needs to take this into account. Because
there is a gap between 𝑟ion and 𝑟in, the ionospheric footprint of their grid has a low‐latitude
boundary somewhere in the midlatitudes, e.g., 45° when 𝑟in ∼ 2RE (Figure 19.1). Global
magnetospheric models, unless they are fully coupled to models of the inner magnetosphere
and the ionosphere, lack details of the ionospheric convection at latitudes equatorward of their
low‐latitude ionospheric boundary. To some extent, such details can be translated to the global
model via the low‐latitude boundary condition used to solve Equation 19.2. The easy way is
to set the ionospheric potential to zero everywhere on the boundary. This corresponds to
no flow across the boundary in the ionosphere or the inner boundary of the magnetosphere
simulation in the equatorial plane. The choice of this boundary condition is usually justified
by the argument that it helps to shield the inner magnetosphere from the cross‐tail electric
field.

(Merkin and Lyon 2010) tested three different boundary conditions for the potential equa-
tion:

• STANDARD: Dirichlet, the potential at the low‐latitude boundary is set to zero.
• NEUMANN: the electric field component normal to the low‐latitude boundary was set

to zero. This condition requires all ionospheric plasma to move normal to the boundary.
• LOWERBC: Dirichlet, but the location of the low‐latitude boundary was moved to 2°

above the equator, thus allowing the plasma to move across the magnetosphere inner
boundary. (???) Equation 19.3 is singular at 𝜃 = 𝜋/2, which is why the calculation has
to stop just short of the equator. (???)

3. Sparse linear algebra, GMRES together with an imcomplete LU preconditioner (default
for many modern solvers) are usually applied to solve the potential equation. This is
generally an easy equation to solve mathematically.

4. Once the potential equation is solved the ionospheric potential is mapped back to the
𝑟in shell and used as a boundary condition for the magnetospheric flow by taking v =
(−∇Φ) × B/𝐵2.

19.2.1 Caveats

• The mapping assumes conservation, which is not perfect. In practice 𝑟in ∼ 4RE is a
minimum requirement for reasonable FACs.

• Most numerical codes couples a Cartesian grid to a spherical ionosphere grid, while some
couples a spherical grid to a spherical grid. For magnetosphere simulations we need a
relatively simple but super fast electric potential solver, therefore structured mesh is
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Figure 19.1: A schematic depiction of the inner boundary of the magnetosphere simulation
and its ionospheric mapping. The location of the low‐latitude boundary of the
ionospheric grid is determined by the radius of the inner MHD boundary mapped
along the dipole field from the equator. Point A (at 45°) denotes a typical location
of the low‐latitude boundary, where the STANDARD and NEUMANN boundary
conditions are applied, while point B is where the LOWERBC boundary con-
dition is applied. The three inset plots at the bottom depict schematically the
configuration of velocity and electric field vectors with respect to the surface of
the ionosphere in a meridional plane. The inset plot titles identify the type of
the boundary condition and the point where it is applied. Adopted from (Merkin
and Lyon 2010).
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often adopted. If a spherical grid is used, care must be taken near the pole since it is
a singular from the grid but not physics. Equation 19.2 under spherical coordinates is
written as

1
sin 𝜃

𝜕
𝜕𝜃[ sin 𝜃 Σ𝑃

cos2 𝛿
𝜕Φ
𝜕𝜃 − Σ𝐻

cos 𝛿
𝜕Φ
𝜕𝜙 ]

+ 𝜕
𝜕𝜙[ Σ𝑃

sin2 𝜃
𝜕Φ
𝜕𝜙 + Σ𝐻

sin 𝜃 cos 𝜃
𝜕Φ
𝜕𝜃 ] = 𝑗∥𝑅2 cos 𝛿

(19.3)

• Be careful about distinguishing 𝐸∥ and 𝑗∥. 𝐸∥ = 0 from advection and Hall terms, but
𝑗∥ = ∇× B ⋅ ̂𝑏/𝜇0 can be nonzero at the MHD inner boundary.

• How important it is to use a more realistic conductance model? (Merkin and Lyon 2010)
shows that different BCs may give > 10% CPCP values, but I have no clue about the
effect of a more complicated conductance.

19.3 Ionosphere Modeling

• What equation set is the model solving? How is the model solving them? What is being
neglected?

• What species are included? How is the chemistry solved?
• Parameterizations in things such as heating, cooling, viscosity, conduction, chemistry,

diffusion, collision, absorption, ionization cross sections, reaction rates…
• How are upper and lower boundaries treated? How is the pole or the open/closed field-

line boundary treated?
• How are electrodynamics considered? How is the aurora specified? How is the magneto-

spheric electric field imposed? Is ion precipitation considered?

For an ionosphere, a magnetic field-aligned grid is often used. This is complicated by the
non-orthogonal nature of the magnetic field coordinate system. Assumptions are made.

How to solve each direction (coupled or independently)? For the ionosphere, along the field-line
is treated differently than across the field-lines.

As the equations of motion are solved for, the source terms must be added. How to treat these
with respect to solving in the different directions?

Build a simple 1D ionosphere model is easy (CAN I MAKE ONE MYSELF?).

Steady-state - assume 𝜕X/𝜕𝑡 = 0. Strangly, this is applied in situations in which the value
can change on a time scale much faster than the time-step. For example, the ion velocity is
often assumed to be steady-state. Ion chemistry is sometimes assumed to be steady-state.
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19.3.1 Chemistry

𝜕𝑁
𝜕𝑡 = 𝑆 − 𝐿

where 𝑁 is the number density of the species, 𝑆 represents the sources and 𝐿 represents the
losses. Losses can almost always be expressed as:

𝐿 = 𝑅𝑀𝑁

where 𝑅 is the reaction rate, 𝑀 is the density of the species it is reacting with.

For a steady-state,
𝑆 − 𝐿 = 0

𝑁 = 𝑆
𝑅𝑀

This is quite stable, but can be very wrong in regions of slowly changing ion densities, such
as in the F-region. This is perfect for the E-region, though. It is quite easy to implement
in a simple environment, but can be much more complicated as non-linear terms are include
(recombination, in which 𝑀 can depend on 𝑁).

An explicit time step chemistry is trivial to implement in almost all situations, but it is also
the least stable, since the loss terms can become larger than the source terms and the density
can quickly be driven to negative values. Subcycling can help with this, but not always.

An implicit time step chemistry is relatively stable and easier to implement than steady-state.
For example in GITM, there is a blend between sub-cycling and a simplified implicit scheme
that switches depending on the size of the loss term compared to the density.

Now we need to also look at the source terms. The ionization rates can be obtained from 𝑄EUV
and substituting 𝜎𝑖

𝑠𝜆 instead of 𝜎𝑎
𝑠𝜆 (not in 𝜏). [Schunk and Nagy] Chapter 8 list a bunch of

chemical equations.

After that, we write down all the sources and losses, decide a time-stepping scheme, and run
the model. However, if we don’t have any ion advection, the F-region will just build and
build!

19.3.2 Ion Advection

In the simplest form, we assume an advection speed and let the densities advect upward and
downward.
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19.4 Ionosphere Waveguide

The ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate
in the space between the ground and the boundary of the ionosphere. Because the ionosphere
contains charged particles, it can behave as a conductor. The planet operates as a ground
plane, and the resulting cavity behaves as a large waveguide. This is closely related to the
concept of skin depth in EM and the cutoff in wave propagation.

At Earth, extremely low frequency (ELF) (< 3 kHz) and very low frequency (VLF) (3–30
kHz) signals can propagate efficiently in this waveguide. For instance, lightning strikes launch
a signal called radio atmospherics, which can travel many thousands of kilometers, because
they are confined between the Earth and the ionosphere. The round-the-world nature of the
waveguide produces resonances, like a cavity, which are at ∼ 7 Hz.

A brief introduction can be found on wiki.
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20 Radiation Belt

A Van Allen radiation belt is a zone of energetic charged particles, most of which originate from
the solar wind, that are captured by and held around a planet by that planet’s magnetosphere.
Earth possesses an inner belt and an outer belt.

1. the inner belt

• MeV protons, 100 keV electrons
• 0.2 - 2 𝑅E (L 1 - 3)

2. the outer belt

• 0.1 - 10 MeV electrons
• 3 - 10 𝑅E (outer boundary is the magnetopause)

Our understanding of the physics mechanisms until 1990s:

1. Low energy electrons get injected into the magnetosphere from the solar wind.
2. Electrons transport towards the planet by reconnections, substorms and associated elec-

tric fields.
3. Electrons drift around the planet.
4. Magnetic fluctuations cause inward/outward diffusions.
5. Energy is gained by conservation of the 1st adiabatic invariant.
6. Loss by collisions with the atmosphere, reaching the magnetoapuse, and outward radial

diffusion.

During magnetic storms the magnetopause is compressed, so more electrons are lost to the
magnetopause. If the mirror point is deep inside the atmosphere, charged particles will pre-
cipitate into the atmosphere and lost due to collisions. There are still many mysteries both
due to lack of observations and theories. For example, the classical theory cannot explain the
electron variation (intermittent injection, rapid loss) timescales!

In 1998, two new theories came out:

1. Enhanced radial diffusion

• Solar wind flows past the magnetosphere, drives K-H instability, and in turn triggers
ULF waves.

• The ULF waves trigger FLR (Chapter 12).
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• The outcome is a faster radial diffusion process?

2. Wave acceleration

• Substorms, convection, plasma instabilities.
• Waves accelerate electrons to MeV.

The wave acceleration, or more specifically, wave-particle interaction, has been widely explored
both theoretically and compared with observation data at Earth, Jupiter, and Saturn.

20.1 Waves in the Radiation Belt

• Lower hybrid waves: ???

• Whistler waves (Section 7.7)

• Chorus waves

– 1-5 kHz (0.1 − 1.0 𝑓𝑐𝑒), well-defined narrow band
– highly nonlinear
– not generated by lightning, but by natural plasma instabilities (same for hiss).
– electron anisotropy
– loss cone scattering

• Hiss waves

– broadband structureless signal in the plasmasphere and resembles audible hiss

Before 1990s, waves in the radiation belts are known for transferring energy from charged
particles, which act as a loss process to the particles. Richard Thorne, together with his
collegues, proposed that they could also the sources of energetic particles ([Horne & Thorne],
1998, 2003, 2005a,b). If that is the case, the wave-particle interactions must break the adiabatic
invariants.

The theory of wave-particle interaction starts with hot plasma kinetic theory (Section 8.10.1).
When the denominator goes to 0, the resonance condition is fulfilled. From observations, we
learned that the wave frequencies are smaller than the gyro-frequencies. How can we have
resonance then? The answer is, Doppler shift needs to be taken into account.
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20.1.1 Sources of Waves

resonance can generate current => this current can generate higher frequency radiations?

Whistler waves can be explained by the linear theory. However, chorus and hiss waves are
highly nonlinear and thus cannot be explained by a linear theory. We conjecture that they
are caused by natural plasma instabilities, but we still have little idea what exactly these
instabilities are.

As a rough physical picture, during the cyclotron resonance:

1. Waves diffuse source electrons into loss cone => electron loss and wave growth.
2. Waves diffuse trapped electrons => energy diffusion leads to electron acceleration.

20.2 Modeling

3D Fokker-Planck diffusion model1 (e.g. (Glauert, Horne, and Meredith 2014)) has been built
to model the radiation belt electrons. In the Earth’s radiation belts, the evolution of the
phase-averaged phase-space density 𝑓(𝑝, 𝑟, 𝑡) can be described by a diffusion equation (see also
Equation 8.19):

𝜕𝑓
𝜕𝑡 = ∑

𝑖,𝑗

𝜕
𝜕𝐽𝑖

[𝐷𝑖𝑗
𝜕𝑓
𝜕𝐽𝑗

] (20.1)

Here 𝐷𝑖𝑗 are diffusion coefficients and 𝐽𝑖 are the action integrals, 𝐽1 = 2𝜋𝑚𝑒𝜇/|𝑞|, 𝐽2 = 𝐽 ,
and 𝐽3 = 𝑞|𝜙|, where 𝜇, 𝐽 , and 𝜙 are the adiabatic invariants of charged particle motion, 𝑚𝑒
is the electron mass, and 𝑞 the charge. The adiabatic invariants are awkward variables to
visualize and relate to data so many authors transform to other coordinates. One choice is to
use pitch angle, energy, and 𝐿∗ = 2𝜋𝑀/(|𝜙|𝑅E) (Equation 4.48), where 𝑀 = 8.22×1022 Am2

is the magnetic moment of the Earth’s dipole field and 𝑅E is the Earth’s radius, as the three
independent variables.

Assuming a dipole field, changing coordinates to equatorial pitch angle 𝛼, kinetic energy 𝐸,
and 𝐿∗, and neglecting some cross derivatives, Equation 8.19 can be written as

𝜕𝑓
𝜕𝑡 = 1

𝑔(𝛼)
𝜕
𝜕𝛼∣

𝐸,𝐿
𝑔(𝛼)(𝐷𝛼𝛼

𝜕𝑓
𝜕𝛼∣

𝐸,𝐿
+𝐷𝛼𝐸

𝜕𝑓
𝜕𝐸 ∣

𝛼,𝐿
)

+ 1
𝐴(𝐸)

𝜕
𝜕𝐸 ∣

𝛼,𝐿
𝐴(𝐸)(𝐷𝐸𝐸

𝜕𝑓
𝜕𝐸 ∣

𝛼,𝐿
+𝐷𝐸𝛼

𝜕𝑓
𝜕𝛼∣

𝐸,𝐿
)

+𝐿2 𝜕
𝜕𝐿∣

𝜇,𝐽
(𝐷𝐿𝐿

𝐿2
𝜕𝑓
𝜕𝐿∣

𝜇,𝐽
)

(20.2)

1The general form of the Fokker-Planck equation also includes an advection term, which is ignored here since
the drift is negligible compared to diffusion.
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where
𝑔(𝛼) = 𝑇(𝛼) sin 2𝛼

𝐴(𝐸) = (𝐸 + 𝐸0)(𝐸(𝐸 + 2𝐸0))1/2

and 𝐸0 is the electron rest mass energy. 𝑇 (𝛼) is related to the bounce period and in a dipole
field can be approximated by

𝑇 (𝛼) = (1.3802 − 0.3198(sin𝛼 + sin1/2 𝛼))

𝐷𝛼𝛼, 𝐷𝛼𝐸 = 𝐷𝐸𝛼, 𝐷𝐸𝐸, and 𝐷𝐿𝐿 are the drift- and bounce-averaged pitch angle, mixed
pitch angle energy, energy and radial diffusion coefficients, respectively. When we need to
clarify the fact that they are drift and bounce averaged, they will be explicitly written as
⟨𝐷𝛼𝛼⟩

𝑑 , ⟨𝐷𝛼𝐸⟩
𝑑 , ⟨𝐷𝐸𝐸⟩

𝑑, and ⟨𝐷𝐿𝐿⟩
𝑑, respectively.

The bounce-averaged pitch angle and energy diffusion rates are defined by

⟨𝐷𝛼𝛼⟩ ≡ ⟨(Δ𝛼)2
2Δ𝑡 ⟩

⟨𝐷𝛼𝐸⟩ ≡ ⟨(Δ𝛼Δ𝐸)2
2Δ𝑡 ⟩

⟨𝐷𝐸𝐸⟩ ≡ ⟨(Δ𝐸)2
2Δ𝑡 ⟩

with units of s−1, Js−1, and J2s−1, respectively.

A loss term of the form 𝑓/𝜏𝐿 can be added to represent losses to the atmosphere due to
collisions. Here, 𝜏𝐿, the loss timescale, is equal to 1/4 of the bounce time in the loss cone and
infinite elsewhere. As a first-order approximation, we can neglect the cross terms and simplify
Equation 20.2 as

𝜕𝑓
𝜕𝑡 = 1

𝑔(𝛼)
𝜕
𝜕𝛼∣

𝐸,𝐿
𝑔(𝛼)(𝐷𝛼𝛼

𝜕𝑓
𝜕𝛼∣

𝐸,𝐿
)

+ 1
𝐴(𝐸)

𝜕
𝜕𝐸 ∣

𝛼,𝐿
𝐴(𝐸)(𝐷𝐸𝐸

𝜕𝑓
𝜕𝐸 ∣

𝛼,𝐿
)

+𝐿2 𝜕
𝜕𝐿∣

𝜇,𝐽
(𝐷𝐿𝐿

𝐿2
𝜕𝑓
𝜕𝐿∣

𝜇,𝐽
)

− 𝑓
𝜏𝐿

(20.3)

The first three terms on the right-hand side represent pitch angle, energy, and radial diffusion,
respectively. The final term accounts for losses to the atmosphere. Pitch angle diffusion has
contributions from wave-particle interactions and Coulomb collisions with the atmosphere,
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though the latter are only significant inside the loss cone. Energy diffusion is due to wave-
particle interactions and radial diffusion to interactions with large-scale fluctuations in the
Earth’s magnetic and electric fields. The diffusion coefficients are based on statistical wave
models derived from data. Depending on the choice of the diffusion coefficients, the Fokker-
Planck equation can be linear, quasi-linear, or nonlinear.

Let us make our lives even simpler by considering only the radial diffusion and loss term. The
quasi-linear assumptions are:

• Broadband wave spectrum (with random phase), typically assumed as a Gaussian cen-
tered around a single dominant mode

• Low amplitude fluctuations (no nonlinear interactions)
• “Resonance limit” (linear growth rate of instabilities goes to 0)
• ULF wave-particle interactions lumped into the diffusion coefficient

Even when quasi-linear theory works fine, there are multiple sources of uncertainties in the
radial diffusion coefficient:

• Background magnetic field model
• Bounce + drift average eliminates MLT dependence
• Azimuthal wave structure (i.e. power distribution over mode numbers)

Given the limited observation data, we want to estimate the unknown parameters 𝐷𝐿𝐿, 𝜏𝐿.
This is called an inverse problem. In 2000, Brautigam and Albert proposed a dependence of
the radial diffusion coefficent on 𝐾𝑝 and L:

𝐷𝐿𝐿 ≈ 10−0.506𝐾𝑝(𝑡)−9.325𝐿10

The standard statistical approach is to apply a Bayesian parameter estimation, where we are
looking for a distribution of parameters and correcting results based on new observations.
However, it is difficult to apply in high dimensions, which typically requires the Markov-chain
Monte Carlo (MCMC) approach. For example, our assumption is that the parameters can be
written in the following forms:

𝐷𝐿𝐿(𝐿, 𝑡) = 10(𝑎𝐾𝑝(𝑡) + 𝑏)𝐿𝑐

𝜏𝐿(𝐿, 𝑡) = { (𝑎0 + 𝑎1𝐿 + 𝑎2𝐿2)/𝐾𝑝(𝑡) for 𝐿 ≤ 𝐿𝑝𝑝
𝑎3/𝐾𝑝(𝑡) for 𝐿 > 𝐿𝑝𝑝

where 𝐿𝑝𝑝 is the plasmapause location, which can be estimated with some approximations.
We introduce a bunch of random variables, and the posterior distributions of these variables
after MCMC give us the best fits.

A new trend is to use physics-informed machine learning to learn the coefficients. First we
may need to constrain the forms of the coefficients to avoid an ill-posed inverse problem. Let
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the physical loss term be described by a drift coefficient 𝐶:

𝜕𝑓
𝜕𝑡 = 𝐿2 𝜕

𝜕𝐿∣
𝜇,𝐽

(𝐷𝐿𝐿
𝐿2

𝜕𝑓
𝜕𝐿∣

𝜇,𝐽
)− 𝜕𝐶𝑓

𝜕𝐿

The job of Physical-Informed Neural Network (PINN) is to deduce the optimal 𝐷𝐿𝐿 and 𝐶
based on statistics by embedding the expected form of the equation into the loss term in
the neural network. As this is statistics, we can build and test any kind of relations between
variables without physical interpretation, which has been critizised a lot. For example, one may
ask how you can let the phase space distribution 𝑓 depend only on 𝑡 and 𝐿? The information
is incomplete from a physics point of view, but datawise it may just “work”, in the sense that
neural network is essentially a universal high-dimensional function approximator.

20.2.1 Coupling physical processes at different time scales

If we only look at low frequency regime, the high frequency wave-particle interactions behave as
a diffusion process to the plasma. Thus the coupling idea is not to simulate everything on the
same time scale, but simulate the radiation belt effect by macroscopic diffusion coefficients.

20.3 Plasmasphere

The plasmasphere is a region within the Earth’s magnetosphere that contains dense, cold
plasma. It is located in the innermost part of the magnetosphere, and it extends from about
1,000 to 60,000 kilometers above the Earth’s surface. The plasmasphere is formed by the
Earth’s magnetic field, which traps charged particles in the region, creating a donut-shaped
structure around the planet.

The plasma in the plasmasphere is composed mainly of ions and electrons, and it is much
colder and denser than the plasma in other regions of the magnetosphere.

• 𝑇 ∈ [103, 104]K
• 𝑁 ∈ [101, 102] cm−3

The plasmasphere plays an important role in the dynamics of the Earth’s magnetosphere and
its interactions with the solar wind. It can affect the propagation of radio waves, particularly
those used for communication and navigation, and it can also contribute to the formation of
the aurora borealis and aurora australis.
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21 Aurora

The aurora is a visible and fascinating consequence of the complex magnetospheric processes
that are driven by the interaction between the solar wind and the geomagnetic field. The
aurora can appear as a diffuse plae band crossing the sky from east to west, or as rapidly
moving bright and colorful curtains and rays covering a large fraction of the sky. We will not
attempt to describe all the various forms that auroras may appear in, but only distinguish
between diffuse and discrete auroras. The particles that cause these two main types are precip-
itated into the atmosphere by rather different physical processes. Magnetospheric substorms
and the mechanisms leading to the formation of discrete auroras are still at the frontier of
magnetospheric research. This chapter is mostly based on Chapter 10 in the lecture notes of
Prof. Kjell Rönnmark.

21.1 Auroral Light Emission

There are numerous ancient legends and beliefs about the aurora from various parts of the
world. Many of the mythological ideas, as well as more scientific theories from the eighteenth
century, explained the aurora as sunlight reflected, refracted, or scattered by various divine
or natural processes. Observations reveal that it consists of discrete spectral lines, which
proves that auroral light is emitted by a gas, and rules out reflected or scattered sunlight. The
strongest line the auroral spectrum is found to be 557.7 nm.

Auroras are caused by charged particles with energy in the range from 10 eV to 30 keV.
These particles collide in the upper atomosphere with atoms and molecules that are left in
an excited state after the collision. About 90% of the aurora is caused by electrons, and the
rest by protons. At altitudes about 100 km where most of the auroral light is emitted, the
atmosphere consists mainly of nitrogen and oxygen as shown in Fig. ???. In these gases the
quantum mechanically allowed transitions that produce strong spectral lins are all outside the
visible part of the spectrum — otherwise air would not be transparent and colourless. The
visible auroral emissions are due to transitions from forbidden metastable states, with low
transition probabilities and long lifetimes. If the gas pressure is too high, these metastable
states will relax to the ground state through collisions long before they decay by emitting
light. However, at altitudes above 100 km collisions are sufficiently rare to allow the decay of
an excited state of atomic oxygen. This state has an excitation energy of 4.17 eV and a lifetime
of 0.8 s. It decays in a two step process. The green line is emitted in the first step, which takes
the atom to a state at 1.96 eV. This intermediate state has a very long lifetime, 110 s, and the
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the red line emission at 630.0 nm that takes it to the ground state mainly occurs at altitudes
above 200 km. This red line can also be produced by direct excitation to the state at 1.96 eV
by collisions with low energy electrons. Other strong lines in the auroral spectrum are emitted
by nitrogen. Molecular N+

2 ions are created in an excited state by collisions, and they decay
to their ground state by emitting a bluish-voilet line at 427.8 nm. Sometimes the lowest part
of strong auroras are colored red by emissions near 600 nm from neutral N2 molecules.

Figure 21.1 shows the typical altitude distribution of the auroral emissions. The cross section
for excitation of the different lines depends on the energy of the incoming auroral particles.
Usually, the precipitating particles have higher energy at night than during the day. Low
energy electrons give up their energy at higher altitudes, and produces more red emissions.
Another difference between day and night is that resonant scattering by sunlight enhances the
N+

2 line 427.8 nm relative to the green line.

21.2 Diffuse Aurora

Some diffuse aurora is nearly always found in the auroral zone. On a clear and dark night it is
often seen as a diffuse band, which may appear gray if the intensity is below the color threshold
of the eye. Even if no aurora can be seen from the ground, we know from satellite observations
of precipitating particles and auroral spectral lines in the UV-range that the diffuse aurora
forms a rather continuous band aroud the auroral zone.

Magnetosheath particles that enter through the magnetopause cusps are a source of diffuse
aurora on the dayside. In the cusps there are field lines that connect the ionosphere to the
magnetosheath, and magnetosheath particles with sufficiently small pitch angles will precipi-
tate along these field lines. Around local noon, there will be a continuous flux of low energy
(≤ 100 eV) particles, which at altitudes above 200 km cause a diffuse band of emissions at 630
nm.

On the nightside, and far into the evening and morning, diffuse auroras are caused by particles
of plasmasheet origin. The energy spectrum of these particles extends from below 100 eV
to above 20 keV. The continuous precipitation of electrons from the plasmasheet presents a
problem, which has not been completely solved yet. Most of the plasmasheet is on closed field
lines, and the loss cone in a stationary magnetosphere should be empty (because particles will
be lost). To explain the diffuse aurora, we need some mechanisms that can scatter the particles
into the loss cone.

Plasma waves in the equatorial magnetosphere can cause strong pitch-angle scattering if they
are resonant with the particles. Resonant in this context means that the parallel velocity of the
particle and the phase velocity of the wave are related so that the particle feels an electric field
that oscillates at the gyrofrequency. Significant changes in the velocities of the particles occur
since they systematically gain or lose energy while they are resonant. At least for electrons
with energy higher than a few keV, the required pitch-angle scattering can be provided by a
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Figure 21.1: The altitude distribution of auroral emissions at day and night.
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type of waves in the whistler mode, known as magnetospheric hiss. However, the phase velocity
of whistler mode waves may be too high to give resonance with lower energy electrons. Low
energy electrons can be scattered efficiently by waves in the upper hybrid mode. Upper hybrid
waves are electrostatic waves, but it is not clear that these waves are sufficiently common to
explain the diffuse precipitation of low energy electrons.

21.3 Auroral Waves and Ion Heating

Plasma waves play several roles on the auroral stage. As we have seen, waves near the equator
provide the pitch angle scattering that causes diffuse aurora. Closer to Earth there are several
types of plasma waves that are generated by the intense flux of particles precipitating into the
aurora.

Discrete auroras are strong sources of whistler modes that appear rather different from
whistlers generated by lightning. The auroral emissions are characterized by a broadband
spectrum covering frequencies from a few kHz to hundreds of kHz, and they are continously
generated with only slow amplitude variations. If the signal is amplified and connected to a
loudspeaker a hissing noise is heard, and these waves are called auroral hiss. The auroral hiss
propagates from the upper ionosphere to the equatorial magnetosphere where it contributes to
the magnetospheric hiss. Auroral hiss also propagates to the ground, and at auroral latitudes
it will cause noise in radio receivers tuned to low frequencies.

An interesting wave emission connected to discrete auroral arcs is called Auroral Kilometric
Radiation (AKR). This is an intense radio wave radiation with peak intensity at frequencies
just below 300 kHz, corresponding to a kilometric wavelength. However, the frequency can
vary from 50 kHz to 1 MHz. The AKR is generated by a mechanism involving subtle relativistic
effects ina low density plasma at a frequency very close to the local electron gyrofrequency. The
highest frequencies are generated cloeet to Earth, where the magnetic field is strongest.The
maximum power transmitted as AKR has been estimated to 1 GW, which makes auroras the
strongest sources of radio waves from Earth. EM radiation at these frequencies can propagate
freely out of the magnetosphere where the density is low, but it will be reflected from the
ionosphere at the level where the wave frequency equals 𝜔𝑝𝑒. Hence, AKR signals cannot be
received on the ground, and although these emissions are very strong they were not discovered
until 1965. In fact, the corresponding auroral emission from Jupiter, which is known as Jovian
decametric radiation and has higher frequency, was observed by radio astronomers ten years
earlier.

Electrostatic plasma oscillations and other electrostatic waves are also generated above auroral
arcs. Electrostatic waves with low frequencies, in the vicinity of the ion gyrofrequencies, have
important effects on the magnetospheric dynamics. These waves are generated by the auroral
electrons, but they are damped by the ions. The wave energy absorbed by the ions goes
mainly into their perpendicular velocities. The magnetic moment then increases, and the ions
are pushed out of the ionosphere by the magnetic mirror force 𝜇∇𝐵. This process can cause a
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flow of at least 1025 𝑂+ per second from the auroral ionosphere during times of auroral activity.
This flow gives the magnetosphere a significant content of ionospheric particles, and reduces
the plasma density in the upper ionosphere above auroral arcs. In the auroral cavity dug out
by ion heating the electron density is often about 3×105 m−3 down to altitudes below 1RE, at
least when the ionosphere is in darkness. This density reduction is essential for the generation
of AKR, and as we shall see also for the generation of discrete auroras.

21.4 Substorms and Discrete Aurora

Magnetospheric substorms arise due to an imbalance between the dayside and nightside recon-
nection rates. As a simple example, this can arise during a sudden rotation of the IMF from
northward to southward. A southward IMF leads to an increased reconnection rate at the
magnetopause. More plasma and more magnetic flux is then transported to the magnetotail
in 𝒪(102) s, and the pressure in the tail lobes increases. The plasmasheet is compressed, which
on the ground can be seen as an equatorward motion and brightening of a pre-existing diffuse
arc. The increased precipitation from the squeezed plasmasheet will also intensify ion heating,
which leads to lower densities in the upper ionosphere above the auroral arc. As the density
of the cross tail current increases and the neutral sheet becomes thinner, an unstable situa-
tion builds up. At this stage, reconnection starts in some part of the tail (?@fig-substorm).
This marks the onset of a magnetospheric substorm, and the process of storing energy in the
magnetotail described above is often called the substorm growth phase.

The original usage of “substorm” comes from Akasofu and Chapman (1961), and was used to
describe the short-term magnetic variations during the main phase of a magnetic storm. The
current definition did not develop until a decade later, after it became clear that substorms and
storms were distinctly different geomagnetic phenomena. The collection of phenomena that in-
cludes auroral breakup and expansion, the substorm current wedge, near-Earth dipolarization,
and Pi2 pulsations, became collectively known as the magnetospheric substorm.

The concept of the substorm current wedge (SCW) has played an important role in under-
standing the coupling of the magnetotail to the ionosphere during substorms. It provides a
simple explanation for the magnetic perturbations observed at mid and low latitudes during
substorms, and is useful in understanding the magnetic variations seen in the auroral zone.
In its simplest form, a model of the current wedge consists of a single loop with line currents
into and out of the ionosphere on dipole field lines connected by a westward ionospheric line
current and by an eastward magnetospheric line current (?@fig-substorm).

When the magnetic field lines in the tail start to reconnect, part of the plasmasheet will be
ejected from the tail and flow Earthward with a speed that often exceeds 400 km/s. The
braking of this flow at the inner edge of the plasmasheet requires a substantial j×B force, and
hence a substantial dusk-to-dawn current, which leads to dipolarization of the inner portion of
the magnetic field. At the edges of the injection region, this current is diverted into field-aligned
currents that drive the auroral electrojet, a strong westward current in the ionosphere. Note
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that the auroral electrojet via Ohm’s law implies a westward electric field and an equatorward
flow of the ionospheric plasma. Flows from the reconnection region and dipolarization of the
magnetic field are associated with field-aligned currents coupling to the ionosphere, whose
net effect is then the SCW. This sequence of changes, from energy storage through explosive
release, is called a magnetospheric substorm. The reconnection process is temporally and
spatially varying, which structures the flows in scale sizes of the order of a few RE and time
scales of a few minutes.

Field-aligned auroral currents in the ionosphere are observed to have current densities of
10 �A/m2. Considering only field-aligned currents, the current density must decrease higher
up where the flux tube widens. At altitudes around 1RE the current density is still about
1 �A/m2. In the auroral cavity where the electron density 𝑛𝑒 is about 3 × 105 m−3, we can
estimate the velocity the electrons must have to carry this current as 𝑣∥ = 𝑗∥/𝑒𝑛𝑒 ∼ 2×107 m/s,
which corresponds to a kinetic energy slightly higher than 1 keV. When the fast flow injected
from the tail by reconnection is stopped, the field-aligned current is carried by electrons that
must be accelerated to keV energies. These electrons will cause aurora, and the sudden buildup
of this current leads to a breakup of the quiet auroral arc that existed during the growth phase
of the substorm.

The auroral breakup occurs in the region of upward field-aligned current, at the western
end of the electrojet. The upward current is carried by downgoing electrons that have been
accelerated by 𝐸∥ at altitudes around 1RE. When these electrons start to precipitate, a very
bright and dynamic auroral display begins. A suitably located observer may see a large part
of the sky filled with rapidly moving auroral forms. As illustrated in the classical drawings of
an auroral substorm shown by Akasofu 1968 (viewing from the north pole), the aurora spreads
poleward, and after a few minutes more stable discrete auroral arcs start to form.

The inertia of the plasma flowing in from the tail with high speed will carry it into a region
where the ambient, mainly magnetic, pressure is higher than the pressure in the injected
plasma. As the inflow continues the pressure increases, and the injected plasma will start to
expand towards the evening and morning side of the magnetosphere. This happens somewhat
further from Earth where the ambient magnetic pressure is lower, on field lines that reach the
ionosphere poleward of the initial breakup. The azimuthal plasma flows associated with this
expansion cause the discrete arcs that form poleward of the breakup.

The simple substorm current wedge model described here is only a crude approximation to the
currents that actually exist in space. It is generally believed that the upward current is localized
in the premidnight sector while the downward current is more broadly distributed along the
auroral oval post-midnight.1 Upward currents are carried by downward moving electrons, while
the downward current is a combination of upward flowing electrons and precipitating ions. The
actual currents probably do not flow on the same L-shells. It has also been suggested that
the current wedge includes currents closing in meridian planes. In this more complex model
there is a second current wedge of opposite sense flowing on a lower L-shell with a different

1Up/down direction is determined w.r.t. the ionosphere.
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current strength. The effect of this loop on the ground is to reduce the apparent strength of
the higher latitude current wedge.

The Dungey cycle is the source of the two-cell (DP-2) ionospheric convection pattern. Intervals
of steady magnetospheric convection, where the dayside and nightside reconnection rates are
roughly balanced, approach the idealized state originally envisioned by Dungey (1961). Yet
reconnection is not a steady process, and even during intervals of SMC, when the solar wind
driver is relatively constant, plasmasheet convection can be intermittent and bursty. Detailed
examination of the responses reveals that a pair of field-aligned currents in the form of a
current wedge forms during each of the phenomenological stages. Thus, the SCW system is
a key phenomenon across all magnetospheric dynamics related to the Dungey cycle, present
from weak to extreme activity conditions, and is the link between magnetospheric dynamics
and the ionosphere.

21.4.1 Knight’s relation

By studying the adiabatic motion of electrons in a parallel electric field, Knight [1973] derived a
formula for the auroral current-voltage (C-V) relation. Analyzing data from sounding rockets,
Lyons et al. [1979] found that the energy flux of precipitating electrons was proportional to the
square of the potential drop. Soon after, it was noticed that for the parameters of interest in
the upward current region, Knight’s relation could be approximated by [Fridman and Lemaire,
1980] (I feel like this is NOT the original Knight’s relation??? Kosta mentioned the linear
relation between FAC and B?)

𝑗𝑧 ≈ −𝐾Δ𝜙 (21.1)

where 𝑗𝑧 is the field-aligned current density below the potential drop and Δ𝜙 is the potential
difference between the ionosphere and the equatorial magnetosphere. The constant 𝐾, known
as the Lyons-Evans-Lundin constant, is given by

𝐾 = 𝑛𝐺𝑒2
√2𝜋𝑚𝑇𝐺

where 𝑁𝐺 and 𝑇𝐺 are the density and temperature of electrons in the equatorial generator
region. Notice that since 𝑁𝐺 and 𝑇𝐺 may vary in space and time, the term “constant” in
this context means “independent of 𝜙”. The linear C-V relation Equation 21.1 has since been
adopted as a part of theoretical and numerical models. However, there are observations both
support and against this relation.

Using a fluid description of the plasma, Rönnmark [1999] showed that within a purely elec-
trostatic quasineutral model the potential drop should be proportional to the square of the
upward field-aligned current

Δ𝜙 = 𝑚𝑒
2𝑒3

𝑗3𝑧
𝑛2 (21.2)

where 𝑛 is the density in the acceleration region above the ionosphere.
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21.4.2 Current circuit

The current circuit connected with a discrete auroral arc is shown in Figure 21.2. Comparing
with ?@fig-substorm we see that the flows have been rotated from radial to azimuthal. The
length scales are also different, since the auroral electrojet is hundreds of kilometers long and
the ionospheric current in Figure 21.2 which runs across an auroral arc is at most a few km.
Still the physics is very similar. When pointing out some details, we will here use the geometry
shown in Figure 21.2.

Figure 21.2: Geometry of the auroral current circuit and the generator region in the equatorial
magnetosphere.

Let us assume that the auroral flux tube, extending from the ionosphere to the equatorial
plane, can be separated into three parts.

1. At low altitudes we have the collision dominated ionosphere, where field-aligned currents
are connected to horizontal currents.

2. The magnetospheric plasma above the ionosphere is collisionless. In a stationary state,
and in the absence of collisions, the magnetic moment 𝜇 and the total energy 𝐻 are
conserved along the phase-space trajectory of a particle. These assumptions imply that
there are no currents perpendicular to the magnetic field lines (???), and the field-aligned
current in a flux tube is conserved in the second, main, part of the flux tube.

3. The third part is the equatorial generator region. Perpendicular currents are in the
generator region driven by kinetic and dynamic pressure gradients, and the divergence
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of these perpendicular currents is diverted to field-aligned currents. In the real magne-
tosphere the boundaries between these parts may be rather diffuse, and the generator
region may extend far from the equatorial plane.

For simplicity we assume that the main part of an auroral flux tube is separated from the
ionosphere and the generator region by well-defined boundaries. Because of quasineutrality,
the density of the light and mobile electrons is determined by the ion density. The ion density
will remain approximately constant during transitions between different stationary states. Such
transitions, for example increases of the field-aligned current, are accomplished by shear Alfvén
waves propagating up and down the field lines. The time variation of 𝐸⟂ associated with these
Alfvén waves will cause an ion polarization current 𝑗⟂ given by

𝑘⟂ = 𝑛𝑖𝑚𝑖
𝐵2

𝜕𝐸⟂
𝜕𝑡

Combining this with the ion continuity equation

𝑒𝜕𝑛𝑖
𝜕𝑡 ≈ −𝜕⟂𝑗⟂ = 𝑛𝑖𝑚𝑖

𝐵2
𝜕𝜕⟂𝐸⟂

𝜕𝑡
we can integrate to find the density change Δ𝑛𝑖 during the growth of 𝐸⟂. Let 𝐿⟂ be the
thickness of the current sheet that 𝑗⟂ connects to. Choosing 𝐸⟂ = 0.1V/m and 𝐵 = 10𝜇T as
typical values for the auroral acceleration region we find

∣Δ𝑛𝑖
𝑛𝑖

∣ ∼ 𝑚𝑖
𝑒𝐵2 |𝜕⟂𝐸⟂| ∼

10m
𝐿⟂

Clearly, this process can increase the plasma density significantly only within extremely thin
current sheets. On the other hand, if the current sheet has a thickness of a few hundred meters
or more, the density will remain almost constant. Hence, it seems reasonable to consider the
plasma density in the main part of the flux tube as fixed when the current and voltage vary.

In a state of steady field-aligned current the contribution to the current by ions of mass 𝑚𝑖
is about a factor √𝑚𝑒/𝑚𝑖 smaller than the contribution by electrons of mass 𝑚𝑒. If we as a
first approximation consider this ratio as fixed, the ion and electron currents are separately
conserved. In the main part of the flux tube, where the current is purely field-aligned, the
plasma density will then be unaffected by the presence of a steady current. However, altitude
variations in plasma properties such as ion composition and electron and ion temperatures
may cause variations in the ratio between ion and electron current, and this will cause slow
decreases or increases of the plasma density.

Pressure forces in the equatorial plane try to establish a strong velocity shear 𝜕𝑥𝑢𝑦, which im-
plies a strong 𝜕𝑥𝐸𝑥 in Figure 21.2 (E = −u×B). Recalling eq-ionosphere_potential_derivation
we find that the gradient of the ionospheric electric field is determined by the field-aligned
current as

𝜕𝐸𝑥
𝜕𝑥 = 𝑗𝑧

Σ𝑃
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As long as there is no potential drop along the field lines, the magnetospheric and ionospheric
electric fields are simply related, and the mapping of a strong velocity shera in the equatorial
plane to the ionosphere demands a strong field-aligned current. However, a strong current
through the auroral cavity means that the electrons must be accelerated by a potential drop
(e.g. Equation 21.2).

The appearance of this potential drop on field lines that carry currents up from the ionosphere
means that the ionospheric and magnetospheric electric fields become decoupled. The frozen-
in condition does not hold in the acceleration region, and this breakdown of ideal MHD also
means that the equatorial plasma is free to flow without dragging the ionosphere along. The
potential drop Δ𝜙 limits the current density, and hence the braking j × B force. Notice that
it is the low altitude acceleration in this potential drop, which in the energy spectrum of the
precipitating electrons is observed as a peak at the energy 𝑒Δ𝜙, that distinguishes the discrete
from the diffuse aurora.

The field lines carrying current up from the ionosphere connect to regions with a strong inward
gradient of the driving force, which is the outer part of the volume with enhanced pressure.
When the brakes in this region are released, the flow will build up a narrower region of high
pressure at larger 𝑦. ??? Only the outer part of this smaller volume will continue to expand,
and this process quickly creates a narrow flow channel in the 𝑦-direction. The outer edge of
this channel maps to a discrete auroral arc in the ionosphere.

In the model described above, the flows are constrained to the 𝑦-direction. In the real mag-
netosphere, the flows can be deviated in the radial 𝑥-direction to form curls and vortices. As
illustrated by Akasofu, the geometry of real auroral arcs is very complicated. The patterns
are similar to the turbulence seen when water flows from a river into a lake.

I still have many questions regarding the substorms and SCW. Reading the review by (Kepko
et al. 2015) makes things worse: my impression is that there has not yet existed a model for
explaining the whole current system. No wonder the sawtooth study with MHD-EPIC ended
up in a strange way.

21.4.3 Omega Band Auroras

Auroral luminosity undulations of the poleward boundaries of diffuse auroras were first de-
scribed by Akasofu and Kimball (1964) and were named “omega bands” due to the similarity
of their shapes to inverted (poleward-opening) versions of the Greek letter Ω. Omega bands
are generally observed in the post-midnight and morning sectors during the recovery phases
of magnetospheric substorms. They typically have sizes of 400–1000 km and usually drift
eastward at speeds of 0.3–2 km/s.
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21.4.4 Theta Auroras

Theta auroras (transpolar aurora arcs) are thought to be linked to high latitude reconnections,
which typically happens under northward IMF conditions.

IMF 𝐵𝑦 may also contribute to theta auroras as the twist of magnetic field lines together with
high latitude reconnections can lead to the strong aurora arcs.

21.4.5 Throat Auroras

Throat Auroras, named after the finger-like structure on the dayside, are thought to be caused
by transient reconnection and magnetopause depression with large 𝐵𝑥 in the cusp region.

21.4.6 Pulsation Auroras

21.5 Region I and Region II Currents

Region II current is linked to the partial ring current around low latitude region. A simple
MHD model does not have ring currents (Section 4.9), which means it cannot have Region
II currents. Region I currents, however, can be generated, since it relates to the dayside
particle precipitation around the polar cap cusp region and reconnection happening at the
magnetopause.

Observation indicates that extreme magnetic storms can cause strongly enhanced Region II
current compared with Region I current.

21.6 Aurora Oval

• The overall size is very dynamic.
• The size of the oval is more related to the nightside reconnection (as indicated by the

nightside contribution of the electric potential). There is no simple relation with the
dayside electric potential (CPCP?).

• Fluid model is not enough to explain observation.
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21.7 Summary

• Enhanced dayside reconnection
• thin tail current sheet
• reconnection-accelerated electrons
• carry current into the auroral cavity
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22 Boundary Conditions

Boundary condition is an important topic both in theory and simulation. This chapter aims at
providing an overview of the boundary conditions we apply for electromagnetism and plasma
simulations.

22.1 Conducting Boundary

The general boundary conditions on the EM field at an interface between medium 1 and
medium 2 are

�̂� ⋅ (D1 − D2) = 𝜏
�̂� × (E1 − E2) = 0
�̂� ⋅ (B1 − B2) = 0

�̂� × (H1 − H2) = K

(22.1)

where 𝜏 is used for the interfacial surface change density (to avoid confusion with the conduc-
tivity), and K is the surface current density. Here, �̂� is a unit vector normal to the interface,
directed from medium 2 to medium 1. We have learned from EM that at normal incidence,
the amplitude of an electromagnetic wave falls off very rapidly with distance inside the surface
of a good conductor. In the limit of perfect conductivity (i.e., 𝜎 → ∞), the wave does not
penetrate into the conductor at all, in which case the internal tangential electric and magnetic
fields vanish. This implies, from Equation 22.1, that the tangential component of E vanishes
just outside the surface of a good conductor, whereas the tangential component of H may
remain finite. Let us examine the behavior of the normal field components.

Let medium 1 be a conductor, of conductivity 𝜎 and dielectric constant 𝜖1, for which
𝜎/𝜖1 𝜖0 𝜔 ≫ 1 , and let medium 2 be a perfect insulator of dielectric constant 𝜖2. The change
density that forms at the interface between the two media is related to the currents flowing
inside the conductor. In fact, the conservation of charge requires that

�̂� ⋅ j = 𝜕𝜏
𝜕𝑡 = −𝑖𝜔 𝜏

However, �̂� ⋅ j = �̂� ⋅ 𝜎 E1, so it follows from Equation 22.1 that
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�̂� ⋅ (𝜖0𝜖1E1 − 𝜖0𝜖1E2) =
𝑖𝜎
𝜔 �̂� ⋅ E1

(1 + 𝑖𝜔 𝜖0 𝜖1
𝜎 ) �̂� ⋅ E1 = 𝑖𝜔 𝜖0 𝜖2

𝜎 �̂� ⋅ E2

Thus, it is clear that the normal component of E within the conductor also becomes vanishingly
small as the conductivity approaches infinity.

If E vanishes inside a perfect conductor then the curl of E also vanishes, and the time rate of
change of B is correspondingly zero. This implies that there are no oscillatory fields whatever
inside such a conductor, and that the fields just outside satisfy

�̂� ⋅ D = −𝜏
�̂� × E = 0
�̂� ⋅ B = 0

�̂� × H = −K

Here, �̂� is a unit normal at the surface of the conductor pointing into the conductor. Thus,
the electric field is normal, and the magnetic field tangential, at the surface of a perfect
conductor. For good conductors, these boundary conditions yield excellent representations
of the geometrical configurations of the external fields, but they lead to the neglect of some
important features of real fields, such as losses in cavities and signal attenuation in waveguides.
Here is an estimation related to the skin depth.

22.2 Perfectly Matched Layer

In EM field solvers, often we need boundless free-space simulation to prohibit reflecting waves.
Back in 1993, a techinque called perfectly matched layer (PML) for the absorption of EM
waves was proposed to handle this problem, so that we don’t necessarily need to set boundaries
sufficiently far enough from the scatterer when solving interaction problems. With the new
medium the theoretical reflection factor of a plane wave striking a vacuum-layer interface is
null at any frequency and at any incidence angle, contrary to the previously designed medium
with which such a factor is null at normal incidence only. So, the layer surrounding the
computational domain can theoretically absorb without reflection any kind of wave travelling
towards boundaries, and it can be regarded as a perfectly matched layer. The new medium as
the PML medium and the new technique of free-space simulation as the PML technique.
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22.2.1 Derivation

The theoretical derivation starts in discussing the transverse electric wave propagation. One
key concept that confused me was the magnetic conductivity denoted as 𝜎∗. Maybe this is just
a jargon: permeability is a magnetic analogy to conductivity in electric circuits. Reluctance
in a magnetic circuit is inversely proportional to permeability just as electric resistance is
inversely proportional to conductivity. The relationships between length and cross-sectional
area are also the same. Consequently calling permeability “magnetic conductivity” is a fine
way to reinforce the analogy and understand magnetic circuits using an electronic analogy.

I guess I need to review my EM courses to fully understand the derivations.
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23 Particle-in-Cell

23.1 Phase Space Sampling

Let ̂𝑓(z) be a general probability density function with normalization:

∫
Ω

̂𝑓(z)𝑑𝑉 = 1

Now sample the phase space with 𝑁 markers according to ̂𝑓(z) then the marker distribution,
𝑔 is:

𝑔(z) = 𝑁 ̂𝑓(z)
and the phase space volume element occupied by a marker is

𝑑𝑉𝑖 =
1

𝑔(z𝑖)

where z𝑖 is the phase space coordinate of the marker and 𝑑𝑉𝑖 the volume element occupied by
it.

Define the weight of a marker as the number of physical particles in the corresponding phase
space volume occupied by the marker:

𝑤𝑖 = 𝑓(z𝑖)𝑑𝑉𝑖 =
𝑓(z𝑖)
𝑔(z𝑖)

This marker distribution can represent the total 𝑓 or the 𝛿𝑓 . (???)

We can now take moments of the distribution function in the phase space (such as density),
and the Monte Carlo approximation to the integration is as follows:

𝑀(𝐴) = ∫
Ω
𝐴(z)𝑓(z)𝑑𝑉 =

𝑁
∑
𝑖=1

𝐴(z𝑖)𝑤𝑖 +
1√
𝒩

where 𝑁 is the number of markers in the phase space region Ω. This Monte Carlo approxima-
tion makes the particle simulation feasible for a number of problems, even in 3D, at the cost
of introducing an error on the order of 𝑁−1/2.
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23.2 Artificial Scalings

Common scales to characterize the plasma system:

• Global scales of the system 𝑑𝑔, characterized by the magnetopause standoff distance in
the magnetosphere, some fraction of the solar radius in the corona, or system length for
Tokamak.

• Ion kinetic scales characterized by the ion inertial length 𝑑𝑖

𝑑𝑖 = √ 𝑚𝑖
𝑛𝑖𝑞2𝑖 𝜇0

= 𝑚𝑖
𝑞𝑖

√ 1
𝜌𝑖𝜇0

and the ion gyroradius

𝑟𝑖 =
𝑚𝑖𝑣th,𝑖
𝑞𝑖𝐵

= 𝑚𝑖
𝑞𝑖

√𝑝𝑖/𝜌𝑖
𝐵

• Electron kinetic scales characterized by the electron skin depth 𝑑𝑒

𝑑𝑒 = √ 𝑚𝑒
𝑛𝑒𝑞2𝑒𝜇0

= 𝑚𝑒
𝑞𝑒

√ 1
𝜌𝑒𝜇0

• The smallest plasma scale characterized by the Debye length 𝜆𝐷

𝜆𝐷 = √𝜖0𝑣2th,𝑒
𝑞2𝑒𝑛𝑒

= 𝑚𝑒
𝑞𝑒

𝜖0𝑝𝑒
𝜌𝑒

where 𝑣th,𝑒 = √𝑝𝑒/𝜌𝑒 is the electron thermal velocity.

Typically, 𝑑𝑖 are orders of magnitude smaller than 𝑑𝑔, and 𝑑𝑒 is even smaller. If we are
interested in the interplay between the global plasma system and the kinetic processes, it is
a natural question to ask how the behavior of the system depends on the ratio 𝑑𝑔 ∕ 𝑑𝑖. For
example, in Ganymede’s magnetosphere 𝑑𝑔∕𝑑𝑖 ∼ 10 and the kinetic effects have non-negligible
contributions to the global system. On the other hand, if 𝑑𝑔 ∕ 𝑑𝑖 is a very large number, then
the kinetic effects will be mostly limited in a small region.1

For quasi-neutral plasmas, 𝑛𝑖 = 𝑛𝑒 → 𝜌𝑖/𝜌𝑒 = 𝑚𝑖/𝑚𝑒, 𝑞𝑖 = 𝑞𝑒, 𝑝𝑖 = 𝑝𝑒. The ion scales are
√𝑚𝑖/𝑚𝑒 times larger than the corresponding electron scales. For a proton-electron plasma,
√𝑑𝑖/𝑑𝑒 ≈ 43. A standard trick to reduce the computational requirement is to artificially
reduce the mass ratio to a smaller value (1836 ≥ 𝑑𝑖/𝑑𝑒 ≥ 25). In terms of reconnection, we
have found only a relatively weak dependence of the process on the mass ratio. In practice
almost all numerical studies, especially in 3-D, use a reduced ion-electron mass ratio.

1Reconnection can lead to wave generation, which is a process of energy and momentum conversion from the
kinetic region to the global scale. Foreshock waves are also triggered by the kinetic processes and have a
global impact. Therefore, this statement requires extra consideration.
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Tóth et al. (2017) proposed another scaling methods to increase the ion and electron mass-to-
charge ratios by a kinetic scaling factor 𝑓 while keeping the MHD quantities, the mass densities
𝜌𝑒 and 𝜌𝑖, the pressures 𝑝𝑒 and 𝑝𝑖, the bulk velocities 𝑢𝑒 and 𝑢𝑖, the magnetic field B, and the
various constants 𝜖0, 𝜇0, and c unchanged. A nice property of this scaling method is that the
characteristic speeds (bulk velocity, thermal velocity, Alfvén speed) are not modified; in other
words, this kinetic scaling has no effect on ideal/resistive MHD. A direct implication of this
scaling is the solution on the kinetic scales is similar for different values of f, but the spatial
and temporal scales are proportional to f.

23.3 Computational Cost

The key feature that makes PIC more feasible than the brute-force nbody method is the
reduction of computational cost. Given 𝑁 macro-particles in the system, a brute force method
has a complexity of 𝒪(𝑁2), and a PIC method has 𝒪(𝑁 log𝑁). A rough idea how this
is possible can be obtained by ignoring the pair interactions and consider collective effects
especially for those particles at a large distance.

A commonly used trick is to introduce a reduced ion-to-electron mass ratio. In a 3D simulation,
the cost scales with (𝑚𝑖/𝑚𝑒)3. However, note that in low mass ratio runs (e.g. 𝑚𝑖/𝑚𝑒 = 25),
the thermal speed of the electrons may be comparable to the Alfvén speed which causes higher
wave decay through Landau damping on the electrons.

23.4 �f Method

Consider the growth rate of a single unstable wave in a 1D-1V Vlasov-Poisson system of plasma.
The energy conservation leads to

d
𝑑𝑡(

𝜖0
2 𝐸(𝑥)2) +∫𝑞𝑣𝐸(𝑥)𝑓(𝑥, 𝑣)𝑑𝑣 = 0

For a single mode 𝐸(𝑥, 𝑡) = 𝐴(𝑡) sin(𝑘𝑥 − 𝜔𝑡), the growth rate is

𝛾 = 1
𝐴

d𝐴
d𝑡 = −∫𝑞𝑣𝐸𝑓𝑑𝑣 = −∑

𝑗
𝑞𝑗𝑤𝑗𝐸(𝑥𝑗)

where 𝑤𝑗 is the particle weight. All kinetic information lies in the marker particle position
distribution.

The idea of 𝛿 − 𝑓 method is to decompose the total distribution function into two parts,
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𝑓 = 𝑓0 + 𝛿𝑓, |𝛿𝑓| ≪ 𝑓0

and let the particle weight be proportional to the perturbation part,

𝑤 ∝ 𝛿𝑓, 𝑤𝑗 =
𝛿𝑓(𝑥𝑗, 𝑣𝑗)
𝑓(𝑥𝑗, 𝑣𝑗)

If the contribution from 𝑓0 is known, for example

∫𝑞𝑣𝐸𝑓0𝑑𝑣 = ∫𝑞𝑣𝑓0(𝑣)𝐴 sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑣 = 0

then the growth rate can be written as

𝛾 = −∫𝑞𝑣𝐸𝛿𝑓𝑑𝑣 = −∫𝑞𝑣𝐸𝛿𝑓
𝑓 𝑓𝑑𝑣 = ∑

𝑗
𝑞𝑗𝑣𝑗𝑤𝑗𝐸(𝑥𝑗)

Since now the particle weight is proportional to 𝛿𝑓/𝑓 , the system noise would be significantly
reduced by (𝛿𝑓/𝑓)2; in other words, for the same noise level the number of macro-particles
required would be reduced by (𝛿𝑓/𝑓)2, which is typically 𝒪(106). Of course this requires the
prior assumption |𝛿𝑓| ≪ 𝑓 to be valid.
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24 Hybrid Methods

The hybrid model is valid for low-frequency physics with 𝜔 ∼ Ω𝑖 and 𝑘𝑟𝐿𝑖 ∼ 1 (wavelength
𝜆 ∼ 6𝑟𝐿𝑖), where 𝜔 is the wave frequency, 𝑘 is the wave number, Ω𝑖 is the ion gyrofrequency,
and 𝑟𝐿𝑖 is the ion Larmor radius. For this range of wave frequency and wavelength, the ion
kinetic physics in the near-Earth instabilities are resolved with grid sizes ∼ 𝑟𝐿𝑖 or ion inertial
length 𝑑𝑖. The finite ion gyroradius effects are resolved with particle time steps Δ𝑡 much
smaller than the gyroperiod.

A typical time step in a global hybrid magnetosphere model is 0.05Ω−1
0 , where Ω0 is the

upstream (solar wind) ion gyrofrequency. For IMF 𝐵0 ∼ 10 nT, Ω0 ∼ 1 rad/s, which corre-
sponds to 𝑓0 ∼ 1/2𝜋 s−1. Based on in-situ observations, the typical ion inertial length in the
tail is ∼ 0.2RE, but smaller near the dayside magnetopause. Therefore usually discrete grid
size Δ𝑥 = 0.1 𝑑𝑖 is barely enough to resolve tail ion kinetic dynamics but not dayside kinetic
structures.

24.1 Classical Hybrid Model

Define the electric charge density 𝜌 and current density J as

𝜌 = ∑
𝑠

𝑞𝑠𝑛𝑠 − 𝑒𝑛𝑒

J = ∑
𝑠

𝑞𝑠𝑛𝑠u𝑠 − 𝑒𝑛𝑒u𝑒

where 𝑞𝑠, 𝑛𝑠,U𝑠 are the charge, number density and bulk velocity of ion species s calculated
by taking moments of the distribution function

𝑛𝑠 = ∫ d3𝑣𝑓𝑠(r𝑠,v𝑠, 𝑡)

u𝑠 = 1
𝑛𝑠

∫d3𝑣v𝑠𝑓𝑠(r𝑠,v𝑠, 𝑡)

or in the corresponding discrete forms where the distribution function is represented as a group
of macro-particles with a specific shape function. In this way it behaves more like a particle
cloud.
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The crucial assumption in the hybrid model is the quasi-neutrality, that is, the electrons
move fast enough to cancel any charge-density fluctuations and 𝜌 = 0 is always satisfied. By
assuming quasi-neutrality, we can

• avoid solving the conservation equations for electrons
• avoid solving the Maxwell’s equations entirely and instead use the generalized Ohm’s

law instead

The electron density thus can be written by using ion densities 𝑛𝑒 ≈ 𝑛𝑖 ≡ ∑𝑠 𝑞𝑠𝑛𝑠/𝑒. In
addition, the electron bulk velocity may also be eliminated using Ampère’s law

J = 𝜇−1
0 ∇× B (24.1)

and the relation
u𝑒 = u𝑖 − J/𝑛𝑒𝑒 (24.2)

The basic equations used in the conventional PIC hybrid model first has a particle pusher for
individual ions

dx𝑗
d𝑡 = v𝑗

dv𝑗
d𝑡 = 𝑞𝑗

𝑚𝑗
(E + v𝑗 × B)

where the subscript 𝑗 and 𝑒 indicate the indices for individual ions and the electron fluid and
other notations are standard. The lowercase velocities are velocities for each macro-particle.

Alternatively, if we rely on a Vlasov system, we directly solve for the distribution function
𝑓(r𝑠,v𝑠, 𝑡) from the Vlasov equation

𝜕𝑓𝑠
𝜕𝑡 + v𝑠

𝜕𝑓𝑠
𝜕r𝑠

+ a𝑠 ⋅
𝜕𝑓𝑠
𝜕v𝑠

= 0

where
a𝑠 = 𝑞𝑠

𝑚𝑠
(E + v𝑠 × B)

The generalized Ohm’s law is used to determine the time evolution of the electric field, derived
from the electron momentum equation assuming 𝑚𝑒 → 0,

E = −u𝑖 × B + 1
𝜇0𝑛𝑒𝑒

(∇ × B) × B − 1
𝑛𝑒𝑒

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑒 + R𝑒𝑖 (24.3)

where the current in the Hall term has already been replaced by the curvature of B. Note that
the density has been written with electron number density, instead of ion density, to avoid the
confusion for multiple ion species under the quasi-neutrality condition. The last term R𝑒𝑖 can
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either represent collision/physical resistivity, or artificial resistivity/numerical diffusion. For
electromagnetic problems, it can include resistive and hyper-resistive terms of the form

R𝑒𝑖 = 𝜂J + 𝜂𝐻∇2J

where the resistivity 𝜂 may be thought of as accounting in a simple way for electron-ion colli-
sions, and the hyper-resistivity 𝜂𝐻 may represent an electron viscosity and helps with numerical
stability by damping grid-scale oscillations. In addition, R𝑒𝑖 can also include contributions
from explicit friction or other momentum exchange terms in the particle collision models.

The magnetic fields evolve according to Faraday’s law

𝜕B
𝜕𝑡 = −∇× E

The Hall term supports Whistler waves, which usually place the strongest limit on the time
step in hybrid PIC codes. The Courant–Friedrichs–Lewy (CFL) condition for Whistler waves
on the time step is typically Ω𝑐𝑖Δ𝑡 < (Δ𝑥/𝑑𝑖)2/𝜋. Updating the magnetic field including the
Hall term turns out to be a stiff problem, thus requires smaller time step sub-cycling in many
practical cases. This is most useful when the grid resolution is very fine with Δ𝑥 ≪ 𝑑𝑖.
Finally, by determining the electron pressure tensor by using an appropriate equation of state,
the evolution of the system can be followed in time. For example, let ⃡⃡⃡ ⃡⃡𝑃𝑒 = 𝑃𝑒 ⃡𝐼 where 𝑃𝑒 is
the isotropic scalar electron pressure. In the simplest form

𝑃𝑒 = 𝑛𝑒𝑘𝐵𝑇𝑒

where 𝑛𝑒 ≈ 𝑛𝑖 and 𝑇𝑒 = 𝑇𝑖. Note however in a plasma electron pressure is usually higher than
ion temperature, so this is a very crude assumption. Another commonly used assumption is
an adiabatic process

𝑃𝑒 = 𝑛𝛾
𝑒𝑘𝐵𝑇𝑒 = 𝑛0(𝑛/𝑛0)𝛾𝑘𝐵𝑇𝑒0

where 𝛾 = 5/3 is the adiabatic index for a monatomic ideal gas.

For more complicated systems with gradients in the initial conditions, a separate electron
energy evolution equation is required. This takes the form

𝜕𝑃𝑒
𝜕𝑡 = −𝛾∇ ⋅ (𝑃𝑒u𝑒) + (𝛾 − 1)u𝑒 ⋅ ∇𝑃𝑒 + (𝛾 − 1)(−∇ ⋅ Q𝑒 +𝐻𝑒𝑖) (24.4)

where the electron bulk velocity is inferred from Equation 24.2, with the current from Equa-
tion 24.1. If used in place of a simple equation of state, Equation 24.4 is integrated in time
within the same numerical loop as the magnetic field evolution. For many problems, the
electron heat flux may be modeled with a heat conductivity 𝜅 as

Qe = −𝜅∇𝑇𝑒
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where 𝜅 = 𝜅𝑒 + 𝜅0, 𝜅𝑒 is given by a physical model and may depend on the local plasma
conditions, and 𝜅0 is a small (𝜅0 ∼ 0.01 − 0.1𝜅𝑒 for models with a physical heat conductivity,
or 𝜅0 ∼ 0.01𝑛0𝑑𝑖𝑉𝐴 for magnetized simulations) constant numerical diffusion coefficient set
separately for convenience that helps maintain numerical stability. Models for electron and
ion energy exchange may be included through the term 𝐻𝑒𝑖, which can be captured by adding
energy lost in each cell by ions in collisions models back to the local electron fluid cell. (???)

It is of course possible to incorporate the full electron pressure tensor effects to handle specially
reconnection physics better.

A more complete review is given by (Winske et al. 2023) for the hybrid-kinetic model assuming
massless electrons. The essential problem in all hybrid algorithms is how to calculate the
electric field at the next time step.

24.1.1 Pros and Cons

Strengths:

• No approximations to ion physics.
• Valid for 𝜔/Ω𝑖 ∼ 𝑘𝑟𝑖 ∼ 1.
• No issues for high-𝛽 regimes.
• Simple implementation of particle push that can be readily optimized.
• Removes stiffest electron scales. Neglecting the electron kinetic scales typically reduces

the computing cost and memory requirements by a factor of √𝑚𝑖/𝑚𝑒 (compared to
what is used in full-PIC) for each spatial dimension and the time step may usually be
increased by a similar factor.

Limitations:

• Need to resolve ion gyrofrequency.
• Stiff EMHD whistler waves Δ𝑡𝐶𝐹𝐿 ∼ Δ𝑥2.
• No electron Landau damping.
• Explicit time-stepping schemes can be complex.
• No existing method conserves momentum or energy.

24.2 Low Density Treatment

Because the hybrid model includes terms proportional to 1/𝑛𝑒, a modification is necessary for
low-density and vacuum regions. The simplest method is to apply a density lower limit 𝑛𝑓 in
the field solver, so that the density used to advance the fields is 𝑛𝑒 = max(𝑛𝑒, 𝑛𝑓). Typical
values used for the density floor are 𝑛𝑓/𝑛0 ∼ 0.01 − 0.05, where 𝑛0 is a reference background
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density. The reference density 𝑛0 is typically the value used to define the ion skin depth
𝑑𝑖 = 𝑉𝐴/𝜔𝑐𝑖.

(Amano, Higashimori, and Shirakawa 2014) suggests another way to solve for the electric
field

(𝜔2
𝑝𝑒 − 𝑐2∇2)E = 𝑒

𝑚𝑒
(J𝑒 × B −∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑒) + (V𝑒 ⋅ ∇)J𝑒 + 𝜂J

which can be reduced to the Laplace equation in near-vacuum region, presenting no numerical
difficulty.

Besides, the electron velocity is redefined

V𝑒 = J𝑒
max(𝜌𝑒, 𝜌𝑒,𝑚𝑖𝑛)

where the minimum density 𝜌𝑒,𝑚𝑖𝑛 is an artificially set value.

In a hybrid system, the maximum phase velocity is the electron Alfvén speed, which goes to
infinity when 𝑚𝑒 ≈ 0. However, when doing calculations we only have ion Alfvén speed

𝑣𝑝,𝑚𝑎𝑥 ≃ 1
2

𝐵√𝜇0𝑛𝑒𝑚𝑒
= 1

2𝑉𝐴,𝑖√
𝑚𝑖
𝑚𝑒

To keep the maximum phase velocity always below the CFL condition, one may use a modified
electron mass ratio 𝑚′

𝑒 defined as

𝑚′
𝑒

𝑚𝑖
= max(𝑚𝑒

𝑚𝑖
, 𝑉 2

𝐴(
Δ𝑡

2𝛼Δ𝑥)
2)

instead of the physical electron mass 𝑚𝑒. Here 𝑉𝐴 is the Alfvén speed calculated from the
local density and magnetic field, and 𝛼 is the maximum allowed Courant number (≤ 0.5).

24.3 Finite Electron Inertia

The conventional hybrid simulation model dealing with kinetic ions and a massless charge-
neutralizing electron fluid is known to be susceptible to numerical instability due to divergence
of the whistler-mode wave dispersion, as well as division-by-density operation in regions of low
density. The Alfvén wave at short wavelength comparable to ion inertia length has dispersion
due to the decoupling between ion and electron dynamics. There thus appears the whistler
mode whose frequency diverges as 𝜔 ∝ 𝑘2. This means that the maximum phase velocity
in the system increases rapidly without bound, implying numerical difficulty. The division-
by-density issue originates from Equation 24.2 and appears in the Hall and electron pressure
gradient terms. Consequently, a pure vacuum region is not allowed to exist in the simulation
domain unless some ad hoc technique is used.
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On the other hand, this can be restated as hybrid simulations with massless charge-neutralizing
electrons are unrealistic if whistlers are involved. Either people use full particle models, or try
to incoporate finite electron mass into the conventional hybrid model.

The finite electron inertia correction is proposed to solve the whistler-mode wave dispersion
issue. The conventional way to include a finite electron inertia correction into the hybrid model
is to introduce the following so-called generalized electromagnetic field Ê, B̂, defined as

Ê = E − 𝜕
𝜕𝑡(

𝑐
𝜔2𝑝𝑒

∇× B)

B̂ = B +∇× ( 𝑐2
𝜔2𝑝𝑒

∇× B)

in which the terms proportional to ∇× B represent electron inertia correction.

From the equation of motion for the electron fluid, it may be shown that

Ê = −V𝑖 × B + 1
𝑛𝑖𝑒

(∇ × B) × B − 1
𝑛𝑖𝑒

∇ ⋅ ⃡⃡⃡ ⃡⃡𝑃𝑒 −
𝑚𝑒
𝑒 (V𝑒 ⋅ ∇)V𝑒

which is similar to the generalized Ohm’s law but now with the last term which also represents
the correction. V𝑒 is obtain from Equation 24.2.

Given the generalized electric field Ê, one can advance the generalized magnetic field B̂ by
using Faraday’s law, which can be easily checked to satisfy

𝜕B̂
𝜕𝑡 = −∇× Ê

Further simplifications are commonly adopted; for example, the electric field correction term
and electron-scale spatial variation of density are often ignored. In this case, the magnetic
field may be recovered by solving the equation

B̂ = (1 − 𝑐2
𝜔2𝑝𝑒

∇2)B

and Ê = E is assumed. The nice feature with this approach is that the correction can be
implemented as a post process to the each integration step of a standard procedure.
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24.4 Comparison with Hall MHD

The zeroth and first moments of the ion Vlasov equation are

𝜕𝑛
𝜕𝑡 + ∇ ⋅ (𝑛u𝑖) = 0

𝜕𝑚𝑛u𝑖
𝜕𝑡 + ∇ ⋅ [𝑚𝑛u𝑖u𝑖 −

BB
𝜇0

+ 𝐵2

2𝜇0
I + ⃡⃡⃡ ⃡⃡𝑃 ] = 0

The difference between Hall MHD and hybrid model is the treatment of the pressure tensor
term. For Hall MHD with constant 𝑇𝑖0/𝑇𝑒0,

⃡⃡⃡ ⃡⃡𝑃 = 𝑝𝑒(1 + 𝑇𝑖0/𝑇𝑒0)I

For hybrid models,
⃡⃡⃡ ⃡⃡𝑃 = 𝑝𝑒I +∫𝑚𝑖𝑓𝑖wwdw

Thus Hall-MHD is a “cold-ion” model in the sense that it does not include ion finite Larmor
radius (FLR) or other kinetic effects from warm distribution functions.

24.5 Normalization

There are five basic quantities in the hybrid model (length, mass, time, current density, and
number density???) and three physical constants (𝜇0, 𝑞,𝑚). If we add temperature, then
correspondingly 𝑘𝐵 would appear. Usually even though the particle mass is a constant, we
treat it as a parameter to represent a proton system or electron system or other particle system.
Thus we need three (5−2) independent reference quantities for the normalized units in a hybrid
model. For instance, We can take a magnetic field scale 𝐵0, number density scale 𝑛0, and mass
scale 𝑚0. The general variable transformation from the original units to normalized units is

𝜒 = 𝜒0�̃�

where �̃� denote the variable in the normalized units and the scale 𝜒0 shall be in the original
units (e.g. SI).

Typically we use the inverse of gyrofrequency for the time scale

𝑡0 = Ω−1
𝑐0 = 𝑚0

𝑒𝐵0

and Alfvén speed for the velocity scale

𝑣0 = 𝑣𝐴 = 𝐵0√𝜇0𝑛0𝑚0

615



Then the length scale is taken to be the ion skin-depth, or inertial length

𝐿0 = 𝑑𝑖 =
𝑐

Ω𝑐0
= √ 𝑚0

𝜇0𝑒2𝑛0

A common trick we can use to speed up the simulation is to artificially increase the ion mass
such that the length scale is increased ∝ √𝑚0. For example, in many global hybrid Earth
magnetosphere models, 𝑑𝑖 in the upstream solar wind is artificially increased to 0.1R𝐸 (by
increasing the ion mass), which is 6.8 times the realistic 𝑑𝑖 = 0.015R𝐸 for 𝑛𝑠𝑤 = 6 amu/cc. If
our grid resolution is 0.05R𝐸 ≈ 300 km (which is common as of 2020s), we will have about 10
points per ion-scale wave, which is enough to resolve the ion-scale kinetics.

However, a consequence of this scaling due to computational limitation must be emphasized.
The reference Alfvén speed

𝑉𝐴0 = 𝑑𝑖0Ω𝑖0

will also be larger than reality since we artificialy increase 𝑑𝑖0 but not Ω𝑖0.

Note the difference between gyrofrequency and frequency, which differs by a factor of 2𝜋:

𝜔 = 2𝜋𝑓

I once made a mistake in dealing with a code that uses SI units. You may wonder how come
the ion inertial length is defined by speed of light divided by the plasma ion frequency in the
unit of [rad/s], and time scale in the unit of Ω−1

𝑖 which is [s/rad]. In practice, we do not
include 2𝜋 in neither of them!

The pressure scale can be equivalently derived from the magnetic pressure or dynamic pres-
sure

𝑃0 = 𝐵2
0

𝜇0
= 𝜌0𝑣20

Note the drop of the factor of 2 here: it is then kept in the dimensionless equations, e.g. 𝑝′𝐵 =
𝐵′2/2.
The temperature scale is then

𝑇0 = 𝑝0
𝑛0𝑘𝐵

= 𝐵2
0

2𝜇0𝑘𝐵𝑛0

Note the factor of 2 appeared in the pressure and temperature scales: this is to make the
derivations consistent. The unit conversions are summarized in Table 24.1.
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Table 24.1: hybrid model unit conversion.

Table 24.2: Example basic quantities in the hybrid model

Basic variable Notation Definition Value
Magnetic field 𝐵0 𝐵0 = 𝐵ref 1 × 10−8 T
Number density 𝑛0 𝑛0 = 𝑛ref 1 × 106 m−3

Mass 𝑚0 𝑚0 = 𝑚𝑖 1.67 ×
10−27 kg

Table 24.3: Example derived quantities in the hybrid model

Derived variable Notation Definition Value
Length 𝑙0 𝑙0 =

√𝑚0/(𝜇0𝑒2𝑛0)
2.28×105 m

Velocity 𝑣0 𝑣0 = 𝐵0/
√𝜇0𝑚𝑖𝑛0 2.18 ×

105 m ⋅ s−1

Time 𝑡0 𝑡0 = 𝑚𝑖/(𝑒 ∗ 𝐵0) 1.04 s
Mass density 𝜌0 𝜌0 = 𝑛0/𝑚𝑖 1.67 ×

10−21 m−3

Pressure 𝑝0 𝑝0 = 𝜌0𝑣20 7.96 ×
10−11 N ⋅
m−2

Temperature 𝑇0 𝑇0 = 𝑝0∗𝑚𝑖/(𝑘𝐵 𝜌0) 5.76×106 K

617



24.6 Numerical Stability

Nonlinear numerical simulations typically need some dissipation for stability. This is achieved
either via:

1. Explicit terms in equations (“physical dissipation”).
2. Upwinding of advective terms (implicit dissipation via discretization)

Hybrid models usually follow 1) by adding dissipation in Ohm’s law:

E = E∗⏟
frictionless E

+ 𝜂j⏟
resistivity

− 𝜂𝐻∇2j⏟
hyper-resistivity

The reason that we need hyper-resistivity is because the Hall term is badly behaved (stiff?).
Slide 33 Stainer??? The hyper-resistivity term has a similar form of an electron collisional
viscosity 𝜂𝐻∇2u𝑒. But the coefficient is too large for space, sometimes argued as “anomalous
viscosity”.

Extra care shall be taken for conservation when including the frictional terms. For momentum
conservation, we should use E∗ for the macro-particle pusher or Vlasov solver, and only use
E for updating B. For energy conservation, it requires a separate electron pressure equation
with frictional heating 𝐻𝑒 = 𝜂𝑗2 + 𝜂𝐻∇j ∶ ∇j and heat flux q𝑒:

(𝛾 − 1)−1[𝜕𝑝𝑒𝜕𝑡 + ∇ ⋅ (u𝑒𝑝𝑒)] + 𝑝𝑒∇ ⋅ u𝑒 = 𝐻𝑒 −∇ ⋅ q𝑒

24.6.1 Finite Grid Instability

Imagine a scenario where cold ion beams move through uniform spatial mesh. It was shown by
(Rambo 1995) that non-conservative (explicit) schemes are unstable for Ti /Te « 1 regardless of
spatial resolution. The precise threshold in 𝑇𝑖/𝑇𝑒 and beam velocity depends on shape-function
for macroparticles. This instability causes unstable (exponential) heating of ions until some
saturation value and also violates momentum conservation. Implict momentum and energy
conserving schemes are stable w.r.t. these instabilities.

24.7 Boundary Conditions

24.7.1 Open Boundary Conditions

Open boundary conditions allow plasma and magnetic flux to flow into or out of the sim-
ulation domain. Ion particles are absorbed at the open boundaries, and new particles are
injected if necessary. The injected particle flux is sampled from a drifting multi-Maxwellian
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velocity distribution that matches specified densities, velocities, and pressure moments at the
boundary.

The magnetic field is formally split into two components B = B0 + B1, with a fixed external
field B0 and a time-varying component B1. The external field is a vacuum field (∇×B0 = 0)
generated by a system of currents outside the plasma. Examples are the interplanetary mag-
netic field and planetary dipole field in a global magnetosphere simulation, or the confinement
fields generated by external coils in a magnetic mirror device. The particles are advanced in the
total magnetic field B, In the field solver, only B1 is advanced in time, and B0 may be dropped
when computing the plasma current density in the Hall term from 𝜇0J = ∇ × B = ∇ × B1.
The advantage of splitting B in this manner is that for the open boundary conditions, B0
is left fixed in the boundary ghost cells. Otherwise, the external field may change over time
by diffusing at the boundaries. For the open boundary condition on the time-varying compo-
nent of B, the field B1 in each ghost cell is set equal to the value of its neighbor within the
simulation domain.

The electric field is handled differently. The electric field in ghost cells along an open boundary
is advanced in time along with the electric field within the bulk cells. But when computing
the electric field from the Ohm’s law Equation 24.3 in the a ghost cell, it is assumed that there
are no gradients in either B or the plasma moments (𝑛 and u𝑖) normal to the boundary. The
plasma moments, like the magnetic field, within the ghost cell are set equal to their neighboring
values. So, for example, an open boundary in the 𝑥 direction may have pressure gradient fields
𝐸𝑦 and 𝐸𝑧 from 𝑦 and 𝑧 gradients in 𝑃𝑒, but there is no pressure gradient-driven component
𝐸𝑥. Crucially, for an open 𝑥 boundary, gradients in 𝑦 and 𝑧 (but not 𝑥) are retained in the
Hall term ∝ (∇×B)×B. This treatment of the electric field at open boundaries significantly
enhances numerical stability. Nevertheless, it is often necessary to also include a buffer region
several cells wide with an enhanced hyper-resistivity 𝜂𝐻 to dissipate residual oscillations.

24.7.2 Magnetosphere Inner Boundary Conditions

Inner boundary condition is often the most tricky part in magnetopshere modeling. In An-
geo3D [Lin+ 2014], the inner magnetosphere (𝑟 < 6RE) is assumed to be dominated by a cold,
incompressible ion fluid, which coexists with particle ions. The number density of the cold ion
fluid is assumed to be

𝑛𝑓 = 𝑛eq
𝑟3 [1 − tanh(𝑟 − 6.5)]

where 𝑟 is in the unit of RE, and 𝑛eq = 1000 cm−3.

The inclusion of the cold ion fluid in the inner magnetosphere simplifies the conditions for
the fluid-dominant low-altitude, inner boundary. Ion particles are set to be reflected at the
magnetospheric inner boundary (e.g. 𝑟 = 3.5RE). This simple reflection of the ion parallel
velocity v𝑖∥ means that loss cone effects are omitted. For a particle distribution with an
isotropic pitch angle distribution in a dipole field, the particles in a full loss cone are only 0.3%
of the total, which is reasonably neglected. B is assumed to maintain the dipole field values
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at the inner boundary. The ionospheric conditions (1000 km altitude) are incorporated into
the hybrid code, as in global MHD models (Raeder, Walker, and Ashour-Abdalla 1995). See
Section 19.2.

24.8 Tests

24.8.1 Proton Cyclotron Anisotropy Instability

This is an electromagnetic and multi-ion verification test. We have an 1D-3V electromagnetic
instability driven by 𝑝𝑖⟂/𝑝𝑖∥ > 1. Maximum growth happens at k × B = 0 with a finite real
frequency. The instability threshold is

𝑃⟂
𝑃∥

− 1 ≈ 𝑆
𝛽0.4
∥

with 𝑆 ∼ 1 (Gary 1993).

Both k and B0 are parallel to the x-axis. For the initial perturbation, we choose 𝑘𝑥Δ𝑥 = 0.065.
We set an 1D simulation with 64 cells, Δ𝑡Ω𝑐𝑖 = 0.01, dissipation=0. The nominal simulation
parameters are:

𝛽∥ = 1, 𝑇⟂
𝑇∥

= 3, 𝐿𝑥
𝑑𝑖

= 10.5, 𝑇𝑒
𝑇∥

= 1, 𝛾 = 5
3

PCAI results:

• Transverse velocity and magnetic field components grow from noise (left-hand Alfvén
waves).

• Agree with linear theory for these parameters (𝛾/Ω𝑐𝑖 = 0.162).
• Pressure anisotropy decreases via wave-particle interaction until saturation.

When we add a 20% density fraction of a minor species of alpha particles (He2+), the growth
rate is found to be smaller.

𝑍𝛼 = 2,𝑀𝛼 = 4,
𝑇𝛼∥
𝑇𝑝∥

= 2, 𝑇𝛼⟂
𝑇𝛼∥

= 𝑇𝑝⟂
𝑇𝑝∥

= 3, 𝑁𝛼
𝑁𝑝

= 0.2, 𝑍𝛼𝑁𝛼 + 𝑍𝑝𝑁𝑝 = 1

The growth rates across a range of 𝛽 and anisotropy can be computed and compared with a
linear dispersion solver, e.g. HYDROS.
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24.8.2 Landau Damped Ion Acoustic Wave

The fundamental electrostatic mode in the hybrid-PIC model is the ion acoustic wave. This is
also driven by pressure perturbations. In fluid models (e.g. Hall MHD), this wave is undamped.
However, in the hybrid-PIC, Landau resonance damps the wave and locally flattens ion VDF,
which is analogous to electron Landau damping of Langmuir oscillations.

The dispersion relation is
𝑑𝑍(𝜁)

d𝜁 = 2𝑇𝑖
𝑇𝑒

, 𝜁 ≡ 𝜔 − 𝑖𝛾
𝑘𝑣th,𝑖

The nominal simulation parameters are:

𝑇𝑖 = 1/3, 𝛾 = 5/3, 𝑐𝑠 = √𝛾𝑇𝑒/𝑚𝑖 = 1, 𝑘𝑥 = 𝜋/8, 𝛿𝑛 = 2 × 10−2

Results for nominal parameters

• Damping rate: 𝛾 = −0.0932.
• Initial perturbation damps to noise floor. Noise can be reduced by:

1. Use more particles/cell (noise ∼ 1/√(𝑁𝑝)).
2. Binomial smoothing/higher order shape functions.
3. Using low-discrepancy quasi-Random numbers to seed particles (noise ∼ 1/𝑁𝑝).
4. Most efficient: Delta-F (See Section 23.4).

24.8.3 Magnetic Reconnection Island Coalescence

Magnetic islands are 2D versions of flux-ropes. Here we set a self-driven reconnection problem
of coupling of ideal island motion to micro-scale reconnection physics. Ion kinetic effects are
crucial in reconnection studies.

Unstable Fadeev island equilibrium: the magnetic field B is given by ∇ × A, where in this
setup we only need

𝐴𝑦 = −𝜆𝐵0 ln[cosh(𝑧/𝜆) + 𝜖 cos(𝑧/𝜆)]
and the density is given by

𝑛 = 𝑛0(1 − 𝜖2)/[cosh(𝑧/𝜆) + 𝜖 cos(𝑧/𝜆)]2 + 𝑛𝑏

The pressure balance gives
𝛽 = 2𝜇0𝑛0𝑘𝐵(𝑇𝑖0 + 𝑇𝑒0)

𝐵2
0

= 1

The nominal simulation parameters are:

𝜆 = 5𝑑𝑖, 𝜖 = 0.4, 𝑛𝑏 = 0.2𝑛0, 𝑇𝑖/𝑇𝑒 = 1, 𝜂 = 10−3, 𝜂𝐻 = 5 × 10−3, 𝛾 = 1
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and for the numerical parameters, we have a 2D space with 256 × 128 cells, 50 particles/cell,
Δ𝑡Ω𝑐𝑖 = 0.005.

24.8.4 Collisionless Shock

This is a 2D magnetospheric shock problem, with a 𝑀𝐴 = 11.4 shock injected from the right
(open) boundary and a reflecting left boundary to drive the collisionless shock.
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25 Ray Tracing

Wave heating is one of the most important approach to heating the plasma to high temperature.
In magnetic confined plasmas, the usually used waves from high frequency (�100 GHz) to low
frequency (<1 MHz) include electron cyclotron wave (ECW), lower hybrid wave (LHW), ion
cyclotron wave (ICW) and Alfvén wave (AW). There are also terminologies such as fast wave
(FW), slow wave (SW), helicon wave, etc. A simple but still accurate way to study the wave
propagation and heating is using the geometrical optics approximation, which yields the ray
tracing equations.

25.1 Backgrounds

In optics, the refractive index is a measure of how much a material bends or refracts light as
it passes through it. It is defined as the ratio of the speed of light in a vacuum to the speed
of light in the material:

𝑛 = 𝑐
𝑣

where 𝑐 is the speed of light in a vacuum, and 𝑣 is the speed of light in the material.

In a plasma, the refractive index depends on the plasma parameters, such as the density,
temperature, and magnetic field. The plasma refractive index is given by:

𝑛 = 1 − 𝜔2
𝑝

𝜔2 − 𝜔2𝑐𝑒 − 𝑖𝜔𝑒𝑛𝜔
(25.1)

where 𝜔𝑝 is the plasma frequency (Equation 7.2), 𝜔𝑐𝑒 = 𝑒𝐵/𝑚𝑒 is the electron cyclotron
frequency, 𝜔𝑒𝑛 is the electron-neutral collision frequency, 𝜔 is the frequency of the incident
wave, and 𝑖 is the imaginary unit. The plasma refractive index can be complex, meaning that
it has both real and imaginary parts:

• The real part of the refractive index determines the speed of light in the plasma, while
• The imaginary part determines the attenuation or absorption of the wave as it passes

through the plasma.

The refractive index plays an important role in determining the behavior of electromagnetic
waves in plasmas, and is therefore a key parameter in plasma ray tracing simulations.
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25.2 How it Works

In plasma ray tracing, the refractive index of the plasma is calculated based on the plasma
parameters, such as the density, temperature, and magnetic field, and the ray is then traced
through the plasma using the calculated refractive index in the Snell’s law:

𝑛1 sin(𝜃1) = 𝑛2 sin(𝜃2) (25.2)

where 𝑛1 and 𝑛2 are the refractive indices of the media on either side of the interface, ′𝑡ℎ𝑒𝑡𝑎1
is the angle of incidence, and ′𝑡ℎ𝑒𝑡𝑎2 is the angle of refraction. This allows us to study how
waves interact with plasma and how they can be used to probe and manipulate the properties
of the plasma.

The ray tracing equations in Cartesian coordinates are

dr
d𝑡 = 𝜕𝜔

𝜕k = −𝜕𝐷/𝜕k
𝜕𝐷/𝜕𝜔 = v𝑔

dk
d𝑡 = −𝜕𝜔

𝜕r = 𝜕𝐷/𝜕r
𝜕𝐷/𝜕𝜔

with the dispersion relation
𝐷(𝜔,k, r) = 0

where r = (𝑥, 𝑦, 𝑧) is the spatial location, k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the wave vector, 𝜔 is the wave
frequency, and v𝑔 is the group velocity. The geometrical optics approximation is valid in cases
where the wave length is much smaller than the system nonuniform length, which is usually well
satisfied for high frequency waves such as ECW and LHW, but should be used with caution
for low frequency waves such as ICW and AW.

Written in a more explicit way, The three first-order differential equations that relate the
position of the ray to its direction and the properties of the medium are:

d𝑥
d𝑡 = 𝑣𝑔 cos(𝜃)
d𝑦
d𝑡 = 𝑣𝑔 sin(𝜃)
d𝑧
d𝑡 = 𝑣𝑔

𝑘
d𝑘
d𝑧

where 𝜃 is the angle between the ray and the z-axis.1

For more thorough introduction, check out (Tracy et al. 2014).

1These are given by Chat-GPT 3.5, which I don’t understand. There must be some assumption for this choice
of the coordinate system!
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26 Tests

Verifying the validity of models is critical in performing consistent research. This chapter goes
through the numerical tests we can do in plasma physics, and is heavily influenced by the tests
in the Athena MHD code. Detail can be found in (Stone et al. 2008).

26.0.1 Unit Conversion

Most test parameters are listed in dimensionless units. If SI units are required, we need unit
conversions. A rule of thumb is to check the number of constants in the system: making
one constant equal to 1 requires to shrink the number of basic variables by 1. In ideal MHD
Equation 5.49, there are 4 basic quantities (length, mass, time, and current density) and 1
physical constant 𝜇0. If we include temperature, then there will be 5 basic quantities and
2 physical constants 𝜇0, 𝑅. This indicates that we need 3 reference quantities in order to
make the 2 physical constants equal to 1 in the normalized units. For example, in the Earth’s
magnetosphere, we select a reference length, e.g. 𝑙0 = 1RE, a reference mass density, e.g. 𝜌0 =
1.67×10−17 kg ⋅m−3, and a reference magnetic field, e.g. 𝐵0 = 3.12×10−5 T (Earth’s magnetic
field strength at the equator). All the rest conversion factors can be derived from these together
with the physical constants 𝜇0, 𝑅,𝑚𝑖 expressed SI units. (𝑅 is needed for temperature and 𝑚𝑖 is
needed for number density.) Inserting the initially chosen values, we get a full set of conversion
factors from variables in normalized units 𝑛′, 𝐵′, 𝑢′, 𝑝′, 𝑇 ′, ℰ′ to SI units 𝑛,𝐵, 𝑢, 𝑝, 𝑇 , ℰ:

𝑈SI = 𝑈 ′ ∗ 𝑈0

where each conversion factor is summarized in Table 26.1. Note that in the definition of number
density, the denominator is 𝑚𝑖 instead of 𝑚0 and 𝑅 = 2𝑘𝐵/𝑚𝑖 only appears in temperature.
This is because mass does not appear in ideal MHD: for a given 𝜌, the same results are obtained
for a heavy species with small number density and a light species with large number density,
e.g. 𝜌 = 2𝑚𝑖𝑛𝑖 = 𝑚𝑖2𝑛𝑖. In principle we can choose the reference mass arbitrarily, but here in
order to make the values in SI units “look good” we choose 𝑚𝑖. If you need to compare with
a hybrid model, an easy way to make self-consistent conversion is to make mass 𝑚0 = 𝑚𝑖 as a
substitute for any of the basic variables. In this case, the dimensionless 𝜌 = 𝑛. Also note that
in Table 26.1 the MHD pressure and temperature are the sum of electron’s and ion’s pressure
and temperature, which is the reason a factor of “2” pops out in the definition of temperature.
If we are comparing to a hybrid model which assumes massless electrons, a proper modification
would be 𝑝0 = 𝜌0𝑣20/2 and 𝑇0 = 𝑝0 ∗ 𝑚𝑖/(𝑘𝐵 𝜌0) = 𝑚𝑖𝑣20/𝑘𝐵.

625

https://www.astro.princeton.edu/~jstone/Athena/tests/
https://www.astro.princeton.edu/~jstone/Athena/tests/


Table 26.1: MHD unit conversion.

Table 26.2: Example basic quantities in MHD

Basic variable Notation Definition Value
Length 𝑙0 𝑙0 = RE 6.371×106 m
Magnetic field 𝐵0 𝐵0 = 𝐵E 3.12 × 10−5 T
Mass density 𝜌0 𝜌0 = 𝜌E 1.67 ×

10−17 kg⋅m−3

Table 26.3: Example derived quantities in MHD

Derived variable Notation Definition Value
Mass 𝑚0 𝑚0 = 𝜌0𝑙30 4.32 ×

103 kg
Velocity 𝑣0 𝑣0 = 𝐵0/

√𝜇0𝜌0 6.81 ×
106 m ⋅ s−1

Time 𝑡0 𝑡0 = 𝑙0/𝑣0 0.94 s
Number density 𝑛0 𝑛0 = 𝜌0/𝑚𝑖 1010 m−3

Pressure 𝑝0 𝑝0 = 𝜌0𝑣20 7.75 ×
10−4 N⋅m−2

Temperature 𝑇0 𝑇0 = 𝑚𝑖𝑣20/(2𝑘𝐵) 2.81×109 K
Energy density ℰ0 ℰ0 = 𝑝0 7.75 ×

10−4 J ⋅m−3
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26.0.1.1 Example: 𝜌, 𝜌u, ℰ,B to 𝑛, 𝑢, 𝑇

When dealing with velocity distribution functions, one easy way is to write 𝑓(v) = 𝑓(v; 𝑛,u, 𝑇 ).
For instance, a 3D Maxwellian is given as

𝑓(v) = 𝑛( 𝑚
2𝜋𝑘𝐵𝑇

)
3/2

exp(−𝑚(v − u)2
2𝑘𝐵𝑇

)

From dimensionless conserved variables (𝜌, 𝜌u, ℰ,B) to SI units (𝑛,u, 𝑇 ,B), we have

𝑛SI = 𝑛0 𝑛 = 𝜌SI/𝑚𝑖 =
𝜌0
𝑚𝑖

𝜌

𝑢SI = 𝑢0 (
𝜌𝑢
𝜌 )

𝑇SI = 𝑇0
(𝛾 − 1)

𝜌 [ℰ − 1
2𝜌𝑢

2 − 1
2𝐵

2]

𝐵SI = 𝐵0 𝐵

26.1 Errors

1. Diffusion error: the rate at which the amplitude of the wave decreases.
2. Dispersion error: the difference between the speed at which the wave propagates in the

numerical versus the analytic solution.

The error norm usually contains contributions from both. However, one could plot the error
as a function of position or phase to track each individually.

26.2 Wave Tests

26.2.1 Linear wave

Linearization of Equation 5.49 ends up in a system of equations W𝑡 = A(W)W𝑥, where W
is composed of either the primitive variables or conserved variables in 1D, and the subscripts
𝑡 and 𝑥 are corresponding partial derivatives. The eigenvalues and eigenvectors of ideal MHD
can be used to set the characteristic wave perturbations. See the details in Appendix A and
B from (Stone et al. 2008).

The density, velocity, magnetic field, and total energy are all set to constant values initially.
These values can be chosen so that the wave speeds are all well separated, and so that (in
MHD) the wavevector is at an arbitrary angle to B. The precise values chosen for the tests
described here are given in the appropriate results section below.
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The wave is added to as a perturbation to these constant values of the form 𝛿U = 𝐴R sin(2𝜋𝑥).
Here U is the vector of conserved variables, 𝐴 is an amplitude, and R is the right-eigenvector
corresponding to the desired wave family. The components of R for each test are listed in the
appropriate results section below. For all the tests shown here, 𝐴 = 10−6.

The length of the computational domain is set to be one wavelength. Periodic boundary
conditions are used. After the wave has propagated one wavelength, we measure the error
in the numerical solution by computing the norm of the vector resulting from summing the
absolute value of errors in each variable over the grid,

𝜖 = ||Δ𝑈|| = √∑
𝑘
(Δ𝑈𝑘)2

=
√√√
⎷

∑
𝑘
(
𝑁𝑥

∑
𝑖=1

|𝑈𝑛
𝑘,𝑖 − 𝑈0

𝑘,𝑖|/𝑁𝑥)2

Here, 𝑈𝑘,𝑖 is the numerical solution for the k-th component of the vector of conserved quantities
at grid point 𝑖 and time level 𝑛, 𝑈0

𝑘,𝑖 is the initial numerical solution, and 𝑁𝑥 is the number
of grid points. Note the initial solution 𝑈0

𝑘,𝑖 is just the analytic solution which has been
discretized to the grid. Since the discretization of the initial condition also introduces error,
to measure the error in the integration algorithm it is important to compute errors relative to
the initial condition 𝑈0

𝑘,𝑖 rather than the analytic solution. In 2D (3D), summation over 𝑗(𝑘)
is required as well.

To compare to the results given here, it is important to

1. Use the same amplitude for the wave
2. Compute the errors in exactly the same way
3. Compute the errors at exactly the same time

This is an excellent quantitative test of the accuracy and convergence rate of a numerical
algorithm. The only drawback is that it involves only linear amplitude oscillations. Thus, this
test is not characteristic of the kind of problem codes are written to solve in the first place
(after all, the dynamics of linear waves can be treated analytically). A code which does well
on this test may still be very poor at shock-capturing. Still, it is nice to know an algorithm
reduces to the correct answer in the linear regime. Moreover, since virtually all schemes are
first-order for discontinuities such as shocks, smooth problems like this are the only way to
measure the actual convergence rate of higher-order schemes.

This test has proved very useful at detecting coding bugs:

• The errors for left- and right-going waves of the same family should be identical.
• If the errors do not converge, something is wrong somewhere.
• It is necessary to use double precision and very small wave amplitudes to eliminate

round-off error and nonlinear effects.
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26.2.1.1 1D Adiabatic Hydrodynamics

Given Equation 5.49 (with B = 0),
𝜌 = 1
u = 0
𝑝 = 1/𝛾

with 𝛾 = 5/3. The conserved variables are

U = [𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦, 𝜌𝑢𝑧, 𝐸]

and the right-eigenvector for a left-going wave is

R = [1.0,−1.0, 0.0, 0.0, 1.5]

When switching from ℰ to 𝑝, we can see from the background and R that

𝛿𝑝 = (𝛾 − 1)(𝛿ℰ + 𝜌 𝑢𝛿𝑢 + 1
2𝑢

2𝛿𝜌) = 1.0

The parameters are summarized in Table 26.4.

Table 26.4: 1D adiabatic hydrodynamic linear wave parameters

Variable Background Perturbation R
𝜌 1 1.0
𝜌𝑢𝑥 0 -1.0
𝜌𝑢𝑦 0 0.0
𝜌𝑢𝑧 0 0.0
𝑝 1

𝛾 1.0
ℰ 1

𝛾(𝛾−1) 1.5

The absolute error in propagating a sound wave to the left one wavelength as a function of
the number of grid points 𝑁𝑥
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26.2.1.2 1D Adiabatic MHD

Given Equation 5.49,

𝜌 = 1
u = 0
𝑝 = 1/𝛾

B = [1,
√
2, 0.5]

with 𝛾 = 5/3. Thus, the characteristic speeds along x is

𝑣𝑠 = √𝛾𝑝
𝜌 = 1.0

𝑣𝐴 = √𝑏2𝑥 + 𝑏2𝑦 + 𝑏2𝑧
𝜌 =

√
13
2 ≈ 1.8

𝑣𝑥𝐴 = √𝑏2𝑥
𝜌 = 1.0

𝑣𝑥,fast = √1
2 [𝑣2𝑠 + 𝑣2𝐴 +√(𝑣2𝑠 + 𝑣2𝐴)2 − 4𝑣2𝑠𝑣2𝑥𝐴] = 2.0

𝑣𝑥,slow = √1
2 [𝑣2𝑠 + 𝑣2𝐴 −√(𝑣2𝑠 + 𝑣2𝐴)2 − 4𝑣2𝑠𝑣2𝑥𝐴] = 0.5

If the conserved variables are ordered as

U = [𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑦, 𝜌𝑢𝑧, 𝐸,𝐵𝑦, 𝐵𝑧]

then the right eigenvectors for left going waves are as follows:

• For a fast magnetosonic wave:

U = [
4.472135954999580e-01
-8.944271909999160e-01
4.216370213557840e-01
1.490711984999860e-01
2.012457825664615e+00
8.432740427115680e-01
2.981423969999720e-01 ]

• For a Alfvén wave:
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U = [
0.0
0.0
-3.333333333333333e-01
9.428090415820634e-01
0.0
-3.333333333333333e-01
9.428090415820634e-01 ]

• For a slow magnetosonic wave:

U = [
8.944271909999159e-01
-4.472135954999579e-01
-8.432740427115680e-01
-2.981423969999720e-01
6.708136850795449e-01
-4.216370213557841e-01
-1.490711984999860e-01 ]

The parameters are summarized in Table 26.5.

In some cases, we need to convert from conserved variables to other set of variables,
e.g. (𝑛,u, 𝑝,B). The number density perturbation is

𝛿𝑛 = 𝛿𝜌
𝑚 = 𝜌0

𝑚𝐴 sin 2𝜋𝑥 (26.1)

Assuming background 𝑢0 = 0,

𝛿𝑢 = 1
𝜌 [𝛿(𝜌𝑢) − (𝛿𝜌)𝑢] = 1

𝜌0 + 𝛿𝜌𝛿(𝜌𝑢) (26.2)

Given the perturbation of energy density

ℰ = 𝑝
𝛾 − 1 + 𝜌𝑢2

2 + 𝐵2

2𝜇0

𝑝 = (𝛾 − 1) [ℰ − 𝜌𝑢2

2 − 𝐵2

2𝜇0
]

the pressure perturbation is then

𝛿𝑝 = (𝛾 − 1) [𝛿ℰ − 1
2(𝜌0 + 𝛿𝜌)𝛿𝑢2 − 1

2 (2𝐵0𝛿𝐵 + 𝛿𝐵2)] (26.3)
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Table 26.5: 1D adiabatic MHD linear wave parameters

Table 26.6: fast magnetosonic wave

Variable Background Perturbation R
𝜌 1.0 4.472135954999580e-1
𝜌𝑢𝑥 0 -8.944271909999160e-1
𝜌𝑢𝑦 0 4.216370213557840e-1
𝜌𝑢𝑧 0 1.490711984999860e-1
ℰ 1

𝛾(𝛾−1) + 13
8 2.012457825664615

𝐵𝑥 1.0 0.0
𝐵𝑦

√
2 8.432740427115680e-1

𝐵𝑧 0.5 2.981423969999720e-1

Table 26.7: Alfvén wave

Variable Background Perturbation R
𝜌 1.0 0.0
𝜌𝑢𝑥 0 0.0
𝜌𝑢𝑦 0 -3.333333333333333e-1
𝜌𝑢𝑧 0 9.428090415820634e-1
ℰ 1

𝛾(𝛾−1) 0.0
𝐵𝑥 1.0 0.0
𝐵𝑦

√
2 -3.333333333333333e-1

𝐵𝑧 0.5 9.428090415820634e-1

Table 26.8: slow magnetosonic wave

Variable Background Perturbation R
𝜌 1.0 8.944271909999159e-1
𝜌𝑢𝑥 0 -4.472135954999579e-1
𝜌𝑢𝑦 0 -8.432740427115680e-1
𝜌𝑢𝑧 0 -2.981423969999720e-1
ℰ 1

𝛾(𝛾−1) 6.708136850795449e-1
𝐵𝑥 1.0 0.0
𝐵𝑦

√
2 -4.216370213557841e-1

𝐵𝑧 0.5 -1.490711984999860e-1
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If the input is 𝑇 instead of 𝑝, we have

𝛿𝑇 = 𝑝0 + 𝛿𝑝
𝜌0 + 𝛿𝜌 − 𝑝0

𝜌0
(26.4)

Note that while in the linear perturbation theory we can ignore the high order (>2) terms, we
do not need to do so here numerically.

26.2.1.3 2D Adiabatic MHD

In this case, we use the same values as for the 1D adiabatic MHD test, but we use a 2D grid
of size 0 ≤ 𝑥 ≤ 2 and 0 ≤ 𝑦 ≤ 1. We use twice as many grid points in the x-direction at every
resolution (e.g. our highest resolution is 512×256), thus the grid is rectangular, but each cell is
square. The wave propagates along the diagonal of the grid, at an angle 𝜃 = tan−1(0.5) ≈ 26.6
degrees with respect to the x-axis. Since the wave does not propagate along the diagonals
of the grid cells, we guarantee the x- and y-fluxes are different; that is the problem is truly
multi-dimensional.

26.2.2 3D Adiabatic MHD

Now we use a 3D grid of size 0 ≤ 𝑥 ≤ 3 and 0 ≤ 𝑦 ≤ 1.5, and 0 ≤ 𝑧 ≤ 1.5. The grid is of
size 2𝑁 × 𝑁 × 𝑁 . The wave propogates along the grid diagonal, again guaranteeing a truly
multidimensional test. The background state is identical to the 1D test values.

26.2.3 Anisotropic MHD

This test is taken from (Daldorff et al. 2014). The parallel and perpendicular pressures vary
differently in the collisionless plasma even if the unperturbed plasma has isotropic pressure.
The isotropic MHD solutions are not valid in models like anisotropic MHD, hybrid, or PIC.

The following equations are an exact solution of the anisotropic MHD equations (Equation 5.49
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but replace the energy equation with two pressure equations as in Equation 5.14)

𝜌 = 𝜌0 [1 + 𝛿 sin(𝑘𝑥 − 𝜔𝑡)]
𝑢𝑥 = 𝑉𝑓𝛿 sin(𝑘𝑥 − 𝜔𝑡)
𝑢𝑦 = 0
𝑢𝑧 = 0
𝑝 = 𝑝0 [1 + 𝛾𝛿 sin(𝑘𝑥 − 𝜔𝑡)]
𝑝∥ = 𝑝0 [1 + 𝛿 sin(𝑘𝑥 − 𝜔𝑡)]
𝐵𝑥 = 0
𝐵𝑦 = 𝐵0 (1 + 𝛿 sin(𝑘𝑥 − 𝜔𝑡))
𝐵𝑧 = 0

where 𝑝 = 𝑝∥+2𝑝⟂
3 and

𝑉𝑓 = 𝜔
𝑘 = √𝐵2

0 + 2𝑝0
𝜌0

is the propagation speed of the fast wave moving perpendicular relative to the magnetic field
direction. This corresponds to a case where 𝜃 = 90∘ in Section 7.8.4. Note that 𝑝 and 𝑝∥ have
different wave amplitudes, i.e. this solution is different from the isotropic (collisional) fast wave.
Also note the 2𝑝0 (actually 2𝑝⟂) term instead of the usual 𝛾𝑝 term in the phase speed.

Initially, we set 𝜌0 = 1, 𝑝0 = 4.5 × 10−4 and 𝐵0 = 0.04 which results in 𝑉𝑓 = 0.05. The
wavelength is set to 𝜆 = 32 so that 𝑘 = 2𝜋/𝜆. The above solution also satisfies the Vlasov-
Maxwell equations solved by a kinetic solver if the ion and electron gyro-radii are small relative
to the wavelength 𝜆 and the propagation speed 𝑉ph is much less than the speed of light 𝑐.

26.2.4 Circularly polarized Alfvén wave

The following relations describe a right-hand polarized Alfvén wave

𝜌 = 1.0
𝑝 = 0.1
𝑣∥ = 0.0
𝑣⟂ = 0.1 sin(2𝜋𝑥∥)
𝑣𝑧 = 0.1 cos(2𝜋𝑥∥)
𝐵∥ = 1.0
𝐵⟂ = 0.1 sin(2𝜋𝑥∥)
𝐵𝑧 = 0.1 cos(2𝜋𝑥∥)
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with 𝛾 = 5/3 and 𝑥∥ = (𝑥 cos𝛼 + 𝑦 sin𝛼) where 𝛼 is the angle at which the wave propagates
with respect to the grid. Here 𝑣⟂ and 𝐵⟂ are the components of velocity and magnetic field
(in the x-y plane) perpendicular to the wavevector. They are related to the components stored
on the grid 𝐵𝑥 and 𝐵𝑦 via

𝐵⟂ = −𝐵𝑥 sin𝛼 + 𝐵𝑦 cos𝛼
𝐵∥ = 𝐵𝑥 cos𝛼 + 𝐵𝑦 sin𝛼

By inverting the system, we have

𝐵𝑥 = 𝐵∥ cos𝛼 − 𝐵⟂ sin𝛼
𝐵𝑦 = 𝐵∥ sin𝛼 + 𝐵⟂ cos𝛼

Generally the velocity and magnetic perturbation amplitudes are related by

𝑣1
𝐵1

= 𝑉𝐴
𝐵0

For 2D the computational domain is of size 𝐿𝑥 = 2𝐿𝑦, with 𝑁𝑥 = 2𝑁𝑦. Thus, the grid is
rectangular, but each cell is square. The wave propagates along the diagonal of the grid, at
an angle 𝛼 = tan−1(0.5) ≈ 26.6 degrees with respect to the x-axis. Since the wave does not
propagate along the diagonals of the grid cells, we guarantee the x- and y-fluxes are different;
that is the problem is truly multi-dimensional.

The wave is an exact nonlinear solution to the MHD equations, allowing one to test the
algorithm in the nonlinear regime.1 Although nonlinear amplitude Alfvén waves are subject to
a parametric instability (Section 13.4) which causes them to decay into magnetosonic waves,
the instability should not be present for the circularly polarized Alfvén waves. Since the
problem is smooth, it can be used for convergence testing. Running the test with smaller
pressure (higher �) and/or larger amplitudes is a good test of how robust is the algorithm.

See more in reference and (Tóth 2000).

26.2.5 Whistler wave

This test involves the propagation of whistler waves taken from (Daldorff et al. 2014). This
is an extension of the circularly polarized Alfvén wave with the Hall term. The whistler
waves have variations in the transverse components of the magnetic field and the velocity.
The longitudinal components, the density and the pressure are not perturbed. The following

1As opposed to linearly polarized Alfvén wave, which is not an exact solution to the nonlinear MHD equations!
Polarization affects decay. Ask Chaitanya for more about this point.
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solution of the Hall MHD equations describes a right-hand polarized whistler wave propagating
in the +𝑥-direction:

𝑢𝑦 = −𝛿𝑢 cos(𝑘𝑥 − 𝜔𝑡)
𝑢𝑧 = +𝛿𝑢 sin(𝑘𝑥 − 𝜔𝑡)
𝐵𝑦 = +𝛿𝐵 cos(𝑘𝑥 − 𝜔𝑡)
𝐵𝑧 = −𝛿𝐵 sin(𝑘𝑥 − 𝜔𝑡)

(26.5)

where the wave speed is (Equation 7.23)

𝑣ph = 𝜔
𝑘 = 𝑊

2 +√𝐵2𝑥
𝜌 + 𝑊 2

4 , 𝑊 = 𝑚
𝑒
𝑘𝐵𝑥
𝜌

Note that the wave speed depends on the wave number 𝑘. The magnetic and velocity pertur-
bations are related as (This is different from the usual Alfvénicity Equation 14.2??? But it
reduces to the Alfvénicity condition if 𝑣ph = 𝑣𝐴 = 𝐵𝑥/

√𝜌.)

𝛿𝑢
𝛿𝐵 = 𝐵𝑥

𝑣ph𝜌
(26.6)

We set 𝜌 = 1, 𝑢𝑥 = 0,𝐵𝑥 = 0.2 and 𝑝 = 5.12 × 10−4, and wavelength 𝜆 = 32. This results in
𝑣ph = 0.22059 that is about 10% faster than the Alfvén speed 𝑉𝐴 = 0.2, so the Hall term is
small but not negligible at this wavelength. The amplitude of the transverse magnetic field
perturbation is set to 𝛿𝐵 = 0.01 which is 5% of the background field.

These parameters are chosen to satisfy

• 𝑐 ≫ 𝑣ph
• 𝑚𝑒 ≪ 𝑚𝑖
• 𝛽 ≪ 1
• 𝜔 ≪ Ω𝑒

such that the kinetic dispersion relation reduces to the Hall MHD dispersion relation for the
right-hand polarized whistler waves.

(Tenerani et al. 2023) shows the Alfvénic wave dispersion and damping relations with respect
to 𝜆/𝑑𝑖. When we get close to but not necessarily below the ion inertial length (for 𝛽 ∼ 1,
𝑑𝑖 and 𝑟𝑖𝐿 are on the same order), these effects already take place from both Hall MHD and
hybrid simulations.

What I observe while doing this low-𝛽 test with the hybrid-Vlasov code Vlasiator is that
without the Hall term the wave profile will be quickly distorted starting from the trailing edge
of the peaks and troughs of all quantities; with the Hall term the wave profile can be maintained
much longer, and of course the phase speed is 𝑣𝑊 which is faster than 𝑣𝐴 as in the ideal MHD
case. In Section 5.6.1, we learned that the Hall term in the Ohm’s law can be neglected under
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two cases, neither of which apply in this test as shown by the comparison of 𝑉𝐴 and 𝑣𝑊 above.
This implies an important fact that in certain parameter spaces the classical Alfvén waves
never exist; we may observe Alfvénic fluctuations (i.e. correlations between 𝛿u and 𝛿B), but
they may belong to whistler waves (R-waves), EMIC waves (L-waves), or KAWs.

26.2.6 Light wave

26.2.7 Firehose instability

26.2.8 Mirror mode instability

26.3 Shock Tests

26.3.1 Brio-Wu shock tube

This test is an MHD shocktube, where the right and left states are initalized to different values.
The initial left/right values are

𝜌 = 1.0, 0.125
𝑢𝑥 = 0.0, 0.0
𝑢𝑦 = 0.0, 0.0
𝑢𝑧 = 1.0, −1.0
𝐵𝑥 = 0.75, 0.75
𝐵𝑦 = 0.0, 0.0
𝐵𝑧 = 0.0, 0.0
𝑝 = 1.0, 0.1

and 𝛾 = 2. The hydrodynamic portion of the initial conditions are the same as for the Sod
shock tube problem.

This is a standard test for MHD codes for checking whether the code can accurately represent
the shocks, rarefactions, contact discontinuities, and the compound structures of MHD.

26.3.2 Ryu and Jones Test 2A

This test is an MHD shocktube, where the right and left states are initialized to different
values. It involves a three-dimensional field and velocity structure and rotation of the plane
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of the magnetic field. The initial left/right values are

𝜌 = 1.08, 1.0
𝑢𝑥 = 1.2, 0.0
𝑢𝑦 = 0.01, 0.0
𝑢𝑧 = 0.5, 0.0
𝐵𝑥 = 3.6, 2.0
𝐵𝑦 = 2.0, 4.0
𝐵𝑧 = 2.0, 2.0
𝑝 = 0.95, 1.0

This test contains fast shocks, slow shocks, and rotational discontinuities which propagate to
each side of the contact discontinuity. The ability of the scheme to capture all 7 waves in MHD
can be checked with this single test.

26.3.3 Spherical blast waves

We used a rectangular domain, −0.5 ≤ 𝑥 ≤ 0.5;−0.75 ≤ 𝑦 ≤ 0.75. The boundary conditions
are periodic everywhere. This non-square domain and periodic boundary conditions produces
complex shock-shock and shock-CD interactions at late times.

The initial conditions are
𝜌 = 1.0
u = [0.0, 0.0, 0.0]
𝑝 = 0.1

with 𝛾 = 5/3. Initial velocities are zero everywhere. Within the region 𝑟 < 0.1, 𝑝 = 10.0
(that is, 100 times the ambient pressure). For the MHD problem, the initial magnetic field is
uniform everywhere with 𝐵𝑥 = 𝐵𝑦 = 1/

√
2.

Although this test is not very quantitative, it makes great movies!

At early times, it is important that the out-going blast wave is spherical and shows no grid
alignment effects. At late times, the interaction of the blast wave with the CD at the edge of
the evacuated bubble in the center produces filaments of dense gas by the Richtmyer-Meshkov
instability. It is important these fingers are sharp and not diffused away. Moreover, for the
hydrodynamical problem, the pattern of the fingers should be exactly symmetric top-to-bottom
and left-to-right. For the MHD problem, the Richtmyer-Meshkov instability is suppressed, and
no fingers are evident.
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26.4 Instability Tests

26.4.1 Kelvin-Helmholtz instability

We use a square domain, −0.5 ≤ 𝑥 ≤ 0.5;−0.5 ≤ 𝑦 ≤ 0.5. The boundary conditions are
periodic everywhere. For |𝑦| > 0.25, we set 𝜌 = 1 and 𝑢𝑥 = −0.5, for |𝑦| ≤ 0.25, 𝜌 = 2 and
𝑢𝑥 = 0.5. The pressure is 2.5 everywhere, and 𝛾 = 1.4, giving a Mach number of about 0.377
in the 𝜌 = 2 gas, and about 0.267 in the 𝜌 = 1 gas. The interface between the two oppositely
directed streams is a discontinuity, that is a “slip surface”. We use different densities in the
two fluids to make visualization of the interface easier.

For the MHD problem, the initial magnetic field is uniform everywhere with 𝐵𝑥 = 0.5.
To seed the instability, we add random numbers to both the x- and y-components of the
velocity with peak-to-peak amplitude of 0.01.

At early times, one can check that the growth rate of the transverse component of the ve-
locity agrees with the prediction from linear theory. This requires initializing a single-mode
perturbation rather than a spectrum of perturbations as we have done here.

At late times, once the instability has gone fully nonlinear, it is difficult to make quantitative
comparisons. However, the sharpness of the boundary between the two streams is an indication
of the numerical diffusion of the scheme. For example, if the HLLE Riemann solver is used,
diffusion at the interface is significant enough to suppress the instability.

26.4.2 Rayleigh-Taylor instability

For the single-mode test, we use a rectangular domain, −0.25 ≤ 𝑥 ≤ 0.25;−0.75 ≤ 𝑦 ≤ 0.75.
The boundary conditions are periodic at |𝑥| = 0.25, and reflecting walls at |𝑦| = 0.75. For
𝑦 > 0 the density is 2.0, while for 𝑦 ≤ 0 it is 1.0. A constant gravitational acceleration
𝑔 = 0.1 must be added to the equations of motion. The pressure is given by the condition of
hydrostatic equilibrium, that is 𝑝 = 𝑝0 − 0.1𝜌𝑦, where 𝑝0 = 2.5, and 𝛾 = 1.4. This gives a
sound speed of 3.5 in the low density medium at the interface.

The structures which appear in the nonlinear regime are very sensitive to the nature of the
perturbations used to seed the instability. To avoid gridding errors associated with perturbing
the interface, we instead perturb the velocities. For the single-mode perturbation, we set
𝑢𝑦 = 0.01[1 + cos(4𝜋𝑥)][1 + cos(3𝜋𝑦)]/4.
For the multimode perturbation, we use a domain of size −0.25 ≤ 𝑥 ≤ 0.25;−0.375 ≤ 𝑦 ≤
0.375, and set 𝑢𝑦 = 𝐴[1 + cos(8𝜋𝑦/3)]/2, where 𝐴 is a random number at each zone with a
peak-to-peak amplitude of 0.01.

The way in which source terms are included in the algorithm can have a strong effect on
the outcome of this test. For example, for Godunov schemes, if the source term is added
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using operator splitting, grid noise generated by the lack of an exact numerical equilibrium
can perturb the interface and seed structure. If the source terms are included directly in the
reconstruction and integration steps, it is able to hold hydrostatic equilibrium automatically.

At early times, one can check that the growth rate of the vertical component of the velocity
agrees with the prediction from linear theory.

At late times, once the instability has gone fully nonlinear, it is difficult to make quantitative
comparisons. However, the sharpness of the boundary between the two fluids is an indication
of the numerical diffusion of the scheme. Also, the amount of fine scale struture induced by
secondary KH instabilities is sensitive to the way the interface is perturbed, and how sharp
the algorithm preserves the contact discontinuity. It is not always clear that sharper is better,
however. For example the “contact steepener” in the PPM algorithm can introduce “stair
stepping” in contact discontinuities in multidimensions, which in turn can cause KH rolls to
be seeded by grid noise.

26.5 Turbulence Tests

26.5.1 Orszag-Tang vortex

We use a square domain, 0 ≤ 𝑥 ≤ 1; 0 ≤ 𝑦 ≤ 1. The boundary conditions are periodic
everywhere. The density 𝜌 is 25/(36𝜋) and the pressure is 5/(12𝜋) everywhere, and 𝛾 =
5/3. Note that this choice gives 𝑢2

𝑠 = 𝛾𝑝/𝜌 = 1. The initial velocities are periodic with
𝑢𝑥 = − sin(2𝜋𝑦) and 𝑢𝑦 = sin(2𝜋𝑥). The magnetic field is initialized using a periodic vector
potential defined at zone corners; 𝐴𝑧 = 𝐵0(cos(4𝜋𝑥)/(4𝜋) + cos(2𝜋𝑦)/(2𝜋)), with 𝐵0 = 1.0.
Face-centered magnetic fields are computed using B = ∇×A to guarantee ∇ ⋅B = 0 initially.
This gives 𝐵𝑥 = −𝐵0 sin(2𝜋𝑦) and 𝐵𝑦 = 𝐵0 sin(4𝜋𝑥).
The Orszag-Tang vertex is a well-known model problem for testing the transition to supersonic
2D MHD turbulence. Thus, the problem tests how robust the code is at handling the formation
of MHD shocks, and shock-shock interactions. The problem can also provide some quanititative
estimates of how significant magnetic monopoles affect the numerical solutions, testing the
∇ ⋅ B = 0 condition. Finally, the problem is a very common test of numerical MHD codes in
two dimensions, and has been used in many previous studies. As such, it provides a basis for
consistent comparison of codes.
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26.6 Reconnection Tests

26.6.1 GEM challenge

This 2D setup is based on (Birn et al. 2001). The computation is carried out in a rectangular
domain −𝐿𝑥/2 ≤ 𝑥 ≤ 𝐿𝑥/2 and −𝐿𝑧/2 ≤ 𝑧 ≤ 𝐿𝑧/2. The system is taken to be periodic in the
x direction with ideal conducting boundaries at 𝑧 = ±𝐿𝑧/2. Thus the boundary conditions on
the magnetic fields at the z boundaries are 𝐵𝑧 = 𝜕𝐵𝑥/𝜕𝑧 = 𝜕𝐵𝑦/𝜕𝑧 = 0 with corresponding
conditions on the electric fields and particle or fluid quantities. Open boundary conditions are
used for all quantities.

The equilibrium chosen for the reconnection challenge problem is a Harris equilibrium with a
floor in the density outside of the current layer. The magnetic field is given by

𝐵𝑥(𝑧) = 𝐵0 tanh(𝑧/𝜆)
where 𝜆 is the current sheet scale size, and the density by

𝑛(𝑧) = 𝑛0sech
2(𝑧/𝜆) + 𝑛∞

The electron and ion temperatures, 𝑇𝑒 and 𝑇𝑖, are taken to be uniform in the initial state. We
assume the plasma 𝛽 = (𝑝𝑖 + 𝑝𝑒)/𝑝𝐵 = 1 initially.

The normalization of the space and time scales of the system is chosen to be the ion inertial
length 𝑑𝑖 = 𝑐/𝜔𝑝𝑖 and the ion cyclotron frequency Ω−1

𝑖 , where 𝜔2
𝑝𝑖 = 𝑛0𝑒2/𝜖0𝑚𝑖 is evaluated

with the density 𝑛0 and the ion gyrofrequency Ω𝑖 = 𝑒𝐵0/𝑚𝑖 is evaluated at the peak magnetic
field. The velocities are then normalized to the Alfvén speed 𝑣𝐴. In the normalized units,
𝐵0 = 1 and 𝑛0 = 1. Specific parameters for the simulations are 𝐿𝑥 = 25.6, 𝐿𝑧 = 12.8, 𝜆 =
0.5, 𝑛∞/𝑛0 = 0.2, and 𝑇𝑒/𝑇𝑖 = 0.2. 𝑚𝑖/𝑚𝑒 = 25 is assumed if required.

The initial magnetic island is specified through the perturbation in the magnetic flux,

𝜓(𝑥, 𝑧) = 𝜓0 cos(2𝜋𝑥/𝐿𝑥) cos(𝜋𝑧/𝐿𝑧)
where the magnetic perturbation is given by B = ̂𝑦 × ∇𝜓, or more specifically,

𝐵1𝑥 = −𝜓0(
𝜋
𝐿𝑧

) cos(2𝜋𝑥/𝐿𝑥) sin(𝜋𝑧/𝐿𝑧)

𝐵1𝑧 = 𝜓0(
2𝜋
𝐿𝑥

) sin(2𝜋𝑥/𝐿𝑥) cos(𝜋𝑧/𝐿𝑧)

In normalized units 𝜓0 = 0.1, which produces an initial island width which is comparable to
the initial width of the current layer. The rationale for such a large initial perturbation is to
put the system in the nonlinear regime of magnetic reconnection from the beginning of the
simulation.

The initial setup is shown in Figure 26.1.
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Figure 26.1: Initial density and magnetic field in the GEM current sheet setup.

26.6.1.1 Why do we need to resolve ion inertial length

Physically, electrons and ions separate at the scale of ion inertial length. Numerically, Hall
term is important only when cell size is small enough to resolve the ion initial length. The
reason is as follows. The Ohm’s law is

E = −(U + U𝐻) × H

Assume the typical flow velocity is Alfvén velocity: U = V𝐴. The Hall velocity is estimated
as:

U𝐻 = − J
𝑛𝑒 = −∇× B

𝜇0𝑛𝑒
∼ − |𝑑𝐵|

𝜇0𝑛𝑒Δ𝑥 ∼ − |𝐵|
𝜇0𝑛𝑒Δ𝑥

The approximation 𝑑𝐵 ≈ 𝐵 is valid for relatively coarse grid size; for fine discrete cell sizes, this
approximation does not hold, so magnetic field cannot cancel out in the following estimation.
Let us now assume we can make this assumption. Then the ratio of Hall velocity and Alfvén
velocity is:

|U𝐻|
|V𝐴|

= 𝑐/𝜔𝑝𝑖
𝜇0Δ𝑥

Ion inertial length is also important for PIC: if particle’s velocity is assumed to be Alfvén
velocity, then ion inertial length is the same as ion gyroradius.

642



26.6.2 Current sheet

The grid is a square with −0.5 ≤ 𝑥 ≤ 0.5 and −0.5 ≤ 𝑦 ≤ 0.5. The density and pressure are
uniform everywhere, with 𝜌 = 1 and 𝑝 = 𝛽/2 where 𝛽 is an input parameter. For |𝑥| > 0.25
we set 𝐵𝑦/

√
4𝜋 = 1, otherwise 𝐵𝑦/

√
4𝜋 = −1. The velocities are 𝑢𝑥 = 𝐴 sin(2𝜋𝑦) (where 𝐴

is an amplitude) and 𝑢𝑦 = 0. The “standard” test uses 𝛽 = 0.1 and 𝐴 = 0.1, although part
of the point of this test is to see how small (large) a value of 𝛽(𝐴) is required to break the
code.

Although we do not know the analytic solution for this problem, it may be an excellent test of
the robustness of the algorithm. For ideal MHD, initially the solution should be nonlinearly
(???) polarized Alfvén waves propagating along the field in the y-direction (which quickly
generate magnetosonic waves since the magnetic pressure does not remain constant). However,
because of the two current sheets in the problem (at 𝑥 = ±0.25), reconnection inevitably
occurs. Because 𝛽 < 1, this reconnection drives strong over-pressurized regions that launch
magnetosonic waves transverse to the field. Moreover, as reconnection changes the topology of
the field lines, magnetic islands will form, grow, and merge. The point of the test is to make
sure the algorithm can follow this evolution for as long as possible without crashing. Keeping
∇ ⋅ B = 0 as the field toplogy undergoes complex changes could be important.

26.7 Divergence-free Field test

26.7.1 Magnetic field loop
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27 Inductance

Inductance is the ability of an inductor to store energy and it does this in the magnetic field
that is created by the flow of electrical current. Energy is required to set up the magnetic field
and this energy is released when the field falls. As a result of the magnetic field associated with
the current flow, inductors generate an opposing voltage proportional to the rate of change in
current in a circuit. Inductance is caused by the magnetic field generated by electric currents
flowing within an electrical circuit. Typically coils of wire are used as a coil increases the
coupling of the magnetic field and increases the effect.

There are two ways in which inductance is used:

• Self-inductance: Self-inductance is the property of a circuit, often a coil, whereby a
change in current causes a change in voltage in that circuit due to the magnetic effect
caused by the current flow. It can be seen that self-inductance applies to a single circuit
— in other words it is an inductance, typically within a single coil. This effect is used in
single coils or chokes.

• Mutual-inductance: Mutual inductance is an inductive effect where a change in current
in one circuit causes a change in voltage across a second circuit as a result of a magnetic
field that links both circuits. This effect is used in transformers.

27.1 Unit Definition

When indicating an inductor on a circuit diagram or within an equation, generally the symbol
“L” is used. On circuit diagrams, inductors are generally numbered, L1, L2, etc.

The SI unit of inductance is the henry, H which can be defined in terms of rate of change of
current and voltage. The inductance of a circuit is one henry if the rate of change of current
in a circuit is one ampere per second and this results in an electromotive force of one volt.
1H = 1Wb/A.
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27.2 Phenomena

When a current flows within a conductor, whether it be straight or in the form of a coil, a
magnetic field builds up around it and this affects the way in which the current builds up after
the circuit is made.

In terms of how inductance affects and electrical circuit, it helps to look at the way the
circuit operates, first for a direct current (DC), and then for an alternating current (AC).
Although they follow the same laws and the same effects result, it helps the explanation, the
direct current example is simpler, and then this explanation can be used as the basis for the
alternating current case.

27.2.1 Direct current

As the circuit is made the current starts to flow. As the current increases to its steady value
the magnetic field it produces builds up to its final shape. As this occurs, the magnetic field
is changing, so this induces a voltage back into the coil itself, as would be expected according
to Lenz’s Law.

The time constant 𝑇 in seconds of the circuit which will include the inductor value 𝐿 Henries
and the associated circuit resistance, 𝑅 Ohms can be calculated as 𝑇 = 𝐿/𝑅. 𝑇 is the time
for the current 𝐼 amps to rise to 0.63 of its final steady state value of V/R. The energy stored
in the magnetic field is 1

2𝐿𝐼2.
When the current is switched off this means that effectively the resistance of the circuit rises
suddenly to infinity. This means that the ratio 𝐿/𝑅 becomes very small and the magnetic
field falls very rapidly. This represents a large change in magnetic field and accordingly the
inductance tries to keep the current flowing and a back electromagnetic force (EMF) is set up
to oppose this arising from the energy stored in the magnetic field.

When the back EMF is set up, the very high voltages generated mean that sparks can appear
across the switch contact, especially just as the contact is broken. This leads to pitted con-
tacts and wear on any mechanical switches. In electronic circuits this back EMF can destroy
semiconductor devices and therefore ways of reducing this back EMF are often employed.

27.2.2 Alternating current

For the case of the AC passing through an inductor, the same basic principles are used, but
as the waveform is repetitive, we tend to look at the way the inductor responds in a slightly
different way as it is more convenient.

By its very nature, an alternating waveform is changing all of the time. This means that the
resulting magnetic field will always be changing, and there will always be an induced back
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EMF produced. The result of this is that the inductor impedes the flow of the alternating
current through it as a result of the inductance. This is in addition to the resistance caused
but the Ohmic resistance of the wire.

It means that if the Ohmic resistance of the inductor is low, it will pass DC with little loss,
but it can present a high impedance to any high frequency signal. This characteristic of an
inductor can be used in ensuring that any high frequency signals do not pass though the
inductor.

A further aspect of inductance is that the reactance of an inductor and that of a capacitor can
act together in a circuit to cancel each other out. This is known as resonance, and it is widely
used in bandpass filters.

27.3 Inductors

Inductors are electronic components that use inductance in an electronic circuit. These in-
ductors are normally wound components having many turns of wire to increase the level of
inductance. They may also be would on ferromagnetic cores to further increase the level of
inductance.

27.3.1 Inductance of Wires and Coils

Straight wires and coils have an inductance. Normally coils are used for inductors because the
linking of the magnetic field between the different turns of the coil increases the inductance
and enables the wire to be contained within a smaller volume.

If the wire was not coiled, then very long lengths of wire would often be needed making elec-
tronic components of this nature not viable. By coiling the wire the inductance is maximised
enabling inductors to be incorporated into many electronic circuits.

However, even the inductance of a straight wire can affect some electronic circuits. For most low
frequency applications, the inductance of a straight wire can be ignored, but as the frequency
increases into the VHF region and beyond, the inductance of the wire itself can become
significant, and interconnections need to be kept short to minimise the effects.

Calculations are available to enable the inductance of wires to be calculated quite accurately,
but the inductance of coils is a little more complicated and depends upon a variety of factors
including the shape of the coil and the constant of the material in and around the coil.
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27.3.2 Applications

Inductance is a very important aspect of electronic circuit design. Although inductors are not
so widely used in low frequency electronic circuit designs because the size of the electronic
components required to give the levels of inductance needed is large, they are widely used for
much higher frequencies in radio frequency designs, as well as within EMC — where filtering
is used, often using inductors to ensure that any interference is not able to pass along wires
and cables. For example a simple form of inductor is often seen on computer cables where a
ferrite is added around a cable to add inductance and prevent the signals from travelling along
the cable and being transmitted, thereby giving rise to the possibility of interference to other
systems.
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28 Capacitance

A capacitor is a little like a battery but works completely differently. A battery is an electronic
device that converts chemical energy into electrical energy, whereas a capacitor is a passive
electronic component that stores electrostatic energy in an electric field.

28.1 What Is a Capacitor?

A capacitor is a two-terminal electrical device that can store energy in the form of an electric
charge. It consists of two electrical conductors that are separated by a distance. The space
between the conductors may be filled by vacuum or with an insulating material known as a
dielectric. The ability of the capacitor to store charges is known as capacitance.

Capacitors store energy by holding apart pairs of opposite charges. The simplest design for
a capacitor is a parallel plate, which consists of two metal plates with a gap between them.
But, different types of capacitors are manufactured in many forms, styles, lengths, girths, and
materials.
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Appendix

This is the appendix.

example_dataframe()
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