Examples
IDL format output loader
- Read data
file = "1d_bin.out";
bd = load(file);
bd = load(file, verbose=true);
bd = load(file, npict=1);
- 3D structured spherical coordinates
file = "3d_structured.out";
bd = load(file, verbose=false);
- log file
logfilename = "shocktube.log";
head, data = readlogdata(logfilename)
Data Extraction
- Checking variable range
get_var_range(bd, "rho")
- Raw variables
ρ = getvar(bd, "rho")
bd["rho"]
- Extracting data at a given location
loc = Float32[0.0, 0.0] # The type determines the output type
d = interp1d(bd, "rho", loc)
- Extracting data along a given line
point1 = Float32[-10.0, -1.0]
point2 = Float32[10.0, 1.0]
w = interp1d(bd, "rho", point1, point2)
- Derived variables
We provide utility methods get_magnitude
, get_magnitude2
, and fill_vector_from_scalars
for vector processing:
Bmag = get_magnitude(bd, :B)
B2 = get_magnitude2(bd, :B)
Bvec = Batsrus.fill_vector_from_scalars(bd, :B)
paniso0 = get_anisotropy(bd, 0)
These are built upon get_vectors
. Here is a full list of predefined derived quantities in get_vectors
:
Derived variable name | Meaning | Required variable |
---|---|---|
:B | Magnetic field vector | Bx, By, Bz |
:E | Electric field vector | Ex, Ey, Ez |
:U | Velocity vector | Ux, Uy, Uz |
:U0 | Electron velocity vector | UxS0, UyS0, UzS0 |
:U1 | Proton velocity vector | UxS1, UyS1, UzS1 |
Output format conversion
We can convert 2D/3D BATSRUS outputs *.dat
to VTK formats. It uses the VTK XML format writer writeVTK to generate files for Paraview and Tecplot. The default converted filename is out.vtu
.
- ASCII Tecplot file (supports both
tec
andtcp
) and binary Tecplot file (setDOSAVETECBINARY=TRUE
in BATSRUSPARAM.in
):
file = "x=0_mhd_1_n00000050.dat"
convertTECtoVTU(file)
- 3D structured IDL file (
gridType=1
returns rectilinearvtr
file,gridType=2
returns structuredvts
file):
file = "3d_structured.out"
convertIDLtoVTK(file, gridType=1)
- 3D unstructured IDL file together with header and tree file:
filetag = "3d_var_1_n00002500"
convertIDLtoVTK(filetag)
The file suffix should not be provided for this to work correctly!
- Multiple files:
dir = "./"
filenames = filter(file -> startswith(file, "3d") && endswith(file, ".dat"), readdir(dir))
filenames = dir .* filenames
for filename in filenames
convertTECtoVTU(filename, filename[1:end-4])
end
- Processing multiple files with threads in parallel:
dir = "./"
filenames = filter(file -> startswith(file, "3d") && endswith(file, ".dat"), readdir(dir))
filenames = dir .* filenames
Threads.@threads for filename in filenames
println("filename=$filename")
convertTECtoVTU(filename, filename[1:end-4])
end
More examples can be found in examples.
HDF format output loader
filename = "3d__var_1_n00006288.h5"
file = BatsrusHDF5Uniform(filename)
Field extraction
Variable var
can be extracted in the whole domain:
var, (xl_new, yl_new, zl_new), (xu_new, yu_new, zu_new) = extract_var(file, "bx")
where (xl_new, yl_new, zl_new)
and (xu_new, yu_new, zu_new)
return the lower and upper bound, respectively.
Variables within a box region can be extracted as following:
var, (xl_new, yl_new, zl_new), (xu_new, yu_new, zu_new) =
extract_var(file, "bx"; xmin, xmax, ymin, ymax, zmin, zmax)
Data visualization
We provide plot recipes for Plots.jl, Makie.jl, and wrappers for PyPlot.jl.
The recipes for Plots.jl and Makie.jl will work on all kinds of plots given the correct dimensions, e.g.
using Plots
plot(bd, "p")
contourf(bd, "Mx", xlabel="x")
See the official documentation for Plots.jl for more information.
On the other hand, most common 1D and 2D plotting functions are wrapped over their Matplotlib equivalences through PyPlot.jl. To trigger the wrapper, using PyPlot
. Check out the documentation for more details.
Quick exploration of data
Using the same plotting functions as in Matplotlib is allowed, and actually recommended. This takes advantage of multiple dispatch mechanism in Julia. Some plotting functions can be directly called as shown below, which allows for more control from the user. using PyPlot
to import the full capability of the package, etc. adding colorbar, changing line colors, setting colorbar range with clim
.
For 1D outputs, we can use plot
or scatter
.
- line plot
plot(bd, "p", linewidth=2, color="tab:red", linestyle="--", linewidth=2)
- scatter plot
scatter(bd, "p")
For 2D outputs, we can select the following functions:
contour
contourf
pcolormesh
plot_surface
plot_tricontour
plot_tricontourf
plot_trisurf
tripcolor
with either quiver
or streamplot
. By default the linear colorscale is applied. If you want to switch to logarithmic, set argument colorscale=:log
.
- contour
contour(bd, "p")
- filled contour
contourf(bd, "p")
contourf(bd, "p"; levels, plotrange=[-10,10,-Inf,Inf], plotinterval=0.1)
- surface plot
plot_surface(bd, "p")
- triangle surface plot
plot_trisurf(bd, "p")
- triangle filled contour plot
tricontourf(bd, "p")
- streamline
streamplot(bd, "bx;bz")
streamplot(bd, "bx;bz"; density=2.0, color="k", plotinterval=1.0, plotrange=[-10,10,-Inf,Inf])
- quiver (currently only for Cartesian grid)
quiver(bd, "ux;uy"; stride=50)
- streamline + contourf
file = "y.out"
bd = load(file)
DN = matplotlib.colors.DivergingNorm
cmap = matplotlib.cm.RdBu_r
contourf(bd, "uxS0", 50; plotrange=[-3,3,-3,3], plotinterval=0.05, norm=DN(0), cmap)
colorbar()
streamplot(bd, "uxS0;uzS0"; density=2.0, color="g", plotrange=[-3,3,-3,3])
xlabel("x"); ylabel("y"); title("Ux [km/s]")
contourf(bd, "uxS0", 50; plotinterval=0.05, norm=DN(0), cmap)
colorbar()
axis("scaled")
xlabel("x"); ylabel("y"); title("uxS0")
For 3D outputs, we may use cutplot
for visualizing on a sliced plane, or streamslice
to plot streamlines on a given slice.
Finding indexes
To get the index of a certain quantity, e.g. electron number density
ρe_= findfirst(x->x=="rhoS0", bd.head.wname)
Get variable range
wmin, wmax = get_range(bd, var)
Tracing
The built-in streamplot
function in Matplotlib is not satisfactory for accurately tracing. Instead we recommend FieldTracer.jl for tracing fieldlines and streamlines.
An example of tracing in a 2D cut and plot the field lines over contour:
file = "test/y=0_var_1_t00000000_n00000000.out"
bd = load(file)
bx = bd.w[:,:,5]
bz = bd.w[:,:,7]
x = bd.x[:,1,1]
z = bd.x[1,:,2]
seeds = select_seeds(x, z; nSeed=100) # randomly select the seeding points
for i in 1:size(seeds)[2]
xs = seeds[1,i]
zs = seeds[2,i]
# Tracing in both direction. Check the document for more options.
x1, z1 = trace2d_eul(bx, bz, xs, zs, x, z, ds=0.1, maxstep=1000, gridType="ndgrid")
plot(x1, z1, "--")
end
axis("equal")
Currently the select_seeds
function uses pseudo random number generator that produces the same seeds every time.